Local search genetic algorithm-based possibilistic weighted fuzzy c-means for clustering mixed numerical and categorical data

Clustering for mixed numerical and categorical attributes has attracted many researchers due to its necessity in many real-world applications. One crucial issue concerned in clustering mixed data is to select an appropriate distance metric for each attribute type. Besides, some current clustering me...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computing & applications Ročník 34; číslo 20; s. 18059 - 18074
Hlavní autori: Nguyen, Thi Phuong Quyen, Kuo, R. J., Le, Minh Duc, Nguyen, Thi Cuc, Le, Thi Huynh Anh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.10.2022
Springer Nature B.V
Predmet:
ISSN:0941-0643, 1433-3058
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Clustering for mixed numerical and categorical attributes has attracted many researchers due to its necessity in many real-world applications. One crucial issue concerned in clustering mixed data is to select an appropriate distance metric for each attribute type. Besides, some current clustering methods are sensitive to the initial solutions and easily trap into a locally optimal solution. Thus, this study proposes a local search genetic algorithm-based possibilistic weighted fuzzy c -means (LSGA-PWFCM) for clustering mixed numerical and categorical data. The possibilistic weighted fuzzy c-means (PWFCM) is firstly proposed in which the object-cluster similarity measure is employed to calculate the distance between two mixed-attribute objects. Besides, each attribute is placed a different important role by calculating its corresponding weight in the PWFCM procedure. Thereafter, GA is used to find a set of optimal parameters and the initial clustering centroids for the PFCM algorithm. To avoid local optimal solution, local search-based variable neighborhoods are embedded in the GA procedure. The proposed LSGA-PWFCM algorithm is compared with other benchmark algorithms based on some public datasets in UCI machine learning repository to evaluate its performance. Two clustering validation indices are used, i.e., clustering accuracy and Rand index. The experimental results show that the proposed LSGA-PWFCM outperforms other algorithms on most of the tested datasets.
AbstractList Clustering for mixed numerical and categorical attributes has attracted many researchers due to its necessity in many real-world applications. One crucial issue concerned in clustering mixed data is to select an appropriate distance metric for each attribute type. Besides, some current clustering methods are sensitive to the initial solutions and easily trap into a locally optimal solution. Thus, this study proposes a local search genetic algorithm-based possibilistic weighted fuzzy c-means (LSGA-PWFCM) for clustering mixed numerical and categorical data. The possibilistic weighted fuzzy c-means (PWFCM) is firstly proposed in which the object-cluster similarity measure is employed to calculate the distance between two mixed-attribute objects. Besides, each attribute is placed a different important role by calculating its corresponding weight in the PWFCM procedure. Thereafter, GA is used to find a set of optimal parameters and the initial clustering centroids for the PFCM algorithm. To avoid local optimal solution, local search-based variable neighborhoods are embedded in the GA procedure. The proposed LSGA-PWFCM algorithm is compared with other benchmark algorithms based on some public datasets in UCI machine learning repository to evaluate its performance. Two clustering validation indices are used, i.e., clustering accuracy and Rand index. The experimental results show that the proposed LSGA-PWFCM outperforms other algorithms on most of the tested datasets.
Clustering for mixed numerical and categorical attributes has attracted many researchers due to its necessity in many real-world applications. One crucial issue concerned in clustering mixed data is to select an appropriate distance metric for each attribute type. Besides, some current clustering methods are sensitive to the initial solutions and easily trap into a locally optimal solution. Thus, this study proposes a local search genetic algorithm-based possibilistic weighted fuzzy c -means (LSGA-PWFCM) for clustering mixed numerical and categorical data. The possibilistic weighted fuzzy c-means (PWFCM) is firstly proposed in which the object-cluster similarity measure is employed to calculate the distance between two mixed-attribute objects. Besides, each attribute is placed a different important role by calculating its corresponding weight in the PWFCM procedure. Thereafter, GA is used to find a set of optimal parameters and the initial clustering centroids for the PFCM algorithm. To avoid local optimal solution, local search-based variable neighborhoods are embedded in the GA procedure. The proposed LSGA-PWFCM algorithm is compared with other benchmark algorithms based on some public datasets in UCI machine learning repository to evaluate its performance. Two clustering validation indices are used, i.e., clustering accuracy and Rand index. The experimental results show that the proposed LSGA-PWFCM outperforms other algorithms on most of the tested datasets.
Author Nguyen, Thi Cuc
Nguyen, Thi Phuong Quyen
Kuo, R. J.
Le, Minh Duc
Le, Thi Huynh Anh
Author_xml – sequence: 1
  givenname: Thi Phuong Quyen
  orcidid: 0000-0002-8559-8050
  surname: Nguyen
  fullname: Nguyen, Thi Phuong Quyen
  email: ntpquyen@dut.udn.vn
  organization: Faculty of Project Management, The University of Danang–University of Science and Technology
– sequence: 2
  givenname: R. J.
  surname: Kuo
  fullname: Kuo, R. J.
  organization: Department of Industrial Management, National Taiwan University of Science and Technology
– sequence: 3
  givenname: Minh Duc
  surname: Le
  fullname: Le, Minh Duc
  organization: Faculty of Transportation Mechanical Engineering, The University of Danang–University of Science and Technology
– sequence: 4
  givenname: Thi Cuc
  surname: Nguyen
  fullname: Nguyen, Thi Cuc
  organization: Faculty of Project Management, The University of Danang–University of Science and Technology
– sequence: 5
  givenname: Thi Huynh Anh
  surname: Le
  fullname: Le, Thi Huynh Anh
  organization: Faculty of Project Management, The University of Danang–University of Science and Technology
BookMark eNp9kMFq3DAQhkVIIZu0L5CToGe1Gkm2tccQmqaw0EtyFmPteFfBljeSTLuBvHvtbKHQQ05iNP83I32X7DyOkRi7BvkFpGy-ZikrBUIqJWRjAAScsRUYrYWWlT1nK7k2c7s2-oJd5vwkpTS1rVbsdTN67HkmTH7PdxSpBM-x340plP0gWsy05Ycx59CGPuSl-4vCbl_m6256eTlyLwbCmHk3Ju77KRdKIe74EH7PkTgNc7mswLjlHgstk5d6iwU_sg8d9pk-_T2v2OPdt4fbe7H5-f3H7c1GeA3rIjSA9YDQekSytW6tkqi31rS2akxNVLcolVfQmqpprdZ11xGuVWfR1B6VvmKfT3MPaXyeKBf3NE4pziudaqCBtdZqSdlTyqf5v4k650PBEsZYEobegXSLbHeS7WbZ7k22gxlV_6GHFAZMx_chfYLyYTFG6d-r3qH-AEbSlhU
CitedBy_id crossref_primary_10_1007_s00521_023_09115_6
crossref_primary_10_1016_j_knosys_2023_110893
crossref_primary_10_1016_j_asoc_2025_112717
crossref_primary_10_1016_j_neucom_2024_129176
Cites_doi 10.1007/3-540-44719-9_9
10.1109/ITNG.2010.65
10.1016/j.swevo.2020.100818
10.1016/j.eswa.2011.01.074
10.1109/ACCESS.2019.2903568
10.1016/j.ijpe.2016.01.016
10.1007/978-3-319-31204-0_18
10.1007/978-3-540-72960-0_10
10.1016/j.socnet.2015.03.002
10.1016/j.knosys.2012.01.006
10.1007/978-3-642-37456-2_12
10.1016/j.datak.2007.03.016
10.1016/0098-3004(84)90020-7
10.1016/j.cie.2015.04.006
10.1007/s00500-009-0506-1
10.1007/s00521-019-04571-5
10.1002/int.20108
10.1103/PhysRevLett.88.018702
10.1109/4235.930311
10.1016/j.neucom.2018.11.016
10.1007/11811305_38
10.1007/0-306-48056-5_6
10.1016/j.ins.2007.05.003
10.1023/B:APIN.0000027769.48098.91
10.1080/18756891.2013.773175
10.1109/TNNLS.2017.2728138
10.1109/TFUZZ.2004.840099
10.1016/j.asoc.2017.11.038
10.1145/2487575.2487583
10.1016/j.neucom.2017.06.011
10.1007/s00521-020-04957-w
10.1109/TSMC.2018.2881686
10.1109/TKDE.2002.1019208
10.1016/j.ygeno.2019.01.001
10.1016/j.cie.2006.07.005
10.1016/j.cie.2016.10.015
10.1007/978-3-319-98812-2_2
10.1016/j.ins.2018.07.004
10.1016/j.eswa.2020.114149
10.1007/s00521-018-3768-7
10.1016/j.eswa.2011.08.146
10.1016/j.asoc.2020.106639
10.1016/j.patcog.2011.12.017
10.1049/ip-j.1992.0070
10.1007/s10586-017-1420-4
10.1007/978-94-009-8543-8_2
10.1137/1.9781611974010.6
10.1016/j.engappai.2018.08.011
10.1016/0167-8655(95)00075-R
10.1109/4235.661548
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00521-022-07411-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 18074
ExternalDocumentID 10_1007_s00521_022_07411_1
GrantInformation_xml – fundername: Funds for Science and Technology Development of the University of Danang
  grantid: B2020-DN02-83
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-3118c1a1bcaae863b820a3d84b85746ee6ba02c21b457b8336ffea92f8a46ca23
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000809323500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 01:37:59 EST 2025
Tue Nov 18 22:41:13 EST 2025
Sat Nov 29 02:59:28 EST 2025
Fri Feb 21 02:45:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Local search genetic algorithm
Possibilistic fuzzy
means
Variable neighborhood search
Mixed data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-3118c1a1bcaae863b820a3d84b85746ee6ba02c21b457b8336ffea92f8a46ca23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8559-8050
PQID 2717193322
PQPubID 2043988
PageCount 16
ParticipantIDs proquest_journals_2717193322
crossref_citationtrail_10_1007_s00521_022_07411_1
crossref_primary_10_1007_s00521_022_07411_1
springer_journals_10_1007_s00521_022_07411_1
PublicationCentury 2000
PublicationDate 20221000
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Gharsalli L, Guérin Y (2019) A hybrid genetic algorithm with local search approach for composite structures optimization. In: Proceedings of the European conference for aeronautics and space sciences.
HornDGottliebAAlgorithm for data clustering in pattern recognition problems based on quantum mechanicsPhys Rev Lett20018814
ChatzisSPA fuzzy c-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functionalExpert Syst Appl20113886848689
MohammadrezapourOKisiOPourahmadFFuzzy c-means and K-means clustering with genetic algorithm for identification of homogeneous regions of groundwater qualityNeural Comput Appl20203237633775
AhmadAKhanSA survey of state-of-the-art mixed data clustering algorithmsIEEE Access201973188331902
Vavak F, Jukes K, Fogarty TC (1997) Adaptive balancing of a bank of sugar-beet presses using a genetic algorithm with variable local search range. In: 3rd Intl Mendel Conference on Genetic Algorithms, Citeseer, pp 164–169
ZhangGZhangLSongXWangYZhouCA variable neighborhood search based genetic algorithm for flexible job shop scheduling problemCluster Comput2019221156111572
DaiTNiLLuoQDiagnosis method of ultrasonic elasticity image of peripheral lung cancer based on genetic algorithmNeural Comput Appl2020321831518325
LoohachRGargKEffect of distance functions on k-means clustering algorithmInt J Comput Appl20124979
MohammadpourTBidgoliAMEnayatifarRJavadiHHSEfficient clustering in collaborative filtering recommender system: hybrid method based on genetic algorithm and gravitational emulation local search algorithmGenomics201911119021912
AsadzadehLA local search genetic algorithm for the job shop scheduling problem with intelligent agentsComput Ind Eng201585376383
FarhangYFace extraction from image based on K-means clustering algorithmsInt J Adv Comput Sci Appl2017896107
GuoKYangMZhuHApplication research of improved genetic algorithm based on machine learning in production schedulingNeural Comput Appl20203218571868
SantiagoADorronsoroBFraireHJRuizPMicro-genetic algorithm with fuzzy selection of operators for multi-Objective optimization: μFAMESwarm Evol Comput202161
LeeNKLiXWangDA comprehensive survey on genetic algorithms for DNA motif predictionInf Sci201846625433847939
BaarehAA hybrid memetic algorithm (genetic algorithm and tabu local search) with back-propagation classifier for fish recognitionInt Rev Comput Softw2013812871293
LiangJZhaoXLiDCaoFDangCDetermining the number of clusters using information entropy for mixed dataPattern Recognit201245225122651234.68343
JiJPangWZhouCHanXWangZA fuzzy k-prototype clustering algorithm for mixed numeric and categorical dataKnowl Based Syst201230129135
MichielssenERanjithanSMittraROptimal multilayer filter design using real coded genetic algorithmsIEE Proc J-Optoelectron1992139413420
Huang Z (1997) Clustering large data sets with mixed numeric and categorical values. In: Proceedings of the 1st Pacific-Asia conference on knowledge discovery and data mining (PAKDD). Singapore, pp 21–34
Zhang K, Wang Q, Chen Z, Marsic I, Kumar V, Jiang G, Zhang J (2015) From categorical to numerical: multiple transitive distance learning and embedding. In: Proceedings of the 2015 SIAM international conference on data mining. SIAM, pp 46–54
Vavak F, Jukes K, Fogarty TC (1998) Performance of a genetic algorithm with variable local search range relative to frequency of the environmental changes. Genetic Programming, pp 22–25
LiuDJinDBaqueroCHeDYangBYuQGenetic algorithm with a local search strategy for discovering communities in complex networksInt J Comput Intell Syst20136354369
ZhaoXCaoFLiangJA sequential ensemble clusterings generation algorithm for mixed dataAppl Math Comput201833526427738091781427.68280
AhmadAKhanSSinitKmix-A novel initial partition generation algorithm for clustering mixed data using k-means-based clusteringExpert Syst Appl2021167
BezdekJCEhrlichRFullWFCM: The fuzzy c-means clustering algorithmComput Geosci198410191203
JiaHCheungY-MSubspace clustering of categorical and numerical data with an unknown number of clustersIEEE Trans Neural Netw Learn Syst201829330833253854608
KuoR-JAmornnikunPNguyenTPQMetaheuristic-based possibilistic multivariate fuzzy weighted c-means algorithms for market segmentationAppl Soft Comput202096114
OmbukiBMVentrescaMLocal search genetic algorithms for the job shop scheduling problemAppl Intell200421991091078.68597
Chen W, Chen Y, Mao Y, Guo B (2013) Density-based logistic regression. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 140–148
Cheung Y-M, Jia H (2013) A unified metric for categorical and numerical attributes in data clustering. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 135–146
Li C-L, Sun Y, Zhang L, Wang X-C (2005) A parallel micro-genetic algorithm and its application. In: 2005 International conference on machine learning and cybernetics. IEEE, pp 2880–2884
YunYHybrid genetic algorithm with adaptive local search schemeComput Ind Eng200651128141
García-MartínezCLozanoMEvaluating a local genetic algorithm as context-independent local search operator for metaheuristicsSoft comput20101411171139
DidayEGovaertGLechevallierYSidiJClustering in pattern recognitionDigital image processing1981Springer1958
XiaHLiXGaoLA hybrid genetic algorithm with variable neighborhood search for dynamic integrated process planning and schedulingComput Ind Eng201610299112
AhmadADeyLA k-mean clustering algorithm for mixed numeric and categorical dataData Knowl Eng200763503527
RalambondrainyHA conceptual version of the K-means algorithmPattern Recognit Lett19951611471157
KazarlisSAPapadakisSETheocharisJPetridisVMicrogenetic algorithms as generalized hill-climbing operators for GA optimizationIEEE Trans Evol Comput20015204217
DerbelHJarbouiBHanafiSChabchoubHGenetic algorithm with iterated local search for solving a location-routing problemExpert Syst Appl201239286528711274.90040
Tan P-N, Steinbach M, Kumar V (2006) Introduction to data mining. Pearson education Inc
Behzadi S, Ibrahim MA, Plant C (2018) Parameter free mixed-type density-based clustering. In: International conference on database and expert systems applications. Springer, pp 19–34
HeZXuXDengSScalable algorithms for clustering large datasets with mixed type attributesInt J Intell Syst200520107710891101.68810
García-Martínez C, Lozano M (2007) Local search based on genetic algorithms. In: Advances in metaheuristics for hard optimization. Springer, pp 199–221
PalNRPalKKellerJMBezdekJCA possibilistic fuzzy c-means clustering algorithmIEEE Trans Fuzzy Syst200513517530
HsuC-CChenC-LSuY-WHierarchical clustering of mixed data based on distance hierarchyInf Sci200717744744492
EsbensenKHGuyotDWestadFHoumollerLPMultivariate data analysis: in practice: an introduction to multivariate data analysis and experimental design2002Aalborg, DenmarkAalborg University
KuoRNguyenTPQGenetic intuitionistic weighted fuzzy k-modes algorithm for categorical dataNeurocomputing2019330116126
Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co., Inc.
LiXGaoLPanQWanLChaoK-MAn effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshopIEEE Trans Syst Man Cybern Syst20184919331945
DengizBAltiparmakFSmithAELocal search genetic algorithm for optimal design of reliable networksIEEE Trans Evol Comput19971179188
Hansen P, Mladenović N (2003) Variable neighborhood search. In: Handbook of metaheuristics. Springer, pp 145–184
Luo H, Kong F, Li Y (2006) Clustering mixed data based on evidence accumulation. In: International conference on advanced data mining and applications. Springer, pp 348–355
LiXGaoLAn effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problemInt J Prod Econ201617493110
HeloulouIRadjefMSKechadiMTA multi-act sequential game-based multi-objective clustering approach for categorical dataNeurocomputing2017267320332
Coello CACC, Pulido GT (2001) A micro-genetic algorithm for multiobjective optimization. In: International conference on evolutionary multi-criterion optimization. Springer, pp 126–140
LuYCaoBRegoCGloverFA Tabu Search based clustering algorithm and its parallel implementation on SparkAppl Soft Comput20186397109
HoffmanMSteinleyDBruscoMJA note on using the adjusted Rand index for link prediction in networksSoc Networks2015427279
Allahyari M, Pouriyeh S, Assefi M, Safaei S, Trippe ED, Gutierrez JB, Kochut K (2017) A brief survey of text mining: classification, clustering and extraction techniques. arXiv e-print, arXiv:170702919.
Taghva K, Veni R (2010) Effects of similarity metrics on document clustering. In: Information technology: 2010 IEEE 7th international conference on new generations (ITNG), pp 222–226
LiCBiswasGUnsupervised learning with mixed numeric and nominal dataIEEE Trans Knowl Data Eng200214673690
LeeCKHA review of applications of genetic algorithms in operations managementEng Appl Artif Intell201876112
Sabar NR, Song A, Zhang M (2016) A variable local search based memetic algorithm for the load balancing problem in cloud computing. In: European conference on the applications of evolutionary computation. Springer, pp 267–282
7411_CR1
E Michielssen (7411_CR57) 1992; 139
7411_CR5
7411_CR7
BM Ombuki (7411_CR40) 2004; 21
L Asadzadeh (7411_CR41) 2015; 85
7411_CR44
CKH Lee (7411_CR30) 2018; 76
C-C Hsu (7411_CR23) 2007; 177
J Ji (7411_CR13) 2012; 30
Y Yun (7411_CR46) 2006; 51
H Derbel (7411_CR49) 2012; 39
D Liu (7411_CR43) 2013; 6
KH Esbensen (7411_CR10) 2002
SA Kazarlis (7411_CR37) 2001; 5
H Xia (7411_CR55) 2016; 102
T Dai (7411_CR32) 2020; 32
E Diday (7411_CR3) 1981
NK Lee (7411_CR31) 2018; 466
O Mohammadrezapour (7411_CR34) 2020; 32
7411_CR35
H Jia (7411_CR16) 2018; 29
7411_CR38
X Li (7411_CR54) 2018; 49
R-J Kuo (7411_CR2) 2020; 96
7411_CR36
J Liang (7411_CR24) 2012; 45
G Zhang (7411_CR53) 2019; 22
JC Bezdek (7411_CR28) 1984; 10
B Dengiz (7411_CR42) 1997; 1
R Loohach (7411_CR8) 2012; 49
R Kuo (7411_CR9) 2019; 330
NR Pal (7411_CR27) 2005; 13
A Baareh (7411_CR47) 2013; 8
X Zhao (7411_CR62) 2018; 335
7411_CR29
Z He (7411_CR21) 2005; 20
X Li (7411_CR45) 2016; 174
7411_CR22
A Santiago (7411_CR39) 2021; 61
7411_CR25
A Ahmad (7411_CR14) 2007; 63
A Ahmad (7411_CR26) 2019; 7
SP Chatzis (7411_CR15) 2011; 38
M Hoffman (7411_CR61) 2015; 42
7411_CR18
C Li (7411_CR19) 2002; 14
C García-Martínez (7411_CR56) 2010; 14
7411_CR12
T Mohammadpour (7411_CR48) 2019; 111
7411_CR11
Y Lu (7411_CR59) 2018; 63
7411_CR17
7411_CR58
I Heloulou (7411_CR60) 2017; 267
7411_CR52
7411_CR50
7411_CR51
Y Farhang (7411_CR6) 2017; 8
A Ahmad (7411_CR63) 2021; 167
H Ralambondrainy (7411_CR20) 1995; 16
D Horn (7411_CR4) 2001; 88
K Guo (7411_CR33) 2020; 32
References_xml – reference: JiJPangWZhouCHanXWangZA fuzzy k-prototype clustering algorithm for mixed numeric and categorical dataKnowl Based Syst201230129135
– reference: Tan P-N, Steinbach M, Kumar V (2006) Introduction to data mining. Pearson education Inc
– reference: Allahyari M, Pouriyeh S, Assefi M, Safaei S, Trippe ED, Gutierrez JB, Kochut K (2017) A brief survey of text mining: classification, clustering and extraction techniques. arXiv e-print, arXiv:170702919.
– reference: RalambondrainyHA conceptual version of the K-means algorithmPattern Recognit Lett19951611471157
– reference: Li C-L, Sun Y, Zhang L, Wang X-C (2005) A parallel micro-genetic algorithm and its application. In: 2005 International conference on machine learning and cybernetics. IEEE, pp 2880–2884
– reference: GuoKYangMZhuHApplication research of improved genetic algorithm based on machine learning in production schedulingNeural Comput Appl20203218571868
– reference: Gharsalli L, Guérin Y (2019) A hybrid genetic algorithm with local search approach for composite structures optimization. In: Proceedings of the European conference for aeronautics and space sciences.
– reference: LeeCKHA review of applications of genetic algorithms in operations managementEng Appl Artif Intell201876112
– reference: YunYHybrid genetic algorithm with adaptive local search schemeComput Ind Eng200651128141
– reference: HornDGottliebAAlgorithm for data clustering in pattern recognition problems based on quantum mechanicsPhys Rev Lett20018814
– reference: Coello CACC, Pulido GT (2001) A micro-genetic algorithm for multiobjective optimization. In: International conference on evolutionary multi-criterion optimization. Springer, pp 126–140
– reference: LiXGaoLPanQWanLChaoK-MAn effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshopIEEE Trans Syst Man Cybern Syst20184919331945
– reference: LiCBiswasGUnsupervised learning with mixed numeric and nominal dataIEEE Trans Knowl Data Eng200214673690
– reference: DidayEGovaertGLechevallierYSidiJClustering in pattern recognitionDigital image processing1981Springer1958
– reference: AhmadAKhanSA survey of state-of-the-art mixed data clustering algorithmsIEEE Access201973188331902
– reference: KuoR-JAmornnikunPNguyenTPQMetaheuristic-based possibilistic multivariate fuzzy weighted c-means algorithms for market segmentationAppl Soft Comput202096114
– reference: Cheung Y-M, Jia H (2013) A unified metric for categorical and numerical attributes in data clustering. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 135–146
– reference: LeeNKLiXWangDA comprehensive survey on genetic algorithms for DNA motif predictionInf Sci201846625433847939
– reference: Luo H, Kong F, Li Y (2006) Clustering mixed data based on evidence accumulation. In: International conference on advanced data mining and applications. Springer, pp 348–355
– reference: MichielssenERanjithanSMittraROptimal multilayer filter design using real coded genetic algorithmsIEE Proc J-Optoelectron1992139413420
– reference: García-MartínezCLozanoMEvaluating a local genetic algorithm as context-independent local search operator for metaheuristicsSoft comput20101411171139
– reference: FarhangYFace extraction from image based on K-means clustering algorithmsInt J Adv Comput Sci Appl2017896107
– reference: KuoRNguyenTPQGenetic intuitionistic weighted fuzzy k-modes algorithm for categorical dataNeurocomputing2019330116126
– reference: LiuDJinDBaqueroCHeDYangBYuQGenetic algorithm with a local search strategy for discovering communities in complex networksInt J Comput Intell Syst20136354369
– reference: MohammadpourTBidgoliAMEnayatifarRJavadiHHSEfficient clustering in collaborative filtering recommender system: hybrid method based on genetic algorithm and gravitational emulation local search algorithmGenomics201911119021912
– reference: LuYCaoBRegoCGloverFA Tabu Search based clustering algorithm and its parallel implementation on SparkAppl Soft Comput20186397109
– reference: Behzadi S, Ibrahim MA, Plant C (2018) Parameter free mixed-type density-based clustering. In: International conference on database and expert systems applications. Springer, pp 19–34
– reference: SantiagoADorronsoroBFraireHJRuizPMicro-genetic algorithm with fuzzy selection of operators for multi-Objective optimization: μFAMESwarm Evol Comput202161
– reference: EsbensenKHGuyotDWestadFHoumollerLPMultivariate data analysis: in practice: an introduction to multivariate data analysis and experimental design2002Aalborg, DenmarkAalborg University
– reference: HsuC-CChenC-LSuY-WHierarchical clustering of mixed data based on distance hierarchyInf Sci200717744744492
– reference: LoohachRGargKEffect of distance functions on k-means clustering algorithmInt J Comput Appl20124979
– reference: JiaHCheungY-MSubspace clustering of categorical and numerical data with an unknown number of clustersIEEE Trans Neural Netw Learn Syst201829330833253854608
– reference: Chen W, Chen Y, Mao Y, Guo B (2013) Density-based logistic regression. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 140–148
– reference: ZhangGZhangLSongXWangYZhouCA variable neighborhood search based genetic algorithm for flexible job shop scheduling problemCluster Comput2019221156111572
– reference: PalNRPalKKellerJMBezdekJCA possibilistic fuzzy c-means clustering algorithmIEEE Trans Fuzzy Syst200513517530
– reference: Zhang K, Wang Q, Chen Z, Marsic I, Kumar V, Jiang G, Zhang J (2015) From categorical to numerical: multiple transitive distance learning and embedding. In: Proceedings of the 2015 SIAM international conference on data mining. SIAM, pp 46–54
– reference: MohammadrezapourOKisiOPourahmadFFuzzy c-means and K-means clustering with genetic algorithm for identification of homogeneous regions of groundwater qualityNeural Comput Appl20203237633775
– reference: Vavak F, Jukes K, Fogarty TC (1998) Performance of a genetic algorithm with variable local search range relative to frequency of the environmental changes. Genetic Programming, pp 22–25
– reference: Hansen P, Mladenović N (2003) Variable neighborhood search. In: Handbook of metaheuristics. Springer, pp 145–184
– reference: Taghva K, Veni R (2010) Effects of similarity metrics on document clustering. In: Information technology: 2010 IEEE 7th international conference on new generations (ITNG), pp 222–226
– reference: HeloulouIRadjefMSKechadiMTA multi-act sequential game-based multi-objective clustering approach for categorical dataNeurocomputing2017267320332
– reference: DerbelHJarbouiBHanafiSChabchoubHGenetic algorithm with iterated local search for solving a location-routing problemExpert Syst Appl201239286528711274.90040
– reference: BaarehAA hybrid memetic algorithm (genetic algorithm and tabu local search) with back-propagation classifier for fish recognitionInt Rev Comput Softw2013812871293
– reference: Vavak F, Jukes K, Fogarty TC (1997) Adaptive balancing of a bank of sugar-beet presses using a genetic algorithm with variable local search range. In: 3rd Intl Mendel Conference on Genetic Algorithms, Citeseer, pp 164–169
– reference: Huang Z (1997) Clustering large data sets with mixed numeric and categorical values. In: Proceedings of the 1st Pacific-Asia conference on knowledge discovery and data mining (PAKDD). Singapore, pp 21–34
– reference: Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co., Inc.
– reference: LiangJZhaoXLiDCaoFDangCDetermining the number of clusters using information entropy for mixed dataPattern Recognit201245225122651234.68343
– reference: HeZXuXDengSScalable algorithms for clustering large datasets with mixed type attributesInt J Intell Syst200520107710891101.68810
– reference: OmbukiBMVentrescaMLocal search genetic algorithms for the job shop scheduling problemAppl Intell200421991091078.68597
– reference: Sabar NR, Song A, Zhang M (2016) A variable local search based memetic algorithm for the load balancing problem in cloud computing. In: European conference on the applications of evolutionary computation. Springer, pp 267–282
– reference: García-Martínez C, Lozano M (2007) Local search based on genetic algorithms. In: Advances in metaheuristics for hard optimization. Springer, pp 199–221
– reference: ZhaoXCaoFLiangJA sequential ensemble clusterings generation algorithm for mixed dataAppl Math Comput201833526427738091781427.68280
– reference: AhmadADeyLA k-mean clustering algorithm for mixed numeric and categorical dataData Knowl Eng200763503527
– reference: HoffmanMSteinleyDBruscoMJA note on using the adjusted Rand index for link prediction in networksSoc Networks2015427279
– reference: LiXGaoLAn effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problemInt J Prod Econ201617493110
– reference: DaiTNiLLuoQDiagnosis method of ultrasonic elasticity image of peripheral lung cancer based on genetic algorithmNeural Comput Appl2020321831518325
– reference: ChatzisSPA fuzzy c-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functionalExpert Syst Appl20113886848689
– reference: KazarlisSAPapadakisSETheocharisJPetridisVMicrogenetic algorithms as generalized hill-climbing operators for GA optimizationIEEE Trans Evol Comput20015204217
– reference: AsadzadehLA local search genetic algorithm for the job shop scheduling problem with intelligent agentsComput Ind Eng201585376383
– reference: BezdekJCEhrlichRFullWFCM: The fuzzy c-means clustering algorithmComput Geosci198410191203
– reference: DengizBAltiparmakFSmithAELocal search genetic algorithm for optimal design of reliable networksIEEE Trans Evol Comput19971179188
– reference: XiaHLiXGaoLA hybrid genetic algorithm with variable neighborhood search for dynamic integrated process planning and schedulingComput Ind Eng201610299112
– reference: AhmadAKhanSSinitKmix-A novel initial partition generation algorithm for clustering mixed data using k-means-based clusteringExpert Syst Appl2021167
– ident: 7411_CR36
  doi: 10.1007/3-540-44719-9_9
– ident: 7411_CR7
  doi: 10.1109/ITNG.2010.65
– volume: 61
  year: 2021
  ident: 7411_CR39
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100818
– volume: 38
  start-page: 8684
  year: 2011
  ident: 7411_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.01.074
– volume: 7
  start-page: 31883
  year: 2019
  ident: 7411_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903568
– volume: 174
  start-page: 93
  year: 2016
  ident: 7411_CR45
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2016.01.016
– ident: 7411_CR50
  doi: 10.1007/978-3-319-31204-0_18
– ident: 7411_CR35
  doi: 10.1007/978-3-540-72960-0_10
– volume: 42
  start-page: 72
  year: 2015
  ident: 7411_CR61
  publication-title: Soc Networks
  doi: 10.1016/j.socnet.2015.03.002
– volume: 30
  start-page: 129
  year: 2012
  ident: 7411_CR13
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2012.01.006
– ident: 7411_CR44
– ident: 7411_CR25
  doi: 10.1007/978-3-642-37456-2_12
– volume: 63
  start-page: 503
  year: 2007
  ident: 7411_CR14
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2007.03.016
– volume: 10
  start-page: 191
  year: 1984
  ident: 7411_CR28
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume: 85
  start-page: 376
  year: 2015
  ident: 7411_CR41
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2015.04.006
– volume: 14
  start-page: 1117
  year: 2010
  ident: 7411_CR56
  publication-title: Soft comput
  doi: 10.1007/s00500-009-0506-1
– volume: 32
  start-page: 1857
  year: 2020
  ident: 7411_CR33
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04571-5
– volume: 20
  start-page: 1077
  year: 2005
  ident: 7411_CR21
  publication-title: Int J Intell Syst
  doi: 10.1002/int.20108
– ident: 7411_CR52
– volume: 88
  start-page: 1
  year: 2001
  ident: 7411_CR4
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.88.018702
– volume: 5
  start-page: 204
  year: 2001
  ident: 7411_CR37
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.930311
– ident: 7411_CR38
– volume: 330
  start-page: 116
  year: 2019
  ident: 7411_CR9
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.016
– ident: 7411_CR22
  doi: 10.1007/11811305_38
– ident: 7411_CR58
  doi: 10.1007/0-306-48056-5_6
– volume: 8
  start-page: 1287
  year: 2013
  ident: 7411_CR47
  publication-title: Int Rev Comput Softw
– volume-title: Multivariate data analysis: in practice: an introduction to multivariate data analysis and experimental design
  year: 2002
  ident: 7411_CR10
– volume: 177
  start-page: 4474
  year: 2007
  ident: 7411_CR23
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2007.05.003
– volume: 21
  start-page: 99
  year: 2004
  ident: 7411_CR40
  publication-title: Appl Intell
  doi: 10.1023/B:APIN.0000027769.48098.91
– volume: 6
  start-page: 354
  year: 2013
  ident: 7411_CR43
  publication-title: Int J Comput Intell Syst
  doi: 10.1080/18756891.2013.773175
– volume: 29
  start-page: 3308
  year: 2018
  ident: 7411_CR16
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2728138
– volume: 13
  start-page: 517
  year: 2005
  ident: 7411_CR27
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2004.840099
– volume: 63
  start-page: 97
  year: 2018
  ident: 7411_CR59
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.11.038
– ident: 7411_CR51
– ident: 7411_CR18
  doi: 10.1145/2487575.2487583
– volume: 267
  start-page: 320
  year: 2017
  ident: 7411_CR60
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.011
– volume: 32
  start-page: 18315
  year: 2020
  ident: 7411_CR32
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04957-w
– volume: 335
  start-page: 264
  year: 2018
  ident: 7411_CR62
  publication-title: Appl Math Comput
– volume: 49
  start-page: 1933
  year: 2018
  ident: 7411_CR54
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2018.2881686
– volume: 14
  start-page: 673
  year: 2002
  ident: 7411_CR19
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2002.1019208
– ident: 7411_CR29
– volume: 111
  start-page: 1902
  year: 2019
  ident: 7411_CR48
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.01.001
– volume: 51
  start-page: 128
  year: 2006
  ident: 7411_CR46
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2006.07.005
– volume: 102
  start-page: 99
  year: 2016
  ident: 7411_CR55
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2016.10.015
– ident: 7411_CR5
– ident: 7411_CR11
  doi: 10.1007/978-3-319-98812-2_2
– volume: 466
  start-page: 25
  year: 2018
  ident: 7411_CR31
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.07.004
– ident: 7411_CR1
– volume: 167
  year: 2021
  ident: 7411_CR63
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114149
– volume: 32
  start-page: 3763
  year: 2020
  ident: 7411_CR34
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3768-7
– volume: 39
  start-page: 2865
  year: 2012
  ident: 7411_CR49
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.08.146
– volume: 49
  start-page: 7
  year: 2012
  ident: 7411_CR8
  publication-title: Int J Comput Appl
– volume: 96
  start-page: 1
  year: 2020
  ident: 7411_CR2
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106639
– volume: 45
  start-page: 2251
  year: 2012
  ident: 7411_CR24
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.12.017
– volume: 139
  start-page: 413
  year: 1992
  ident: 7411_CR57
  publication-title: IEE Proc J-Optoelectron
  doi: 10.1049/ip-j.1992.0070
– volume: 8
  start-page: 96
  year: 2017
  ident: 7411_CR6
  publication-title: Int J Adv Comput Sci Appl
– ident: 7411_CR12
– volume: 22
  start-page: 11561
  year: 2019
  ident: 7411_CR53
  publication-title: Cluster Comput
  doi: 10.1007/s10586-017-1420-4
– start-page: 19
  volume-title: Digital image processing
  year: 1981
  ident: 7411_CR3
  doi: 10.1007/978-94-009-8543-8_2
– ident: 7411_CR17
  doi: 10.1137/1.9781611974010.6
– volume: 76
  start-page: 1
  year: 2018
  ident: 7411_CR30
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.08.011
– volume: 16
  start-page: 1147
  year: 1995
  ident: 7411_CR20
  publication-title: Pattern Recognit Lett
  doi: 10.1016/0167-8655(95)00075-R
– volume: 1
  start-page: 179
  year: 1997
  ident: 7411_CR42
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.661548
SSID ssj0004685
Score 2.3314848
Snippet Clustering for mixed numerical and categorical attributes has attracted many researchers due to its necessity in many real-world applications. One crucial...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18059
SubjectTerms Artificial Intelligence
Centroids
Clustering
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Genetic algorithms
Image Processing and Computer Vision
Machine learning
Original Article
Probability and Statistics in Computer Science
Searching
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-Dl58i-uLHLxp0CZp2p5ERPEg4kFBvJQ0SVXY7a778AX-d2fS1FVBL17TdGiZSWYy-WY-QnaMdlLzkjMbJYpJE5csk0IzoVwMEQX4eFGTTSQXF-nNTXYZEm6DAKts9kS_UduuwRz5PodzBwQbYH-HvUeGrFF4uxooNCbJNHZJQOqGy_j2S12kp-SEEwyie6QIRTO-dA7zoTDKEXspEdb13TGNo80fF6Te75zO__eLF8hciDjpUW0ii2TCVUtkvmFzoGFxL5P3c3RrtDZ9CnaF5Y1Ut-9A5vC-w9DfWdrrDmpALfZ3ps8-sQrD5ejt7ZUa1nHg-igEwtS0R9iDAf6Jdh5eYEo1qi-H2lRXliIQ667uT0IRpbpCrk9Pro7PWCBnYAZW7RD27ig1kY4Ko7VLlSgglNDCprJI40Qq51ShD7jhUSHjpEiFUGXpdMbLVEtlNBerZKrqVm6NUF5KIUqIBV2aSGt1YazNHEgpRKasEi0SNZrJTehcjgQa7fyz57LXZg7azL0286hFdj_f6dV9O_6cvdmoMA9reJCP9dcie40RjB__Lm39b2kbZJaj3XlE4CaZGvZHbovMmKfhw6C_7S34AwPm91o
  priority: 102
  providerName: ProQuest
Title Local search genetic algorithm-based possibilistic weighted fuzzy c-means for clustering mixed numerical and categorical data
URI https://link.springer.com/article/10.1007/s00521-022-07411-1
https://www.proquest.com/docview/2717193322
Volume 34
WOSCitedRecordID wos000809323500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7o6MGL44rjMuTgTQs2SdP0qKJ4kGFwQ7yUNEl1YKYjs7iB_92XLuOCCnptkxCSl3xfku-9B7CtleWKptQzfig8roPUizhTHhM2QEaBGM-KZBNhqyWvr6N26RQ2rNTu1ZNkvlNPnN3cDSYefalTS3InxJqGGYQ76RI2nJ1fffCGzBNx4rnFaXo4K11lvm_jMxy9c8wvz6I52hzX_9fPBZgv2SXZL8xhEaZstgT1KnMDKRfyMryeOggjhZkTtCHnykhU97Y_6Izuep7DNkPu-8NCPOtiOZPH_BIVP6fjl5dnor2eRZgjSHqJ7o5dvAXsJel1nrBINi4egrpEZYY40dVtEYuEOEXqClweH10cnnhlIgZP4wod4T7tS-0rP9FKWSlYgrRBMSN5IoOQC2tFovaopn7CgzCRjIk0tSqiqVRcaEXZKtSyfmbXgNCUM5Yi77My5MaoRBsTWWwlYZEwgjXAr-Yj1mWUcpcsoxtP4ivn4xvj-Mb5-MZ-A3Ymde6LGB2_lt6spjku1-swpniqRSqLu1sDdqtpff_9c2vrfyu-AXPUWUauBtyE2mgwtlswqx9GneGgCTMHR632WROm28FNM7fqN7tE77Q
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hitReePShLo_iQ3tqrRLbcZJDVSEKArFdcaAS6iV1bIci7WYXdrcUpP6l_sbOOAlbkMqNQ6-OYyX2Nw_b38wAvLbGKyNKwV2UaK5sXPJMScOl9jF6FGjjZV1sIun10pOT7GgOfrexMESrbHViUNRuaOmM_L3AfQc6G4i_j6NzTlWj6Ha1LaFRw-LQX13ilm384eATru8bIfZ2j3f2eVNVgFuE2wSVTpTayESFNcanWhZoA410qSrSOFHae12YLWFFVKg4KVIpdVl6k4kyNUpbQ4kOUOU_UkpskRQdxV__isMMJUBxx0RsIiWbIJ0Qqkfnr9gqiOupiEZ22xDOvNs7F7LBzu0t_W8ztAyLjUfNtmsRWIE5Xz2FpbZaBWuU1zP41SWzzeovZCg3FL7JTP8U_2HyfcDJnjs2Go5rwjDlr2aX4eAYm8vp9fUVs3zg0bQzdPSZ7U8pxwTOIRuc_cQu1bS-_OozUzlGRLPTOv8KIxbuc_jyIJPwAuarYeVfAhOlkrJEX9eniXLOFNa5zOMohcy007IDUYuE3DaZ2alASD-_ySkd0JMjevKAnjzqwNubd0Z1XpJ7e6-3kMkbHTXOZ3jpwLsWdLPH_x5t9f7RNuHx_vHnbt496B2uwRNBmA_sx3WYn1xM_QYs2B-Ts_HFqyA9DL49NBj_AB8oVO0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xBa24AMtDFFjWB24QsbFdJzmi3a1AoKoSD3GLHD-gUptWbcqjEv-dcR6lIFgJcU0cy7LHnm_ib74B2FPScEkt9bQfCI-rhvUizqTHhGkgokAfz4piE0GrFV5fR-2ZLP6c7V5dSRY5DU6lKc0OB9oeThPf3N9MDIOpY05yR8r6BvPcEeldvH5-NZMZmRflxBjG8Xs4K9Nm3u_jtWt6wZtvrkhzz9Nc_vqYV2CpRJ3kqDCTHzBn0lVYrio6kHKDr8HTmXNtpDB_grblUhyJ7N70h53stuc5n6fJoD8qSLVO45nc5z9X8bEdTyaPRHk9g-6PIBgmqjt2Ogw4YtLrPGCTdFxcEHWJTDVxZKybQqOEOKbqOlw2_138OfbKAg2ewp2b4fnth8qXfqKkNKFgCcIJyXTIk7ARcGGMSORvqqif8EaQhIwJa42MqA0lF0pStgG1tJ-aTSDUcsYs4kETBlxrmSitI4O9JCwSWrA6-NXaxKpUL3dFNLrxVHc5n98Y5zfO5zf267A__WZQaHf8t_VOteRxuY9HMcVoFyEunnp1OKiW-OX1x71tfa75L_je_tuMz05ap9uwSJ2R5ITBHahlw7H5CQvqLuuMhru5eT8Dxj744g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+search+genetic+algorithm-based+possibilistic+weighted+fuzzy+c-means+for+clustering+mixed+numerical+and+categorical+data&rft.jtitle=Neural+computing+%26+applications&rft.au=Nguyen%2C+Thi+Phuong+Quyen&rft.au=Kuo%2C+R.+J.&rft.au=Le%2C+Minh+Duc&rft.au=Nguyen%2C+Thi+Cuc&rft.date=2022-10-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=20&rft.spage=18059&rft.epage=18074&rft_id=info:doi/10.1007%2Fs00521-022-07411-1&rft.externalDocID=10_1007_s00521_022_07411_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon