A Type-2 Fuzzy Clustering and Quantum Optimization Approach for Crops Image Segmentation
Automatic detection of crop yield ripeness is a tedious task because of the presence of various intensities of color in crops. One of the solutions to this problem is the monitoring of those crops by performing segmentation operations. This operation can help to distinguish the ripe and non-ripe reg...
Saved in:
| Published in: | International journal of fuzzy systems Vol. 23; no. 3; pp. 615 - 629 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1562-2479, 2199-3211 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Automatic detection of crop yield ripeness is a tedious task because of the presence of various intensities of color in crops. One of the solutions to this problem is the monitoring of those crops by performing segmentation operations. This operation can help to distinguish the ripe and non-ripe regions among the crop images. For this purpose, this study presents a new hybrid crop image segmentation method utilizing type-2 fuzzy set (T2FS),
K
-means clustering algorithm, and modified quantum optimization algorithm (MQOA). The proposed method fully utilizes the indispensable qualities of these three techniques by (a) using T2FS to represent each color component of crop images in terms of secondary memberships, (b) applying
K
-means clustering algorithm to extract the similar features from the set of type-2 entropy values obtained from the secondary memberships, and (c) exploiting MQOA to optimize the distance function used in
K
-means clustering algorithm to obtain the optimal clusters. The performance of the proposed method is assessed based on the experiments carried out on color images of cherry tomatoes. Evidence of experimental results suggests that the proposed method produces extremely effective segmented images relative to those well-known color image segmentation methods available in the literature of pattern recognition and computer vision domains. |
|---|---|
| AbstractList | Automatic detection of crop yield ripeness is a tedious task because of the presence of various intensities of color in crops. One of the solutions to this problem is the monitoring of those crops by performing segmentation operations. This operation can help to distinguish the ripe and non-ripe regions among the crop images. For this purpose, this study presents a new hybrid crop image segmentation method utilizing type-2 fuzzy set (T2FS), K-means clustering algorithm, and modified quantum optimization algorithm (MQOA). The proposed method fully utilizes the indispensable qualities of these three techniques by (a) using T2FS to represent each color component of crop images in terms of secondary memberships, (b) applying K-means clustering algorithm to extract the similar features from the set of type-2 entropy values obtained from the secondary memberships, and (c) exploiting MQOA to optimize the distance function used in K-means clustering algorithm to obtain the optimal clusters. The performance of the proposed method is assessed based on the experiments carried out on color images of cherry tomatoes. Evidence of experimental results suggests that the proposed method produces extremely effective segmented images relative to those well-known color image segmentation methods available in the literature of pattern recognition and computer vision domains. Automatic detection of crop yield ripeness is a tedious task because of the presence of various intensities of color in crops. One of the solutions to this problem is the monitoring of those crops by performing segmentation operations. This operation can help to distinguish the ripe and non-ripe regions among the crop images. For this purpose, this study presents a new hybrid crop image segmentation method utilizing type-2 fuzzy set (T2FS), K -means clustering algorithm, and modified quantum optimization algorithm (MQOA). The proposed method fully utilizes the indispensable qualities of these three techniques by (a) using T2FS to represent each color component of crop images in terms of secondary memberships, (b) applying K -means clustering algorithm to extract the similar features from the set of type-2 entropy values obtained from the secondary memberships, and (c) exploiting MQOA to optimize the distance function used in K -means clustering algorithm to obtain the optimal clusters. The performance of the proposed method is assessed based on the experiments carried out on color images of cherry tomatoes. Evidence of experimental results suggests that the proposed method produces extremely effective segmented images relative to those well-known color image segmentation methods available in the literature of pattern recognition and computer vision domains. |
| Author | Huang, Yo-Ping Chu, Hung-Chi Kuo, Wen-Lin Singh, Pritpal |
| Author_xml | – sequence: 1 givenname: Yo-Ping orcidid: 0000-0003-0429-2007 surname: Huang fullname: Huang, Yo-Ping email: yphuang@ntut.edu.tw organization: Department of Electrical Engineering, National Taipei University of Technology, Department of Information and Communication Engineering, Chaoyang University of Technology – sequence: 2 givenname: Pritpal surname: Singh fullname: Singh, Pritpal organization: Department of Electrical Engineering, National Taipei University of Technology – sequence: 3 givenname: Wen-Lin surname: Kuo fullname: Kuo, Wen-Lin organization: Department of Electrical Engineering, National Taipei University of Technology – sequence: 4 givenname: Hung-Chi surname: Chu fullname: Chu, Hung-Chi organization: Department of Information and Communication Engineering, Chaoyang University of Technology |
| BookMark | eNp9kE1LAzEQhoNUsNb-AU8Bz9Fksl85lsVqQShiBW8hm83WlW52TbKH9te77QqCh54GhveZeXmu0cS21iB0y-g9ozR98BHNWEwoUEKHhSBwgabAhCAcGJugKYsTIBCl4grNva8LyhkkPE74FH0s8GbfGQJ42R8Oe5zveh-Mq-0WK1vi117Z0Dd43YW6qQ8q1K3Fi65zrdKfuGodzl3bebxq1NbgN7NtjA2n1A26rNTOm_nvnKH35eMmfyYv66dVvnghmjMRCKdlmlJdcV2UBQPNVME0y3hWscLEUUWzgqUVCKOpEoJmVWR4ybMCgBuaAOczdDfeHTp998YH-dX2zg4vJQjOI6BZHA-pbExp13rvTCV1PfYMTtU7yag8qpSjSjmolCeVEgYU_qGdqxvl9uchPkK-O7o07q_VGeoHQYOHrg |
| CitedBy_id | crossref_primary_10_1109_TQE_2024_3374251 crossref_primary_10_3390_app12168242 crossref_primary_10_1007_s00521_023_08811_7 crossref_primary_10_1016_j_eswa_2021_115637 crossref_primary_10_1007_s40815_023_01485_2 crossref_primary_10_1016_j_eswa_2023_121950 crossref_primary_10_1007_s00500_023_09614_7 crossref_primary_10_1109_TFUZZ_2022_3202348 crossref_primary_10_1016_j_engappai_2023_106806 crossref_primary_10_1007_s40815_025_02081_2 crossref_primary_10_1007_s12652_025_05000_3 crossref_primary_10_3233_JIFS_202779 |
| Cites_doi | 10.1016/j.jmva.2006.11.013 10.1109/ICELIE.2006.347211 10.1016/S0019-9958(65)90241-X 10.1007/s40815-019-00730-x 10.1016/j.biosystemseng.2004.06.007 10.1016/j.ijleo.2012.11.023 10.1109/TFUZZ.2016.2593497 10.1109/CVPR.2005.390 10.1016/j.neucom.2011.08.004 10.1016/j.patcog.2010.07.013 10.1016/j.agrformet.2013.02.011 10.1016/j.neucom.2017.02.040 10.1109/ACCESS.2019.2953494 10.1016/j.mcm.2012.12.025 10.1016/j.eswa.2012.03.040 10.1109/TIP.2003.819861 10.1016/j.compag.2020.105296 10.1016/j.eswa.2010.09.023 10.1016/j.cviu.2009.09.006 10.1016/j.compag.2013.08.022 10.1016/j.compind.2019.06.004 10.1016/j.ins.2013.03.056 10.1109/ICCV.2001.937655 10.1016/j.patcog.2007.07.007 10.1016/j.compind.2019.08.002 10.1016/j.biosystemseng.2014.06.015 10.1007/BF01491891 10.1109/91.995115 10.1007/s40815-019-00740-9 10.1016/j.asoc.2016.05.040 10.1007/s40815-020-00824-x 10.1007/s10278-016-9884-y 10.1016/S0031-3203(01)00054-1 10.1006/jaer.2000.0639 10.1109/ACCESS.2020.2969806 10.1016/j.compag.2003.08.002 |
| ContentType | Journal Article |
| Copyright | Taiwan Fuzzy Systems Association 2021 Taiwan Fuzzy Systems Association 2021. |
| Copyright_xml | – notice: Taiwan Fuzzy Systems Association 2021 – notice: Taiwan Fuzzy Systems Association 2021. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s40815-020-01009-2 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2199-3211 |
| EndPage | 629 |
| ExternalDocumentID | 10_1007_s40815_020_01009_2 |
| GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST108-2321-B-027-001-; MOST108-2221-E-027-111-MY3; MOST109-2622-E-027-001-CC3 funderid: http://dx.doi.org/10.13039/501100004663 |
| GroupedDBID | -EM .4S .DC 0R~ 188 203 2UF 4.4 406 5GY 9RA A8Z AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFQWF AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AILAN AINHJ AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ARAPS ARCSS ATFKH AVXWI AXYYD BENPR BGLVJ BGNMA CCPQU CNMHZ CSCUP CVCKV DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GJIRD HCIFZ HG6 HRMNR I-F IKXTQ IWAJR IXD J-C J9A JBSCW JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9J OK1 P2P PT4 PTHSS RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS TUXDW UG4 UOJIU UTJUX UZ4 UZXMN VFIZW Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ESTFP PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-30d770cf3cbdb12c1ab1c1838f1be54f08b17f29ec0a9908f4e3d38b223e06233 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604853800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1562-2479 |
| IngestDate | Wed Nov 05 03:13:17 EST 2025 Sat Nov 29 05:19:50 EST 2025 Tue Nov 18 22:38:11 EST 2025 Fri Feb 21 02:48:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Modified quantum optimization algorithm (MQOA) Image segmentation means clustering Fuzzy set |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-30d770cf3cbdb12c1ab1c1838f1be54f08b17f29ec0a9908f4e3d38b223e06233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0429-2007 |
| PQID | 2933420855 |
| PQPubID | 2043640 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2933420855 crossref_citationtrail_10_1007_s40815_020_01009_2 crossref_primary_10_1007_s40815_020_01009_2 springer_journals_10_1007_s40815_020_01009_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20210400 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 4 year: 2021 text: 20210400 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | International journal of fuzzy systems |
| PublicationTitleAbbrev | Int. J. Fuzzy Syst |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Unnikrishnan, R., Pantofaru, C., Hebert, M.: A measure for objective evaluation of image segmentation algorithms. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, vol. 3, January 2005, pp. 34–41 MeilaMComparing clusterings—an information based distanceJ Multivar. Anal.200798587389523254121298.9112410.1016/j.jmva.2006.11.013 CastilloOSanchezMAGonzalezCIMartinezGEReview of recent type-2 fuzzy image processing applicationsInformation2017897118 TellaecheABurgos-ArtizzuXPPajaresGRibeiroAA vision-based method for weeds identification through the Bayesian decision theoryPattern Recognit.20084125215301153.6849110.1016/j.patcog.2007.07.007 Clairet, J., Bigand, A., Colot, O.: Color image segmentation using type-2 fuzzy sets. In: Proceedings of 1st IEEE International Conference on E-Learning in Industrial Electronics, Hammamet, Tunisia, December 2006, pp. 52–57 SinghPHuangY-PA new hybrid time series forecasting model based on the neutrosophic set and quantum optimization algorithmComput. Ind.201911112113910.1016/j.compind.2019.06.004 BaiXDCaoZGWangYYuZHZhangXFLiCCrop segmentation from images by morphology modeling in the CIE l_a_b_ color spaceComput. Electron. Agric.201399213410.1016/j.compag.2013.08.022 AbbasgholipourMOmidMKeyhaniAMohtasebiSColor image segmentation with genetic algorithm in a raisin sorting system based on machine vision in variable conditionsExpert Syst. Appl.20113843671367810.1016/j.eswa.2010.09.023 SchrodingerEThe present status of quantum mechanicsDie Naturwissenschaften1935234812610.1007/BF01491891 Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th IEEE International Conference on Computer Vision, Vancouver, BC, Canada, vol. 2, July 2001, pp. 416–423 Cuevas-VelasquezHGallegoA-JFisherRBSegmentation and 3D reconstruction of rose plants from stereoscopic imagesComput. Electron. Agric.202017111810.1016/j.compag.2020.105296 LiKTanZAn improved flower pollination optimizer algorithm for multilevel image thresholdingIEEE Access2019716557116558210.1109/ACCESS.2019.2953494 WangX-YWangQ-YYangH-YBuJColor image segmentation using automatic pixel classification with support vector machineNeurocomputing20117418389839111213.9402310.1016/j.neucom.2011.08.004 MiguelLDSantosHSesma-SaraMBedregalBJurioABustinceHHagrasHType-2 fuzzy entropy setsIEEE Trans. Fuzzy Syst.2017254993100510.1109/TFUZZ.2016.2593497 Mújica-VargasDKinaniJMVRubioJDColor-based image segmentation by means of a robust intuitionistic fuzzy c-means algorithmInt J. Fuzzy Syst.20202290191610.1007/s40815-020-00824-x ShresthaDSStewardBBirrellSVideo processing for early stage maize plant detectionBiosyst. Eng.200489211912910.1016/j.biosystemseng.2004.06.007 LeTHuynhTLinLLinCChaoFA K-means interval type-2 fuzzy neural network for medical diagnosisInt. J. Fuzzy Syst.20192172258226910.1007/s40815-019-00730-x MeyerGENetoJCJonesDDHindmanTWIntensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color imagesComput. Electron. Agric.200442316118010.1016/j.compag.2003.08.002 WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans. Image Process.200413460061210.1109/TIP.2003.819861 GaoYWangDPanJWangZChenBA novel fuzzy c-means clustering algorithm using adaptive normInt. J. Fuzzy Syst.20192182632264910.1007/s40815-019-00740-9 CiesielskiKCUdupaJKAffinity functions in fuzzy connectedness based image segmentation I: equivalence of affinitiesComput. Vis. Image Underst.2010114114615410.1016/j.cviu.2009.09.006 Fazel ZarandiMHKhadangiAKarimiFTurksenIBA computer-aided type-II fuzzy image processing for diagnosis of meniscus tearJ. Digit. Imaging201629667769510.1007/s10278-016-9884-y HuangY-PSinghPKuoH-CA hybrid fuzzy clustering approach for the recognition and visualization of MRI images of Parkinson’s diseaseIEEE Access202027250412505110.1109/ACCESS.2020.2969806 PareSKumarABajajVSinghGKA multilevel color image segmentation technique based on cuckoo search algorithm and energy curveAppl. Soft Comput.2016477610210.1016/j.asoc.2016.05.040 RubioJJKashiwaTLaiteerapongTDengWNagaiKEscaleraSNakayamaKMatsuoYPrendingerHMulti-class structural damage segmentation using fully convolutional networksComput. Ind.201911210312110.1016/j.compind.2019.08.002 ZadehLAFuzzy setsInf. Control1965833383530139.2460610.1016/S0019-9958(65)90241-X YaoHDuanQLiDWangJAn improved K-means clustering algorithm for fish image segmentationMath. Comput. Model.2013583–47907981297.6821310.1016/j.mcm.2012.12.025 LanJZengYMulti-threshold image segmentation using maximum fuzzy entropy based on a new 2D histogramOptik2013124183756376010.1016/j.ijleo.2012.11.023 MendelJMJohnRIBType-2 fuzzy sets made simpleIEEE Trans. Fuzzy Syst.200210211712710.1109/91.995115 YuZCaoZWuXBaiXQinYZhuoWXiaoYZhangXXueHAutomatic image-based detection technology for two critical growth stages of maize: emergence and three-leaf stageAgric. For. Meteorol.2013174–175658410.1016/j.agrformet.2013.02.011 TanKSIsaNAMColor image segmentation using histogram thresholding—fuzzy c-means hybrid approachPattern Recognit.20114411151207.6831910.1016/j.patcog.2010.07.013 HeLHuangSModified firefly algorithm based multilevel thresholding for color image segmentationNeurocomputing201724015217410.1016/j.neucom.2017.02.040 C. S. Division, Taiwan Agriculture Research Institute (June 2020). https://www.tari.gov.tw/english/. HemmingJRathTPA-precision agriculture: computer-vision based weed identification under field conditions using controlled lightingJ. Agric. Eng. Res.200178323324310.1006/jaer.2000.0639 BaiXCaoZWangYYuZHuZZhangXLiCVegetation segmentation robust to illumination variations based on clustering and morphology modellingBiosyst. Eng.2014125809710.1016/j.biosystemseng.2014.06.015 GuerreroJPajaresGMontalvoMRomeoJGuijarroMSupport vector machines for crop/weeds identification in maize fieldsExpert Syst. Appl.20123912111491115510.1016/j.eswa.2012.03.040 FritzHGarcía-EscuderoLAMayo-IscarARobust constrained fuzzy clusteringInf. Sci.2013245385230958491321.6207010.1016/j.ins.2013.03.056 ChengH-DJiangXWangJColor image segmentation based on homogram thresholding and region mergingPattern Recognit.20023523733930987.6877510.1016/S0031-3203(01)00054-1 X-Y Wang (1009_CR10) 2011; 74 M Abbasgholipour (1009_CR17) 2011; 38 H-D Cheng (1009_CR5) 2002; 35 DS Shrestha (1009_CR9) 2004; 89 GE Meyer (1009_CR22) 2004; 42 KC Ciesielski (1009_CR23) 2010; 114 H Cuevas-Velasquez (1009_CR3) 2020; 171 1009_CR37 1009_CR36 S Pare (1009_CR15) 2016; 47 Z Yu (1009_CR2) 2013; 174–175 LA Zadeh (1009_CR31) 1965; 8 J Hemming (1009_CR6) 2001; 78 H Fritz (1009_CR12) 2013; 245 D Mújica-Vargas (1009_CR28) 2020; 22 Y-P Huang (1009_CR32) 2020; 27 J Guerrero (1009_CR11) 2012; 39 O Castillo (1009_CR30) 2017; 8 KS Tan (1009_CR19) 2011; 44 MH Fazel Zarandi (1009_CR29) 2016; 29 J Lan (1009_CR24) 2013; 124 A Tellaeche (1009_CR7) 2008; 41 XD Bai (1009_CR8) 2013; 99 K Li (1009_CR18) 2019; 7 M Meila (1009_CR38) 2007; 98 E Schrodinger (1009_CR33) 1935; 23 P Singh (1009_CR34) 2019; 111 T Le (1009_CR21) 2019; 21 L He (1009_CR16) 2017; 240 JJ Rubio (1009_CR4) 2019; 112 1009_CR26 Z Wang (1009_CR35) 2004; 13 1009_CR1 Y Gao (1009_CR20) 2019; 21 H Yao (1009_CR13) 2013; 58 X Bai (1009_CR14) 2014; 125 JM Mendel (1009_CR25) 2002; 10 LD Miguel (1009_CR27) 2017; 25 |
| References_xml | – reference: ZadehLAFuzzy setsInf. Control1965833383530139.2460610.1016/S0019-9958(65)90241-X – reference: Clairet, J., Bigand, A., Colot, O.: Color image segmentation using type-2 fuzzy sets. In: Proceedings of 1st IEEE International Conference on E-Learning in Industrial Electronics, Hammamet, Tunisia, December 2006, pp. 52–57 – reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans. Image Process.200413460061210.1109/TIP.2003.819861 – reference: Cuevas-VelasquezHGallegoA-JFisherRBSegmentation and 3D reconstruction of rose plants from stereoscopic imagesComput. Electron. Agric.202017111810.1016/j.compag.2020.105296 – reference: C. S. Division, Taiwan Agriculture Research Institute (June 2020). https://www.tari.gov.tw/english/. – reference: CastilloOSanchezMAGonzalezCIMartinezGEReview of recent type-2 fuzzy image processing applicationsInformation2017897118 – reference: MiguelLDSantosHSesma-SaraMBedregalBJurioABustinceHHagrasHType-2 fuzzy entropy setsIEEE Trans. Fuzzy Syst.2017254993100510.1109/TFUZZ.2016.2593497 – reference: LiKTanZAn improved flower pollination optimizer algorithm for multilevel image thresholdingIEEE Access2019716557116558210.1109/ACCESS.2019.2953494 – reference: AbbasgholipourMOmidMKeyhaniAMohtasebiSColor image segmentation with genetic algorithm in a raisin sorting system based on machine vision in variable conditionsExpert Syst. Appl.20113843671367810.1016/j.eswa.2010.09.023 – reference: SinghPHuangY-PA new hybrid time series forecasting model based on the neutrosophic set and quantum optimization algorithmComput. Ind.201911112113910.1016/j.compind.2019.06.004 – reference: Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th IEEE International Conference on Computer Vision, Vancouver, BC, Canada, vol. 2, July 2001, pp. 416–423 – reference: WangX-YWangQ-YYangH-YBuJColor image segmentation using automatic pixel classification with support vector machineNeurocomputing20117418389839111213.9402310.1016/j.neucom.2011.08.004 – reference: MendelJMJohnRIBType-2 fuzzy sets made simpleIEEE Trans. Fuzzy Syst.200210211712710.1109/91.995115 – reference: ShresthaDSStewardBBirrellSVideo processing for early stage maize plant detectionBiosyst. Eng.200489211912910.1016/j.biosystemseng.2004.06.007 – reference: GaoYWangDPanJWangZChenBA novel fuzzy c-means clustering algorithm using adaptive normInt. J. Fuzzy Syst.20192182632264910.1007/s40815-019-00740-9 – reference: TanKSIsaNAMColor image segmentation using histogram thresholding—fuzzy c-means hybrid approachPattern Recognit.20114411151207.6831910.1016/j.patcog.2010.07.013 – reference: HemmingJRathTPA-precision agriculture: computer-vision based weed identification under field conditions using controlled lightingJ. Agric. Eng. Res.200178323324310.1006/jaer.2000.0639 – reference: CiesielskiKCUdupaJKAffinity functions in fuzzy connectedness based image segmentation I: equivalence of affinitiesComput. Vis. Image Underst.2010114114615410.1016/j.cviu.2009.09.006 – reference: HeLHuangSModified firefly algorithm based multilevel thresholding for color image segmentationNeurocomputing201724015217410.1016/j.neucom.2017.02.040 – reference: BaiXCaoZWangYYuZHuZZhangXLiCVegetation segmentation robust to illumination variations based on clustering and morphology modellingBiosyst. Eng.2014125809710.1016/j.biosystemseng.2014.06.015 – reference: MeilaMComparing clusterings—an information based distanceJ Multivar. Anal.200798587389523254121298.9112410.1016/j.jmva.2006.11.013 – reference: YuZCaoZWuXBaiXQinYZhuoWXiaoYZhangXXueHAutomatic image-based detection technology for two critical growth stages of maize: emergence and three-leaf stageAgric. For. Meteorol.2013174–175658410.1016/j.agrformet.2013.02.011 – reference: MeyerGENetoJCJonesDDHindmanTWIntensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color imagesComput. Electron. Agric.200442316118010.1016/j.compag.2003.08.002 – reference: Mújica-VargasDKinaniJMVRubioJDColor-based image segmentation by means of a robust intuitionistic fuzzy c-means algorithmInt J. Fuzzy Syst.20202290191610.1007/s40815-020-00824-x – reference: Unnikrishnan, R., Pantofaru, C., Hebert, M.: A measure for objective evaluation of image segmentation algorithms. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, vol. 3, January 2005, pp. 34–41 – reference: SchrodingerEThe present status of quantum mechanicsDie Naturwissenschaften1935234812610.1007/BF01491891 – reference: TellaecheABurgos-ArtizzuXPPajaresGRibeiroAA vision-based method for weeds identification through the Bayesian decision theoryPattern Recognit.20084125215301153.6849110.1016/j.patcog.2007.07.007 – reference: GuerreroJPajaresGMontalvoMRomeoJGuijarroMSupport vector machines for crop/weeds identification in maize fieldsExpert Syst. Appl.20123912111491115510.1016/j.eswa.2012.03.040 – reference: LanJZengYMulti-threshold image segmentation using maximum fuzzy entropy based on a new 2D histogramOptik2013124183756376010.1016/j.ijleo.2012.11.023 – reference: ChengH-DJiangXWangJColor image segmentation based on homogram thresholding and region mergingPattern Recognit.20023523733930987.6877510.1016/S0031-3203(01)00054-1 – reference: FritzHGarcía-EscuderoLAMayo-IscarARobust constrained fuzzy clusteringInf. Sci.2013245385230958491321.6207010.1016/j.ins.2013.03.056 – reference: HuangY-PSinghPKuoH-CA hybrid fuzzy clustering approach for the recognition and visualization of MRI images of Parkinson’s diseaseIEEE Access202027250412505110.1109/ACCESS.2020.2969806 – reference: PareSKumarABajajVSinghGKA multilevel color image segmentation technique based on cuckoo search algorithm and energy curveAppl. Soft Comput.2016477610210.1016/j.asoc.2016.05.040 – reference: Fazel ZarandiMHKhadangiAKarimiFTurksenIBA computer-aided type-II fuzzy image processing for diagnosis of meniscus tearJ. Digit. Imaging201629667769510.1007/s10278-016-9884-y – reference: BaiXDCaoZGWangYYuZHZhangXFLiCCrop segmentation from images by morphology modeling in the CIE l_a_b_ color spaceComput. Electron. Agric.201399213410.1016/j.compag.2013.08.022 – reference: RubioJJKashiwaTLaiteerapongTDengWNagaiKEscaleraSNakayamaKMatsuoYPrendingerHMulti-class structural damage segmentation using fully convolutional networksComput. Ind.201911210312110.1016/j.compind.2019.08.002 – reference: LeTHuynhTLinLLinCChaoFA K-means interval type-2 fuzzy neural network for medical diagnosisInt. J. Fuzzy Syst.20192172258226910.1007/s40815-019-00730-x – reference: YaoHDuanQLiDWangJAn improved K-means clustering algorithm for fish image segmentationMath. Comput. Model.2013583–47907981297.6821310.1016/j.mcm.2012.12.025 – volume: 98 start-page: 873 issue: 5 year: 2007 ident: 1009_CR38 publication-title: J Multivar. Anal. doi: 10.1016/j.jmva.2006.11.013 – ident: 1009_CR26 doi: 10.1109/ICELIE.2006.347211 – volume: 8 start-page: 338 issue: 3 year: 1965 ident: 1009_CR31 publication-title: Inf. Control doi: 10.1016/S0019-9958(65)90241-X – volume: 21 start-page: 2258 issue: 7 year: 2019 ident: 1009_CR21 publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-019-00730-x – volume: 89 start-page: 119 issue: 2 year: 2004 ident: 1009_CR9 publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2004.06.007 – volume: 124 start-page: 3756 issue: 18 year: 2013 ident: 1009_CR24 publication-title: Optik doi: 10.1016/j.ijleo.2012.11.023 – volume: 25 start-page: 993 issue: 4 year: 2017 ident: 1009_CR27 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2016.2593497 – ident: 1009_CR36 doi: 10.1109/CVPR.2005.390 – volume: 74 start-page: 3898 issue: 18 year: 2011 ident: 1009_CR10 publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.08.004 – volume: 44 start-page: 1 issue: 1 year: 2011 ident: 1009_CR19 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2010.07.013 – volume: 174–175 start-page: 65 year: 2013 ident: 1009_CR2 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2013.02.011 – volume: 240 start-page: 152 year: 2017 ident: 1009_CR16 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.040 – volume: 7 start-page: 165571 year: 2019 ident: 1009_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953494 – volume: 58 start-page: 790 issue: 3–4 year: 2013 ident: 1009_CR13 publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2012.12.025 – volume: 39 start-page: 11149 issue: 12 year: 2012 ident: 1009_CR11 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.03.040 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 1009_CR35 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 171 start-page: 1 year: 2020 ident: 1009_CR3 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105296 – volume: 38 start-page: 3671 issue: 4 year: 2011 ident: 1009_CR17 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.09.023 – volume: 114 start-page: 146 issue: 1 year: 2010 ident: 1009_CR23 publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2009.09.006 – volume: 99 start-page: 21 year: 2013 ident: 1009_CR8 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2013.08.022 – volume: 111 start-page: 121 year: 2019 ident: 1009_CR34 publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.06.004 – volume: 245 start-page: 38 year: 2013 ident: 1009_CR12 publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.03.056 – ident: 1009_CR37 doi: 10.1109/ICCV.2001.937655 – volume: 41 start-page: 521 issue: 2 year: 2008 ident: 1009_CR7 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.07.007 – volume: 112 start-page: 103 year: 2019 ident: 1009_CR4 publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.08.002 – ident: 1009_CR1 – volume: 125 start-page: 80 year: 2014 ident: 1009_CR14 publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2014.06.015 – volume: 23 start-page: 1 issue: 48 year: 1935 ident: 1009_CR33 publication-title: Die Naturwissenschaften doi: 10.1007/BF01491891 – volume: 10 start-page: 117 issue: 2 year: 2002 ident: 1009_CR25 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.995115 – volume: 21 start-page: 2632 issue: 8 year: 2019 ident: 1009_CR20 publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-019-00740-9 – volume: 47 start-page: 76 year: 2016 ident: 1009_CR15 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.05.040 – volume: 22 start-page: 901 year: 2020 ident: 1009_CR28 publication-title: Int J. Fuzzy Syst. doi: 10.1007/s40815-020-00824-x – volume: 29 start-page: 677 issue: 6 year: 2016 ident: 1009_CR29 publication-title: J. Digit. Imaging doi: 10.1007/s10278-016-9884-y – volume: 35 start-page: 373 issue: 2 year: 2002 ident: 1009_CR5 publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(01)00054-1 – volume: 8 start-page: 1 issue: 97 year: 2017 ident: 1009_CR30 publication-title: Information – volume: 78 start-page: 233 issue: 3 year: 2001 ident: 1009_CR6 publication-title: J. Agric. Eng. Res. doi: 10.1006/jaer.2000.0639 – volume: 27 start-page: 25041 year: 2020 ident: 1009_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2969806 – volume: 42 start-page: 161 issue: 3 year: 2004 ident: 1009_CR22 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2003.08.002 |
| SSID | ssib031263563 ssib053833614 ssib026410675 ssj0002147029 ssib008679421 |
| Score | 2.2743886 |
| Snippet | Automatic detection of crop yield ripeness is a tedious task because of the presence of various intensities of color in crops. One of the solutions to this... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 615 |
| SubjectTerms | Algorithms Artificial Intelligence Cluster analysis Clustering Color imagery Computational Intelligence Computer vision Crop yield Engineering Fuzzy sets Image segmentation Management Science Memberships Methods Operations Research Optimization Pattern recognition Researchers Set theory Support vector machines Vector quantization |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6iPuiDd3HeyINvGkiTbm0fx3AoyLxMx95KmosIro5tFdyv9ySm3RQV9LlpaXNOznfSnO87CJ0IFgFqCkUyExsSCqpI0lCCABJRpQBCEsd6711FnU7c7yc3nhQ2LqvdyyNJF6krslsI6GXZxLaQyv7Sh8C7BHAX24YNd91e5UVWQm6OvQmIb2XSKq_lgdVfmYlOwYrn3IOUi9-2cw917c1gb8MIC6PEs22-f43PiDZLU7-crDrAaq__71M30JpPUHHzw6M20YLOt9DqnGzhNuo3sd2-EobbxXT6hlvPhZVbgGtY5ArfFmCtYoCvIRoNPM0TN712OYYkGbdGL8MxvhxALMNd_Tjw_Kd8Bz20z-9bF8R3aCASlu6EgD2jiErDZaaygMlAZIGEIBGbINP10NA4CyLDEi2pANiLTai54nEGnqApJF58Fy3mL7neQ5hLyPQCbWjCaSi0SCJeV6whdMPwUCe0hoJyllPp5cttF43ntBJedrOWwqylbtZSVkOn1T3DD_GOX0cflsZL_UIep5ANcVuBUK_X0FlprNnln5-2_7fhB2iF2WoZVxN0iBYno0IfoWX5Onkaj46dg78Dl6jq_g priority: 102 providerName: Springer Nature |
| Title | A Type-2 Fuzzy Clustering and Quantum Optimization Approach for Crops Image Segmentation |
| URI | https://link.springer.com/article/10.1007/s40815-020-01009-2 https://www.proquest.com/docview/2933420855 |
| Volume | 23 |
| WOSCitedRecordID | wos000604853800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2199-3211 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: P5Z dateStart: 20150301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2199-3211 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: K7- dateStart: 20150301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2199-3211 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: M7S dateStart: 20150301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2199-3211 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: BENPR dateStart: 20150301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 2199-3211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: RSV dateStart: 20150301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RlgMcWl4VoW3kAzew8GM3u3uq0qhRESiEBqqIy8rrB0JqNiHJVmp_fceukxQkeuHii3ct7c54vrFn5huAt0pkiJrK0MrljiaKGVp0jKKIRMwYhJAiVL1ffM4Gg3w8Lobxwm0R0ypXNjEYajPV_o78A8KS9KHgND2e_aa-a5SPrsYWGluw41kSeEjdG631yZPJ3avjROz3hGlr_ZXcM7Fs6Kdw70sZ4SpYct_Dh4VGZ3jKEVQkWRHrbkL1XYJw6subfWaXjzGIP7Ft47D-FWMN0NXf-9-Pfga70Wkl3Tstew6PbP0Cnt6jMnwJ4y7xR1oqSL-5ubkmvcvGUzDgHFG1IV8blGAzIV_QQk1i6SfpRj5zgo4z6c2nswX5OEH7Rkb25yTWRNWv4Hv_9FvvjMauDVTjdl5SlHGWMe2krkzFheaq4hoNR-54ZdPEsbzimROF1UwhFOYusdLIvELtsAydMbkP2_W0tq-BSI3eH7eOFZIlyqoik6kRHWU7Tia2YC3gq_9d6khp7jtrXJZrMuYgoxJlVAYZlaIF79bvzO4IPR58-nAlmDJu7kW5kUoL3q9Eu5n-92pvHl7tAJ4InzET8oIOYXs5b-wRPNZXy1-LeRt2Tk4Hw_M2bH3KaDsoOo7D9AeO56OLWytS-a8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwEB0tCxJw4BttYQEf4AQWjp3WyQGhqlBt1VJALKi34PgDrbRNS9uAdn8Uv5Gx67QLEnvbA-cklhM_z5uJZ94APFVcImsqQ0uXOZoqZmjeMYoiEzFjkELyUPX-ZSTH42wyyT_swK-mFsanVTY2MRhqM9P-H_lLpCXhj4Lb7dfz79R3jfKnq00LjTUshvbkJ4Zsy1eDN7i-zzjvvz3sHdDYVYBqhNuK4hykZNoJXZoy4TpRZaIR2JlLSttOHcvKRDqeW80UmurMpVYYkZU4e8vQWRA47iW4nIpM-n01lHSDXy9ed6ZuFH0NL9C22S8i8covW7krtDVCRHoMzOF7BrHQWA2jKk55KvNY5xOq_VKkb19O7TPJ_JkG_5NLtw7yX2e6gSr7N_-3j3wLbkSnnHTXu-g27NjqDlw_I9V4FyZd4kN2ykm_Pj09Ib3j2ktM4DWiKkM-1ojQekreowWextJW0o167QQDA9JbzOZLMpii_Saf7LdprPmq7sHnC3m1-7BbzSq7B0Ro9G4T61guWKqsyqVoG95RtuNEanPWgqRZ30JHyXbfOeS42IhNB0wUiIkiYKLgLXi-eWa-Fiw59-79BghFNF7LYouCFrxooLS9_O_RHpw_2hO4enD4blSMBuPhQ7jGfXZQyIHah93VoraP4Ir-sTpaLh6HbUXg60VD7DdAjFHV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIvrgXZzXPPimwTTp1vZxTIeiTMULeytpLiK4OrZV0F_vSZZ1U1QQn5uWNufkfCfN-b6D0IFgEaCmUCQzsSGhoIokNSUIIBFVCiAkcaz3h8uo1Yrb7eR6gsXvqt1HR5JDToNVacoHx11ljkviWwhIZpnFtqjK_t6HIDwT2kJ6u1-_fSg9ysrJTTA5Af2tZFrpwTywWixjASpY_Zx7wHKx3Hbxoa7VGexzGGFhlHjmzfev8Rndxinrl1NWB17Npf9_9jJa9Ikrrg89bQVN6XwVLUzIGa6hdh3bbS1huFm8v7_hxnNhZRjgGha5wjcFWLHo4CuIUh1P_8R1r2mOIXnGjd5Lt4_POxDj8K1-7HheVL6O7pund40z4js3EAlLekDAzlFEpeEyU1nAZCCyQELwiE2Q6WpoaJwFkWGJllQAHMYm1FzxOAMP0RQSMr6BpvOXXG8izCVkgIE2NOE0FFokEa8qVhO6ZnioE1pBwWjGU-llzW13jee0FGR2s5bCrKVu1lJWQYflPd2hqMevo3dGhkz9Au-nkCVxW5lQrVbQ0chw48s_P23rb8P30dz1STO9PG9dbKN5ZgtqXNnQDpoe9Aq9i2bl6-Cp39tzfv8BAe_2xg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Type-2+Fuzzy+Clustering+and+Quantum+Optimization+Approach+for+Crops+Image+Segmentation&rft.jtitle=International+journal+of+fuzzy+systems&rft.au=Huang%2C+Yo-Ping&rft.au=Singh%2C+Pritpal&rft.au=Kuo%2C+Wen-Lin&rft.au=Chu%2C+Hung-Chi&rft.date=2021-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1562-2479&rft.eissn=2199-3211&rft.volume=23&rft.issue=3&rft.spage=615&rft.epage=629&rft_id=info:doi/10.1007%2Fs40815-020-01009-2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1562-2479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1562-2479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1562-2479&client=summon |