Multi-strategy arithmetic optimization algorithm for global optimization and uncertain motion tracking
Previous trackers mostly assume that the target has a smooth motion and perform target matching within a local window. However, targets often exhibit uncertain movements in real-world scenarios. Once the tracked target undergoes abrupt motion and moves outside the predefined local window, these trac...
Saved in:
| Published in: | Cluster computing Vol. 28; no. 1; p. 14 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.02.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1386-7857, 1573-7543 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Previous trackers mostly assume that the target has a smooth motion and perform target matching within a local window. However, targets often exhibit uncertain movements in real-world scenarios. Once the tracked target undergoes abrupt motion and moves outside the predefined local window, these trackers often fail. To address this issue, this paper introduces a multi-strategy arithmetic optimization algorithm (MSAOA) for global optimization and uncertain motion tracking. MSAOA is a high-performance optimizer that effectively solves uncertain motion in visual tracking. For MSAOA, we first design a dynamic stratification strategy to divide the population into three subpopulations. Then the mathematical model of each subpopulation is modified to improve the exploration and exploitation performance. Finally, extensive experiments over 23 benchmark functions and CEC2020 benchmark problems show that MSAOA is better than other algorithms. For the MSAOA tracker (MSAOAT), we utilize the proposed MSAOA as a joint local sampling-global search to generate candidate targets and match the best targets by a fitness function. More importantly, we design a verifier to unite local sampling and global search to form a complete tracking framework, which can effectively address smooth and abrupt motion in visual tracking. The qualitative and quantitative analyses on the general motion group and the abrupt motion group demonstrate that the MSAOAT can outperform other trackers. |
|---|---|
| AbstractList | Previous trackers mostly assume that the target has a smooth motion and perform target matching within a local window. However, targets often exhibit uncertain movements in real-world scenarios. Once the tracked target undergoes abrupt motion and moves outside the predefined local window, these trackers often fail. To address this issue, this paper introduces a multi-strategy arithmetic optimization algorithm (MSAOA) for global optimization and uncertain motion tracking. MSAOA is a high-performance optimizer that effectively solves uncertain motion in visual tracking. For MSAOA, we first design a dynamic stratification strategy to divide the population into three subpopulations. Then the mathematical model of each subpopulation is modified to improve the exploration and exploitation performance. Finally, extensive experiments over 23 benchmark functions and CEC2020 benchmark problems show that MSAOA is better than other algorithms. For the MSAOA tracker (MSAOAT), we utilize the proposed MSAOA as a joint local sampling-global search to generate candidate targets and match the best targets by a fitness function. More importantly, we design a verifier to unite local sampling and global search to form a complete tracking framework, which can effectively address smooth and abrupt motion in visual tracking. The qualitative and quantitative analyses on the general motion group and the abrupt motion group demonstrate that the MSAOAT can outperform other trackers. |
| ArticleNumber | 14 |
| Author | Gu, Jingjing Gao, Zeng Zhuang, Yi |
| Author_xml | – sequence: 1 givenname: Zeng surname: Gao fullname: Gao, Zeng organization: The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics – sequence: 2 givenname: Yi surname: Zhuang fullname: Zhuang, Yi email: nuaa317@163.com organization: The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics – sequence: 3 givenname: Jingjing surname: Gu fullname: Gu, Jingjing organization: The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7CKxDowjpPYWaKKl1TEBtaW4zjBJbWL7UgtX49JkJC6YDWjmXvmcRdoZqxRCF1iuMYA9MZjKFiZQpankFMC6f4EzXFBSUqLnMxiTmKbsoKeoYX3GwCoaFbNUfs89EGnPjgRVHdIhNPhfauClondBb3VXyJoaxLRd3ZsJa11SdfbWvRHCtMkg5HKBaFNsrVjMY6VH9p05-i0Fb1XF79xid7u715Xj-n65eFpdbtOJcFVSAm0JWlyVUPNKlKRUigmGiIrlhNc01bKuoFCAkiQtGzyLCOtkhltCiVErJMluprm7pz9HJQPfGMHZ-JKTjCmDDOKy6hik0o6671TLZc6jF_Ee3XPMfAfV_nkKo-u8tFVvo9odoTunN4Kd_gfIhPko9h0yv1d9Q_1DX77kEc |
| CitedBy_id | crossref_primary_10_3390_s25123608 |
| Cites_doi | 10.1016/j.est.2022.104154 10.1049/iet-cvi.2012.0207 10.1109/TIM.2023.3317483 10.3390/math11132891 10.1016/j.knosys.2022.110169 10.1016/j.swevo.2018.02.011 10.1007/s11042-021-10691-9 10.1016/j.swevo.2011.02.002 10.1016/j.knosys.2015.12.022 10.1109/CVPR.2017.152 10.1016/j.cma.2020.113609 10.1109/ACCESS.2019.2954500 10.1016/j.procs.2020.03.366 10.1016/j.swevo.2020.100663 10.1016/j.ijleo.2017.11.155 10.1016/j.advengsoft.2017.01.004 10.1016/j.eswa.2023.122638 10.1016/j.eswa.2016.08.027 10.1007/s10462-021-10101-4 10.1016/j.jmapro.2021.10.005 10.1109/CVPR.2008.4587512 10.1007/s10586-023-04203-7 10.1016/j.compbiomed.2024.108064 10.1016/j.neucom.2015.11.072 10.1007/s11042-022-13819-7 10.1109/TITS.2020.3046478 10.1007/978-3-030-31654-9_19 10.1007/s11042-020-08999-z 10.1109/TIP.2021.3060164 10.1016/j.cad.2010.12.015 10.1007/s00500-022-07805-2 10.1016/j.eswa.2020.113188 10.1016/j.future.2019.02.028 10.1007/s00521-018-3376-6 10.1109/4235.585893 10.1007/s00366-021-01438-z 10.1109/TPAMI.2014.2345390 10.1016/j.eswa.2021.116158 10.1109/TPAMI.2014.2388226 10.1109/TCSVT.2015.2462012 10.1016/j.knosys.2019.105190 10.1007/s10489-021-03037-3 10.1093/oso/9780195099713.001.0001 10.1016/j.knosys.2023.110274 10.1109/CVPR52688.2022.00854 10.1016/j.advengsoft.2016.01.008 10.1016/j.asoc.2022.108802 10.1016/j.asoc.2018.02.037 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Feb 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Feb 2025 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10586-024-04730-x |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| ExternalDocumentID | 10_1007_s10586_024_04730_x |
| GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: 62072235 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29B 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9O PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ ADHKG ADKFA AFDZB AFFHD AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT PQGLB JQ2 |
| ID | FETCH-LOGICAL-c319t-30f63d4eb0b893936ae8ad3c98431b7fccbd05c00c0c76d4223fec27d5eaa5c03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001335084600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-7857 |
| IngestDate | Wed Nov 26 14:42:05 EST 2025 Sat Nov 29 05:40:22 EST 2025 Tue Nov 18 22:02:29 EST 2025 Fri Feb 21 02:34:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Uncertain motion tracking Arithmetic optimization algorithm Dynamic stratification strategy Multi-strategy |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-30f63d4eb0b893936ae8ad3c98431b7fccbd05c00c0c76d4223fec27d5eaa5c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3117818716 |
| PQPubID | 2043865 |
| ParticipantIDs | proquest_journals_3117818716 crossref_citationtrail_10_1007_s10586_024_04730_x crossref_primary_10_1007_s10586_024_04730_x springer_journals_10_1007_s10586_024_04730_x |
| PublicationCentury | 2000 |
| PublicationDate | 20250200 2025-02-00 20250201 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 2 year: 2025 text: 20250200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | T Back (4730_CR52) 1996 AA Heidari (4730_CR48) 2019; 97 4730_CR43 J Derrac (4730_CR51) 2011; 1 Y Wu (4730_CR53) 2015; 37 4730_CR44 4730_CR5 4730_CR3 S Feng (4730_CR10) 2021; 30 A Pareek (4730_CR9) 2020; 167 M Zhang (4730_CR23) 2024; 27 H Nenavath (4730_CR40) 2019; 31 L Abualigah (4730_CR17) 2021; 376 RV Rao (4730_CR21) 2011; 43 DH Wolpert (4730_CR27) 1997; 1 X-D Li (4730_CR31) 2022; 52 H Zhang (4730_CR12) 2023; 144 S Javed (4730_CR2) 2022; 45 SM Marvasti-Zadeh (4730_CR1) 2021; 23 İ Gölcük (4730_CR28) 2023; 263 L Abualigah (4730_CR45) 2022; 191 J Lian (4730_CR56) 2024; 241 M Gao (4730_CR16) 2018; 156 H Nenavath (4730_CR39) 2018; 43 S Singh (4730_CR20) 2022; 209 Y Yang (4730_CR29) 2022; 113 H Zhang (4730_CR47) 2019; 7 4730_CR37 S Mirjalili (4730_CR25) 2016; 96 E Çelik (4730_CR19) 2023; 260 M-L Gao (4730_CR35) 2013; 7 H Liu (4730_CR32) 2023; 224 SA Daneshyar (4730_CR7) 2022; 122 R Xiao (4730_CR8) 2021; 72 H Abdel-Mawgoud (4730_CR33) 2022; 49 M Azizi (4730_CR30) 2022; 55 I Naruei (4730_CR50) 2022; 38 X Wang (4730_CR6) 2023; 269 T Xu (4730_CR18) 2023; 11 PP Dash (4730_CR42) 2020; 79 D Wang (4730_CR54) 2016; 26 JF Henriques (4730_CR4) 2015; 37 AA Mohamed (4730_CR34) 2023; 27 J Lian (4730_CR57) 2024; 172 D Charef-Khodja (4730_CR38) 2021; 80 K Kang (4730_CR41) 2018; 66 S Saremi (4730_CR46) 2017; 105 BH Nguyen (4730_CR22) 2020; 54 4730_CR55 SS Moghaddasi (4730_CR11) 2020; 147 Z Gao (4730_CR13) 2023; 82 M-L Gao (4730_CR15) 2016; 177 S Mirjalili (4730_CR24) 2016; 95 H Cui (4730_CR26) 2024; 27 A Faramarzi (4730_CR49) 2020; 191 C Bae (4730_CR36) 2016; 64 4730_CR14 |
| References_xml | – volume: 49 year: 2022 ident: 4730_CR33 publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104154 – volume: 7 start-page: 227 issue: 4 year: 2013 ident: 4730_CR35 publication-title: IET Comput. Vision doi: 10.1049/iet-cvi.2012.0207 – ident: 4730_CR3 doi: 10.1109/TIM.2023.3317483 – volume: 11 start-page: 2891 issue: 13 year: 2023 ident: 4730_CR18 publication-title: Mathematics doi: 10.3390/math11132891 – ident: 4730_CR43 – volume: 260 year: 2023 ident: 4730_CR19 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110169 – volume: 43 start-page: 1 year: 2018 ident: 4730_CR39 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.02.011 – volume: 80 start-page: 21381 year: 2021 ident: 4730_CR38 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-10691-9 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 4730_CR51 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 96 start-page: 120 year: 2016 ident: 4730_CR25 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – ident: 4730_CR55 doi: 10.1109/CVPR.2017.152 – volume: 376 year: 2021 ident: 4730_CR17 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113609 – volume: 7 start-page: 168575 year: 2019 ident: 4730_CR47 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2954500 – volume: 167 start-page: 1553 year: 2020 ident: 4730_CR9 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2020.03.366 – volume: 269 year: 2023 ident: 4730_CR6 publication-title: Knowl.-Based Syst. – volume: 54 year: 2020 ident: 4730_CR22 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100663 – volume: 156 start-page: 522 year: 2018 ident: 4730_CR16 publication-title: Optik doi: 10.1016/j.ijleo.2017.11.155 – ident: 4730_CR44 – volume: 105 start-page: 30 year: 2017 ident: 4730_CR46 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.01.004 – volume: 241 year: 2024 ident: 4730_CR56 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122638 – volume: 64 start-page: 385 year: 2016 ident: 4730_CR36 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.08.027 – volume: 55 start-page: 4041 issue: 5 year: 2022 ident: 4730_CR30 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-10101-4 – volume: 72 start-page: 48 year: 2021 ident: 4730_CR8 publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2021.10.005 – ident: 4730_CR14 doi: 10.1109/CVPR.2008.4587512 – volume: 27 start-page: 1 year: 2024 ident: 4730_CR26 publication-title: Cluster Comput. doi: 10.1007/s10586-023-04203-7 – volume: 172 year: 2024 ident: 4730_CR57 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108064 – volume: 177 start-page: 612 year: 2016 ident: 4730_CR15 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.072 – volume: 113 year: 2022 ident: 4730_CR29 publication-title: Eng. Appl. Artif. Intell. – volume: 82 start-page: 19793 issue: 13 year: 2023 ident: 4730_CR13 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13819-7 – volume: 23 start-page: 3943 issue: 5 year: 2021 ident: 4730_CR1 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3046478 – ident: 4730_CR37 doi: 10.1007/978-3-030-31654-9_19 – volume: 79 start-page: 21513 issue: 29–30 year: 2020 ident: 4730_CR42 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-08999-z – volume: 30 start-page: 3263 year: 2021 ident: 4730_CR10 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3060164 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 4730_CR21 publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 27 start-page: 5769 issue: 9 year: 2023 ident: 4730_CR34 publication-title: Soft. Comput. doi: 10.1007/s00500-022-07805-2 – volume: 147 year: 2020 ident: 4730_CR11 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113188 – volume: 97 start-page: 849 year: 2019 ident: 4730_CR48 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 31 start-page: 5497 year: 2019 ident: 4730_CR40 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3376-6 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 4730_CR27 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 38 start-page: 3025 issue: Suppl 4 year: 2022 ident: 4730_CR50 publication-title: Eng. Comput. doi: 10.1007/s00366-021-01438-z – volume: 37 start-page: 583 issue: 3 year: 2015 ident: 4730_CR4 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2345390 – volume: 45 start-page: 6552 issue: 5 year: 2022 ident: 4730_CR2 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 191 year: 2022 ident: 4730_CR45 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: 37 start-page: 1834 issue: 9 year: 2015 ident: 4730_CR53 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2388226 – volume: 26 start-page: 1709 issue: 9 year: 2016 ident: 4730_CR54 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2015.2462012 – volume: 191 year: 2020 ident: 4730_CR49 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105190 – volume: 224 year: 2023 ident: 4730_CR32 publication-title: Expert Syst. Appl. – volume: 144 year: 2023 ident: 4730_CR12 publication-title: Appl. Soft Comput. – volume: 52 start-page: 16718 issue: 14 year: 2022 ident: 4730_CR31 publication-title: Appl. Intell. doi: 10.1007/s10489-021-03037-3 – volume-title: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,Evolutionary Programming, Genetic Algorithms year: 1996 ident: 4730_CR52 doi: 10.1093/oso/9780195099713.001.0001 – volume: 263 year: 2023 ident: 4730_CR28 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110274 – ident: 4730_CR5 doi: 10.1109/CVPR52688.2022.00854 – volume: 95 start-page: 51 year: 2016 ident: 4730_CR24 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 27 start-page: 1 year: 2024 ident: 4730_CR23 publication-title: Cluster Comput. doi: 10.1007/s10586-023-04203-7 – volume: 122 year: 2022 ident: 4730_CR7 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108802 – volume: 66 start-page: 319 year: 2018 ident: 4730_CR41 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.02.037 – volume: 209 year: 2022 ident: 4730_CR20 publication-title: Expert Syst. Appl. |
| SSID | ssj0009729 |
| Score | 2.3480449 |
| Snippet | Previous trackers mostly assume that the target has a smooth motion and perform target matching within a local window. However, targets often exhibit uncertain... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 14 |
| SubjectTerms | Accuracy Algorithms Arithmetic Benchmarks Computer Communication Networks Computer Science Design Exploitation Global optimization Mathematical analysis Operating Systems Optical tracking Optimization algorithms Processor Architectures Qualitative analysis Sampling |
| Title | Multi-strategy arithmetic optimization algorithm for global optimization and uncertain motion tracking |
| URI | https://link.springer.com/article/10.1007/s10586-024-04730-x https://www.proquest.com/docview/3117818716 |
| Volume | 28 |
| WOSCitedRecordID | wos001335084600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yevDi-sTVVXLwpoG0aZvmKOLiQRbxxd5K86gK665sq-i_d5KmVhcV9FaaSSiTSeZLM_MNQgdpGBgmc0qkMppEPBLwpAoSpUZAnyRPlGPXP-fDYToaiQufFFY20e7NlaTbqT8lu8WpDZi1gRNglwSQ4yK4O24LNlxe3bZUu9zVJgsYSPM05j5V5vsxvrqjFmPOXYs6bzPo_u87V9GKR5f4uDaHNbRgJuuo21RuwH4hb6DC5d2SsqamfcNwYK7uH20-I57CHvLokzNxPr6buiYM2BbX5CFzEhONwTXWgQW4rgmEYVhlf8FvopvB6fXJGfEVF4iCpVgRRouE6chIKgHHCJbkJs01UyIFnCF5oZTUNFaUKqp4oiPAFoVRIdexyXN4z7ZQZzKdmG2EExpKlXIhZCJsMp2Ao5CkeRSYQkumRQ8FjeIz5enIbVWMcdYSKVtFZqDIzCkye-2hw48-TzUZx6_S_WY-M78wy4wFAQeMAqfEHjpq5q9t_nm0nb-J76Ll0FYKdvHdfdSpZs9mDy2pl-qhnO07g30HkSjpDw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yBX1xfuJ0ah5800LatE3zKOKYOIfglL2V5qMq7EPWKvrfe0lbq0MFfSvNJZTLJfldc_c7hI4iz9VUJMQRUivHZz6HJ5k6fqQ59AmTUFp2_R7r96PhkF-XSWFZFe1eXUnanfpTslsQmYBZEzgBdukAclz0DeOX8dFv7mqqXWZrk7kUpFkUsDJV5vsxvh5HNcacuxa1p02n-b_vXEOrJbrEp4U5rKMFPdlAzapyAy4X8iZKbd6tkxXUtG8YHOb8YWzyGfEU9pBxmZyJk9H91DZhwLa4IA-Zk5goDEdjEViAi5pAGIaV5hf8FrrtnA_Ouk5ZccGRsBRzh5I0pMrXggjAMZyGiY4SRSWPAGcIlkopFAkkIZJIFiofsEWqpcdUoJME3tNt1JhMJ3oH4ZB4QkaMcxFyk0zHwRUSJPFdnSpBFW8ht1J8LEs6clMVYxTXRMpGkTEoMraKjF9b6Pijz1NBxvGrdLuaz7hcmFlMXZcBRgEvsYVOqvmrm38ebfdv4odouTu46sW9i_7lHlrxTNVgG-vdRo189qz30ZJ8yR-z2YE13neGQOvz |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRXxxXnE6NQ--aVnadE3zKOpQHGN4Y2-luVSFrRtbFf33nqStm0MF8a00J6Hk0nwnOd93EDoKPVdTERNHSK0cn_kcnmTi-KHmUCeIA2nV9dus0wl7Pd6dYfHbaPfySjLnNBiVpjRrjFTSmCG-NUMTPGuCKGCOOoAiF33wZExQ383tw1R2l9k8ZS4FaxY2WUGb-b6Nr1vTFG_OXZHanadV_f83r6HVAnXi03yarKMFnW6gapnRARcLfBMllo_rTHLJ2ncMjnT2NDA8RzyEf8ugIG3iuP84tEUYMC_ORUXmLFKFYcvMAw5wnisIQ7PSHM1vofvWxd3ZpVNkYnAkLNHMoSQJqPK1IALwDadBrMNYUclDwB-CJVIKRZqSEEkkC5QPmCPR0mOqqeMY3tNtVEmHqd5BOCCekCHjXATckOw4uEiCxL6rEyWo4jXkloMQyUKm3GTL6EdTgWXTkRF0ZGQ7MnqroePPOqNcpONX63o5tlGxYCcRdV0G2AW8xxo6KcdyWvxza7t_Mz9Ey93zVtS-6lzvoRXPJBO2IeB1VMnGL3ofLcnX7HkyPrDz-APOl_TX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-strategy+arithmetic+optimization+algorithm+for+global+optimization+and+uncertain+motion+tracking&rft.jtitle=Cluster+computing&rft.au=Gao%2C+Zeng&rft.au=Zhuang%2C+Yi&rft.au=Gu%2C+Jingjing&rft.date=2025-02-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=1&rft_id=info:doi/10.1007%2Fs10586-024-04730-x&rft.externalDocID=10_1007_s10586_024_04730_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |