Multi-strategy arithmetic optimization algorithm for global optimization and uncertain motion tracking

Previous trackers mostly assume that the target has a smooth motion and perform target matching within a local window. However, targets often exhibit uncertain movements in real-world scenarios. Once the tracked target undergoes abrupt motion and moves outside the predefined local window, these trac...

Full description

Saved in:
Bibliographic Details
Published in:Cluster computing Vol. 28; no. 1; p. 14
Main Authors: Gao, Zeng, Zhuang, Yi, Gu, Jingjing
Format: Journal Article
Language:English
Published: New York Springer US 01.02.2025
Springer Nature B.V
Subjects:
ISSN:1386-7857, 1573-7543
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Previous trackers mostly assume that the target has a smooth motion and perform target matching within a local window. However, targets often exhibit uncertain movements in real-world scenarios. Once the tracked target undergoes abrupt motion and moves outside the predefined local window, these trackers often fail. To address this issue, this paper introduces a multi-strategy arithmetic optimization algorithm (MSAOA) for global optimization and uncertain motion tracking. MSAOA is a high-performance optimizer that effectively solves uncertain motion in visual tracking. For MSAOA, we first design a dynamic stratification strategy to divide the population into three subpopulations. Then the mathematical model of each subpopulation is modified to improve the exploration and exploitation performance. Finally, extensive experiments over 23 benchmark functions and CEC2020 benchmark problems show that MSAOA is better than other algorithms. For the MSAOA tracker (MSAOAT), we utilize the proposed MSAOA as a joint local sampling-global search to generate candidate targets and match the best targets by a fitness function. More importantly, we design a verifier to unite local sampling and global search to form a complete tracking framework, which can effectively address smooth and abrupt motion in visual tracking. The qualitative and quantitative analyses on the general motion group and the abrupt motion group demonstrate that the MSAOAT can outperform other trackers.
AbstractList Previous trackers mostly assume that the target has a smooth motion and perform target matching within a local window. However, targets often exhibit uncertain movements in real-world scenarios. Once the tracked target undergoes abrupt motion and moves outside the predefined local window, these trackers often fail. To address this issue, this paper introduces a multi-strategy arithmetic optimization algorithm (MSAOA) for global optimization and uncertain motion tracking. MSAOA is a high-performance optimizer that effectively solves uncertain motion in visual tracking. For MSAOA, we first design a dynamic stratification strategy to divide the population into three subpopulations. Then the mathematical model of each subpopulation is modified to improve the exploration and exploitation performance. Finally, extensive experiments over 23 benchmark functions and CEC2020 benchmark problems show that MSAOA is better than other algorithms. For the MSAOA tracker (MSAOAT), we utilize the proposed MSAOA as a joint local sampling-global search to generate candidate targets and match the best targets by a fitness function. More importantly, we design a verifier to unite local sampling and global search to form a complete tracking framework, which can effectively address smooth and abrupt motion in visual tracking. The qualitative and quantitative analyses on the general motion group and the abrupt motion group demonstrate that the MSAOAT can outperform other trackers.
ArticleNumber 14
Author Gu, Jingjing
Gao, Zeng
Zhuang, Yi
Author_xml – sequence: 1
  givenname: Zeng
  surname: Gao
  fullname: Gao, Zeng
  organization: The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
– sequence: 2
  givenname: Yi
  surname: Zhuang
  fullname: Zhuang, Yi
  email: nuaa317@163.com
  organization: The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
– sequence: 3
  givenname: Jingjing
  surname: Gu
  fullname: Gu, Jingjing
  organization: The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
BookMark eNp9kMtOwzAQRS1UJNrCD7CKxDowjpPYWaKKl1TEBtaW4zjBJbWL7UgtX49JkJC6YDWjmXvmcRdoZqxRCF1iuMYA9MZjKFiZQpankFMC6f4EzXFBSUqLnMxiTmKbsoKeoYX3GwCoaFbNUfs89EGnPjgRVHdIhNPhfauClondBb3VXyJoaxLRd3ZsJa11SdfbWvRHCtMkg5HKBaFNsrVjMY6VH9p05-i0Fb1XF79xid7u715Xj-n65eFpdbtOJcFVSAm0JWlyVUPNKlKRUigmGiIrlhNc01bKuoFCAkiQtGzyLCOtkhltCiVErJMluprm7pz9HJQPfGMHZ-JKTjCmDDOKy6hik0o6671TLZc6jF_Ee3XPMfAfV_nkKo-u8tFVvo9odoTunN4Kd_gfIhPko9h0yv1d9Q_1DX77kEc
CitedBy_id crossref_primary_10_3390_s25123608
Cites_doi 10.1016/j.est.2022.104154
10.1049/iet-cvi.2012.0207
10.1109/TIM.2023.3317483
10.3390/math11132891
10.1016/j.knosys.2022.110169
10.1016/j.swevo.2018.02.011
10.1007/s11042-021-10691-9
10.1016/j.swevo.2011.02.002
10.1016/j.knosys.2015.12.022
10.1109/CVPR.2017.152
10.1016/j.cma.2020.113609
10.1109/ACCESS.2019.2954500
10.1016/j.procs.2020.03.366
10.1016/j.swevo.2020.100663
10.1016/j.ijleo.2017.11.155
10.1016/j.advengsoft.2017.01.004
10.1016/j.eswa.2023.122638
10.1016/j.eswa.2016.08.027
10.1007/s10462-021-10101-4
10.1016/j.jmapro.2021.10.005
10.1109/CVPR.2008.4587512
10.1007/s10586-023-04203-7
10.1016/j.compbiomed.2024.108064
10.1016/j.neucom.2015.11.072
10.1007/s11042-022-13819-7
10.1109/TITS.2020.3046478
10.1007/978-3-030-31654-9_19
10.1007/s11042-020-08999-z
10.1109/TIP.2021.3060164
10.1016/j.cad.2010.12.015
10.1007/s00500-022-07805-2
10.1016/j.eswa.2020.113188
10.1016/j.future.2019.02.028
10.1007/s00521-018-3376-6
10.1109/4235.585893
10.1007/s00366-021-01438-z
10.1109/TPAMI.2014.2345390
10.1016/j.eswa.2021.116158
10.1109/TPAMI.2014.2388226
10.1109/TCSVT.2015.2462012
10.1016/j.knosys.2019.105190
10.1007/s10489-021-03037-3
10.1093/oso/9780195099713.001.0001
10.1016/j.knosys.2023.110274
10.1109/CVPR52688.2022.00854
10.1016/j.advengsoft.2016.01.008
10.1016/j.asoc.2022.108802
10.1016/j.asoc.2018.02.037
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Feb 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10586-024-04730-x
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
ExternalDocumentID 10_1007_s10586_024_04730_x
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: 62072235
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
ADKFA
AFDZB
AFFHD
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
JQ2
ID FETCH-LOGICAL-c319t-30f63d4eb0b893936ae8ad3c98431b7fccbd05c00c0c76d4223fec27d5eaa5c03
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001335084600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-7857
IngestDate Wed Nov 26 14:42:05 EST 2025
Sat Nov 29 05:40:22 EST 2025
Tue Nov 18 22:02:29 EST 2025
Fri Feb 21 02:34:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Uncertain motion tracking
Arithmetic optimization algorithm
Dynamic stratification strategy
Multi-strategy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-30f63d4eb0b893936ae8ad3c98431b7fccbd05c00c0c76d4223fec27d5eaa5c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3117818716
PQPubID 2043865
ParticipantIDs proquest_journals_3117818716
crossref_citationtrail_10_1007_s10586_024_04730_x
crossref_primary_10_1007_s10586_024_04730_x
springer_journals_10_1007_s10586_024_04730_x
PublicationCentury 2000
PublicationDate 20250200
2025-02-00
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 2
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References T Back (4730_CR52) 1996
AA Heidari (4730_CR48) 2019; 97
4730_CR43
J Derrac (4730_CR51) 2011; 1
Y Wu (4730_CR53) 2015; 37
4730_CR44
4730_CR5
4730_CR3
S Feng (4730_CR10) 2021; 30
A Pareek (4730_CR9) 2020; 167
M Zhang (4730_CR23) 2024; 27
H Nenavath (4730_CR40) 2019; 31
L Abualigah (4730_CR17) 2021; 376
RV Rao (4730_CR21) 2011; 43
DH Wolpert (4730_CR27) 1997; 1
X-D Li (4730_CR31) 2022; 52
H Zhang (4730_CR12) 2023; 144
S Javed (4730_CR2) 2022; 45
SM Marvasti-Zadeh (4730_CR1) 2021; 23
İ Gölcük (4730_CR28) 2023; 263
L Abualigah (4730_CR45) 2022; 191
J Lian (4730_CR56) 2024; 241
M Gao (4730_CR16) 2018; 156
H Nenavath (4730_CR39) 2018; 43
S Singh (4730_CR20) 2022; 209
Y Yang (4730_CR29) 2022; 113
H Zhang (4730_CR47) 2019; 7
4730_CR37
S Mirjalili (4730_CR25) 2016; 96
E Çelik (4730_CR19) 2023; 260
M-L Gao (4730_CR35) 2013; 7
H Liu (4730_CR32) 2023; 224
SA Daneshyar (4730_CR7) 2022; 122
R Xiao (4730_CR8) 2021; 72
H Abdel-Mawgoud (4730_CR33) 2022; 49
M Azizi (4730_CR30) 2022; 55
I Naruei (4730_CR50) 2022; 38
X Wang (4730_CR6) 2023; 269
T Xu (4730_CR18) 2023; 11
PP Dash (4730_CR42) 2020; 79
D Wang (4730_CR54) 2016; 26
JF Henriques (4730_CR4) 2015; 37
AA Mohamed (4730_CR34) 2023; 27
J Lian (4730_CR57) 2024; 172
D Charef-Khodja (4730_CR38) 2021; 80
K Kang (4730_CR41) 2018; 66
S Saremi (4730_CR46) 2017; 105
BH Nguyen (4730_CR22) 2020; 54
4730_CR55
SS Moghaddasi (4730_CR11) 2020; 147
Z Gao (4730_CR13) 2023; 82
M-L Gao (4730_CR15) 2016; 177
S Mirjalili (4730_CR24) 2016; 95
H Cui (4730_CR26) 2024; 27
A Faramarzi (4730_CR49) 2020; 191
C Bae (4730_CR36) 2016; 64
4730_CR14
References_xml – volume: 49
  year: 2022
  ident: 4730_CR33
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104154
– volume: 7
  start-page: 227
  issue: 4
  year: 2013
  ident: 4730_CR35
  publication-title: IET Comput. Vision
  doi: 10.1049/iet-cvi.2012.0207
– ident: 4730_CR3
  doi: 10.1109/TIM.2023.3317483
– volume: 11
  start-page: 2891
  issue: 13
  year: 2023
  ident: 4730_CR18
  publication-title: Mathematics
  doi: 10.3390/math11132891
– ident: 4730_CR43
– volume: 260
  year: 2023
  ident: 4730_CR19
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.110169
– volume: 43
  start-page: 1
  year: 2018
  ident: 4730_CR39
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.02.011
– volume: 80
  start-page: 21381
  year: 2021
  ident: 4730_CR38
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-10691-9
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 4730_CR51
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 96
  start-page: 120
  year: 2016
  ident: 4730_CR25
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– ident: 4730_CR55
  doi: 10.1109/CVPR.2017.152
– volume: 376
  year: 2021
  ident: 4730_CR17
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113609
– volume: 7
  start-page: 168575
  year: 2019
  ident: 4730_CR47
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2954500
– volume: 167
  start-page: 1553
  year: 2020
  ident: 4730_CR9
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2020.03.366
– volume: 269
  year: 2023
  ident: 4730_CR6
  publication-title: Knowl.-Based Syst.
– volume: 54
  year: 2020
  ident: 4730_CR22
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100663
– volume: 156
  start-page: 522
  year: 2018
  ident: 4730_CR16
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.11.155
– ident: 4730_CR44
– volume: 105
  start-page: 30
  year: 2017
  ident: 4730_CR46
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 241
  year: 2024
  ident: 4730_CR56
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122638
– volume: 64
  start-page: 385
  year: 2016
  ident: 4730_CR36
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.08.027
– volume: 55
  start-page: 4041
  issue: 5
  year: 2022
  ident: 4730_CR30
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10101-4
– volume: 72
  start-page: 48
  year: 2021
  ident: 4730_CR8
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2021.10.005
– ident: 4730_CR14
  doi: 10.1109/CVPR.2008.4587512
– volume: 27
  start-page: 1
  year: 2024
  ident: 4730_CR26
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-023-04203-7
– volume: 172
  year: 2024
  ident: 4730_CR57
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108064
– volume: 177
  start-page: 612
  year: 2016
  ident: 4730_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.072
– volume: 113
  year: 2022
  ident: 4730_CR29
  publication-title: Eng. Appl. Artif. Intell.
– volume: 82
  start-page: 19793
  issue: 13
  year: 2023
  ident: 4730_CR13
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13819-7
– volume: 23
  start-page: 3943
  issue: 5
  year: 2021
  ident: 4730_CR1
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3046478
– ident: 4730_CR37
  doi: 10.1007/978-3-030-31654-9_19
– volume: 79
  start-page: 21513
  issue: 29–30
  year: 2020
  ident: 4730_CR42
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-08999-z
– volume: 30
  start-page: 3263
  year: 2021
  ident: 4730_CR10
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3060164
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 4730_CR21
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 27
  start-page: 5769
  issue: 9
  year: 2023
  ident: 4730_CR34
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-022-07805-2
– volume: 147
  year: 2020
  ident: 4730_CR11
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113188
– volume: 97
  start-page: 849
  year: 2019
  ident: 4730_CR48
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 31
  start-page: 5497
  year: 2019
  ident: 4730_CR40
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3376-6
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 4730_CR27
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 38
  start-page: 3025
  issue: Suppl 4
  year: 2022
  ident: 4730_CR50
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-021-01438-z
– volume: 37
  start-page: 583
  issue: 3
  year: 2015
  ident: 4730_CR4
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2345390
– volume: 45
  start-page: 6552
  issue: 5
  year: 2022
  ident: 4730_CR2
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 191
  year: 2022
  ident: 4730_CR45
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– volume: 37
  start-page: 1834
  issue: 9
  year: 2015
  ident: 4730_CR53
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2388226
– volume: 26
  start-page: 1709
  issue: 9
  year: 2016
  ident: 4730_CR54
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2015.2462012
– volume: 191
  year: 2020
  ident: 4730_CR49
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105190
– volume: 224
  year: 2023
  ident: 4730_CR32
  publication-title: Expert Syst. Appl.
– volume: 144
  year: 2023
  ident: 4730_CR12
  publication-title: Appl. Soft Comput.
– volume: 52
  start-page: 16718
  issue: 14
  year: 2022
  ident: 4730_CR31
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-03037-3
– volume-title: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,Evolutionary Programming, Genetic Algorithms
  year: 1996
  ident: 4730_CR52
  doi: 10.1093/oso/9780195099713.001.0001
– volume: 263
  year: 2023
  ident: 4730_CR28
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110274
– ident: 4730_CR5
  doi: 10.1109/CVPR52688.2022.00854
– volume: 95
  start-page: 51
  year: 2016
  ident: 4730_CR24
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 27
  start-page: 1
  year: 2024
  ident: 4730_CR23
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-023-04203-7
– volume: 122
  year: 2022
  ident: 4730_CR7
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108802
– volume: 66
  start-page: 319
  year: 2018
  ident: 4730_CR41
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.037
– volume: 209
  year: 2022
  ident: 4730_CR20
  publication-title: Expert Syst. Appl.
SSID ssj0009729
Score 2.3480449
Snippet Previous trackers mostly assume that the target has a smooth motion and perform target matching within a local window. However, targets often exhibit uncertain...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14
SubjectTerms Accuracy
Algorithms
Arithmetic
Benchmarks
Computer Communication Networks
Computer Science
Design
Exploitation
Global optimization
Mathematical analysis
Operating Systems
Optical tracking
Optimization algorithms
Processor Architectures
Qualitative analysis
Sampling
Title Multi-strategy arithmetic optimization algorithm for global optimization and uncertain motion tracking
URI https://link.springer.com/article/10.1007/s10586-024-04730-x
https://www.proquest.com/docview/3117818716
Volume 28
WOSCitedRecordID wos001335084600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yevDi-sTVVXLwpoG0aZvmKOLiQRbxxd5K86gK665sq-i_d5KmVhcV9FaaSSiTSeZLM_MNQgdpGBgmc0qkMppEPBLwpAoSpUZAnyRPlGPXP-fDYToaiQufFFY20e7NlaTbqT8lu8WpDZi1gRNglwSQ4yK4O24LNlxe3bZUu9zVJgsYSPM05j5V5vsxvrqjFmPOXYs6bzPo_u87V9GKR5f4uDaHNbRgJuuo21RuwH4hb6DC5d2SsqamfcNwYK7uH20-I57CHvLokzNxPr6buiYM2BbX5CFzEhONwTXWgQW4rgmEYVhlf8FvopvB6fXJGfEVF4iCpVgRRouE6chIKgHHCJbkJs01UyIFnCF5oZTUNFaUKqp4oiPAFoVRIdexyXN4z7ZQZzKdmG2EExpKlXIhZCJsMp2Ao5CkeRSYQkumRQ8FjeIz5enIbVWMcdYSKVtFZqDIzCkye-2hw48-TzUZx6_S_WY-M78wy4wFAQeMAqfEHjpq5q9t_nm0nb-J76Ll0FYKdvHdfdSpZs9mDy2pl-qhnO07g30HkSjpDw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yBX1xfuJ0ah5800LatE3zKOKYOIfglL2V5qMq7EPWKvrfe0lbq0MFfSvNJZTLJfldc_c7hI4iz9VUJMQRUivHZz6HJ5k6fqQ59AmTUFp2_R7r96PhkF-XSWFZFe1eXUnanfpTslsQmYBZEzgBdukAclz0DeOX8dFv7mqqXWZrk7kUpFkUsDJV5vsxvh5HNcacuxa1p02n-b_vXEOrJbrEp4U5rKMFPdlAzapyAy4X8iZKbd6tkxXUtG8YHOb8YWzyGfEU9pBxmZyJk9H91DZhwLa4IA-Zk5goDEdjEViAi5pAGIaV5hf8FrrtnA_Ouk5ZccGRsBRzh5I0pMrXggjAMZyGiY4SRSWPAGcIlkopFAkkIZJIFiofsEWqpcdUoJME3tNt1JhMJ3oH4ZB4QkaMcxFyk0zHwRUSJPFdnSpBFW8ht1J8LEs6clMVYxTXRMpGkTEoMraKjF9b6Pijz1NBxvGrdLuaz7hcmFlMXZcBRgEvsYVOqvmrm38ebfdv4odouTu46sW9i_7lHlrxTNVgG-vdRo189qz30ZJ8yR-z2YE13neGQOvz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRXxxXnE6NQ--aVnadE3zKOpQHGN4Y2-luVSFrRtbFf33nqStm0MF8a00J6Hk0nwnOd93EDoKPVdTERNHSK0cn_kcnmTi-KHmUCeIA2nV9dus0wl7Pd6dYfHbaPfySjLnNBiVpjRrjFTSmCG-NUMTPGuCKGCOOoAiF33wZExQ383tw1R2l9k8ZS4FaxY2WUGb-b6Nr1vTFG_OXZHanadV_f83r6HVAnXi03yarKMFnW6gapnRARcLfBMllo_rTHLJ2ncMjnT2NDA8RzyEf8ugIG3iuP84tEUYMC_ORUXmLFKFYcvMAw5wnisIQ7PSHM1vofvWxd3ZpVNkYnAkLNHMoSQJqPK1IALwDadBrMNYUclDwB-CJVIKRZqSEEkkC5QPmCPR0mOqqeMY3tNtVEmHqd5BOCCekCHjXATckOw4uEiCxL6rEyWo4jXkloMQyUKm3GTL6EdTgWXTkRF0ZGQ7MnqroePPOqNcpONX63o5tlGxYCcRdV0G2AW8xxo6KcdyWvxza7t_Mz9Ey93zVtS-6lzvoRXPJBO2IeB1VMnGL3ofLcnX7HkyPrDz-APOl_TX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-strategy+arithmetic+optimization+algorithm+for+global+optimization+and+uncertain+motion+tracking&rft.jtitle=Cluster+computing&rft.au=Gao%2C+Zeng&rft.au=Zhuang%2C+Yi&rft.au=Gu%2C+Jingjing&rft.date=2025-02-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=1&rft_id=info:doi/10.1007%2Fs10586-024-04730-x&rft.externalDocID=10_1007_s10586_024_04730_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon