A Type-2 Fuzzy Clustering and Quantum Optimization Approach for Crops Image Segmentation

Automatic detection of crop yield ripeness is a tedious task because of the presence of various intensities of color in crops. One of the solutions to this problem is the monitoring of those crops by performing segmentation operations. This operation can help to distinguish the ripe and non-ripe reg...

Full description

Saved in:
Bibliographic Details
Published in:International journal of fuzzy systems Vol. 23; no. 3; pp. 615 - 629
Main Authors: Huang, Yo-Ping, Singh, Pritpal, Kuo, Wen-Lin, Chu, Hung-Chi
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2021
Springer Nature B.V
Subjects:
ISSN:1562-2479, 2199-3211
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Automatic detection of crop yield ripeness is a tedious task because of the presence of various intensities of color in crops. One of the solutions to this problem is the monitoring of those crops by performing segmentation operations. This operation can help to distinguish the ripe and non-ripe regions among the crop images. For this purpose, this study presents a new hybrid crop image segmentation method utilizing type-2 fuzzy set (T2FS), K -means clustering algorithm, and modified quantum optimization algorithm (MQOA). The proposed method fully utilizes the indispensable qualities of these three techniques by (a) using T2FS to represent each color component of crop images in terms of secondary memberships, (b) applying K -means clustering algorithm to extract the similar features from the set of type-2 entropy values obtained from the secondary memberships, and (c) exploiting MQOA to optimize the distance function used in K -means clustering algorithm to obtain the optimal clusters. The performance of the proposed method is assessed based on the experiments carried out on color images of cherry tomatoes. Evidence of experimental results suggests that the proposed method produces extremely effective segmented images relative to those well-known color image segmentation methods available in the literature of pattern recognition and computer vision domains.
AbstractList Automatic detection of crop yield ripeness is a tedious task because of the presence of various intensities of color in crops. One of the solutions to this problem is the monitoring of those crops by performing segmentation operations. This operation can help to distinguish the ripe and non-ripe regions among the crop images. For this purpose, this study presents a new hybrid crop image segmentation method utilizing type-2 fuzzy set (T2FS), K-means clustering algorithm, and modified quantum optimization algorithm (MQOA). The proposed method fully utilizes the indispensable qualities of these three techniques by (a) using T2FS to represent each color component of crop images in terms of secondary memberships, (b) applying K-means clustering algorithm to extract the similar features from the set of type-2 entropy values obtained from the secondary memberships, and (c) exploiting MQOA to optimize the distance function used in K-means clustering algorithm to obtain the optimal clusters. The performance of the proposed method is assessed based on the experiments carried out on color images of cherry tomatoes. Evidence of experimental results suggests that the proposed method produces extremely effective segmented images relative to those well-known color image segmentation methods available in the literature of pattern recognition and computer vision domains.
Automatic detection of crop yield ripeness is a tedious task because of the presence of various intensities of color in crops. One of the solutions to this problem is the monitoring of those crops by performing segmentation operations. This operation can help to distinguish the ripe and non-ripe regions among the crop images. For this purpose, this study presents a new hybrid crop image segmentation method utilizing type-2 fuzzy set (T2FS), K -means clustering algorithm, and modified quantum optimization algorithm (MQOA). The proposed method fully utilizes the indispensable qualities of these three techniques by (a) using T2FS to represent each color component of crop images in terms of secondary memberships, (b) applying K -means clustering algorithm to extract the similar features from the set of type-2 entropy values obtained from the secondary memberships, and (c) exploiting MQOA to optimize the distance function used in K -means clustering algorithm to obtain the optimal clusters. The performance of the proposed method is assessed based on the experiments carried out on color images of cherry tomatoes. Evidence of experimental results suggests that the proposed method produces extremely effective segmented images relative to those well-known color image segmentation methods available in the literature of pattern recognition and computer vision domains.
Author Huang, Yo-Ping
Chu, Hung-Chi
Kuo, Wen-Lin
Singh, Pritpal
Author_xml – sequence: 1
  givenname: Yo-Ping
  orcidid: 0000-0003-0429-2007
  surname: Huang
  fullname: Huang, Yo-Ping
  email: yphuang@ntut.edu.tw
  organization: Department of Electrical Engineering, National Taipei University of Technology, Department of Information and Communication Engineering, Chaoyang University of Technology
– sequence: 2
  givenname: Pritpal
  surname: Singh
  fullname: Singh, Pritpal
  organization: Department of Electrical Engineering, National Taipei University of Technology
– sequence: 3
  givenname: Wen-Lin
  surname: Kuo
  fullname: Kuo, Wen-Lin
  organization: Department of Electrical Engineering, National Taipei University of Technology
– sequence: 4
  givenname: Hung-Chi
  surname: Chu
  fullname: Chu, Hung-Chi
  organization: Department of Information and Communication Engineering, Chaoyang University of Technology
BookMark eNp9kE1LAzEQhoNUsNb-AU8Bz9Fksl85lsVqQShiBW8hm83WlW52TbKH9te77QqCh54GhveZeXmu0cS21iB0y-g9ozR98BHNWEwoUEKHhSBwgabAhCAcGJugKYsTIBCl4grNva8LyhkkPE74FH0s8GbfGQJ42R8Oe5zveh-Mq-0WK1vi117Z0Dd43YW6qQ8q1K3Fi65zrdKfuGodzl3bebxq1NbgN7NtjA2n1A26rNTOm_nvnKH35eMmfyYv66dVvnghmjMRCKdlmlJdcV2UBQPNVME0y3hWscLEUUWzgqUVCKOpEoJmVWR4ybMCgBuaAOczdDfeHTp998YH-dX2zg4vJQjOI6BZHA-pbExp13rvTCV1PfYMTtU7yag8qpSjSjmolCeVEgYU_qGdqxvl9uchPkK-O7o07q_VGeoHQYOHrg
CitedBy_id crossref_primary_10_1109_TQE_2024_3374251
crossref_primary_10_3390_app12168242
crossref_primary_10_1007_s00521_023_08811_7
crossref_primary_10_1016_j_eswa_2021_115637
crossref_primary_10_1007_s40815_023_01485_2
crossref_primary_10_1016_j_eswa_2023_121950
crossref_primary_10_1007_s00500_023_09614_7
crossref_primary_10_1109_TFUZZ_2022_3202348
crossref_primary_10_1016_j_engappai_2023_106806
crossref_primary_10_1007_s40815_025_02081_2
crossref_primary_10_1007_s12652_025_05000_3
crossref_primary_10_3233_JIFS_202779
Cites_doi 10.1016/j.jmva.2006.11.013
10.1109/ICELIE.2006.347211
10.1016/S0019-9958(65)90241-X
10.1007/s40815-019-00730-x
10.1016/j.biosystemseng.2004.06.007
10.1016/j.ijleo.2012.11.023
10.1109/TFUZZ.2016.2593497
10.1109/CVPR.2005.390
10.1016/j.neucom.2011.08.004
10.1016/j.patcog.2010.07.013
10.1016/j.agrformet.2013.02.011
10.1016/j.neucom.2017.02.040
10.1109/ACCESS.2019.2953494
10.1016/j.mcm.2012.12.025
10.1016/j.eswa.2012.03.040
10.1109/TIP.2003.819861
10.1016/j.compag.2020.105296
10.1016/j.eswa.2010.09.023
10.1016/j.cviu.2009.09.006
10.1016/j.compag.2013.08.022
10.1016/j.compind.2019.06.004
10.1016/j.ins.2013.03.056
10.1109/ICCV.2001.937655
10.1016/j.patcog.2007.07.007
10.1016/j.compind.2019.08.002
10.1016/j.biosystemseng.2014.06.015
10.1007/BF01491891
10.1109/91.995115
10.1007/s40815-019-00740-9
10.1016/j.asoc.2016.05.040
10.1007/s40815-020-00824-x
10.1007/s10278-016-9884-y
10.1016/S0031-3203(01)00054-1
10.1006/jaer.2000.0639
10.1109/ACCESS.2020.2969806
10.1016/j.compag.2003.08.002
ContentType Journal Article
Copyright Taiwan Fuzzy Systems Association 2021
Taiwan Fuzzy Systems Association 2021.
Copyright_xml – notice: Taiwan Fuzzy Systems Association 2021
– notice: Taiwan Fuzzy Systems Association 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s40815-020-01009-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2199-3211
EndPage 629
ExternalDocumentID 10_1007_s40815_020_01009_2
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST108-2321-B-027-001-; MOST108-2221-E-027-111-MY3; MOST109-2622-E-027-001-CC3
  funderid: http://dx.doi.org/10.13039/501100004663
GroupedDBID -EM
.4S
.DC
0R~
188
203
2UF
4.4
406
5GY
9RA
A8Z
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AINHJ
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ARAPS
ARCSS
ATFKH
AVXWI
AXYYD
BENPR
BGLVJ
BGNMA
CCPQU
CNMHZ
CSCUP
CVCKV
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GJIRD
HCIFZ
HG6
HRMNR
I-F
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9J
OK1
P2P
PT4
PTHSS
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
TUXDW
UG4
UOJIU
UTJUX
UZ4
UZXMN
VFIZW
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ESTFP
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-30d770cf3cbdb12c1ab1c1838f1be54f08b17f29ec0a9908f4e3d38b223e06233
IEDL.DBID M7S
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604853800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1562-2479
IngestDate Wed Nov 05 03:13:17 EST 2025
Sat Nov 29 05:19:50 EST 2025
Tue Nov 18 22:38:11 EST 2025
Fri Feb 21 02:48:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Modified quantum optimization algorithm (MQOA)
Image segmentation
means clustering
Fuzzy set
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-30d770cf3cbdb12c1ab1c1838f1be54f08b17f29ec0a9908f4e3d38b223e06233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0429-2007
PQID 2933420855
PQPubID 2043640
PageCount 15
ParticipantIDs proquest_journals_2933420855
crossref_citationtrail_10_1007_s40815_020_01009_2
crossref_primary_10_1007_s40815_020_01009_2
springer_journals_10_1007_s40815_020_01009_2
PublicationCentury 2000
PublicationDate 20210400
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210400
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of fuzzy systems
PublicationTitleAbbrev Int. J. Fuzzy Syst
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Unnikrishnan, R., Pantofaru, C., Hebert, M.: A measure for objective evaluation of image segmentation algorithms. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, vol. 3, January 2005, pp. 34–41
MeilaMComparing clusterings—an information based distanceJ Multivar. Anal.200798587389523254121298.9112410.1016/j.jmva.2006.11.013
CastilloOSanchezMAGonzalezCIMartinezGEReview of recent type-2 fuzzy image processing applicationsInformation2017897118
TellaecheABurgos-ArtizzuXPPajaresGRibeiroAA vision-based method for weeds identification through the Bayesian decision theoryPattern Recognit.20084125215301153.6849110.1016/j.patcog.2007.07.007
Clairet, J., Bigand, A., Colot, O.: Color image segmentation using type-2 fuzzy sets. In: Proceedings of 1st IEEE International Conference on E-Learning in Industrial Electronics, Hammamet, Tunisia, December 2006, pp. 52–57
SinghPHuangY-PA new hybrid time series forecasting model based on the neutrosophic set and quantum optimization algorithmComput. Ind.201911112113910.1016/j.compind.2019.06.004
BaiXDCaoZGWangYYuZHZhangXFLiCCrop segmentation from images by morphology modeling in the CIE l_a_b_ color spaceComput. Electron. Agric.201399213410.1016/j.compag.2013.08.022
AbbasgholipourMOmidMKeyhaniAMohtasebiSColor image segmentation with genetic algorithm in a raisin sorting system based on machine vision in variable conditionsExpert Syst. Appl.20113843671367810.1016/j.eswa.2010.09.023
SchrodingerEThe present status of quantum mechanicsDie Naturwissenschaften1935234812610.1007/BF01491891
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th IEEE International Conference on Computer Vision, Vancouver, BC, Canada, vol. 2, July 2001, pp. 416–423
Cuevas-VelasquezHGallegoA-JFisherRBSegmentation and 3D reconstruction of rose plants from stereoscopic imagesComput. Electron. Agric.202017111810.1016/j.compag.2020.105296
LiKTanZAn improved flower pollination optimizer algorithm for multilevel image thresholdingIEEE Access2019716557116558210.1109/ACCESS.2019.2953494
WangX-YWangQ-YYangH-YBuJColor image segmentation using automatic pixel classification with support vector machineNeurocomputing20117418389839111213.9402310.1016/j.neucom.2011.08.004
MiguelLDSantosHSesma-SaraMBedregalBJurioABustinceHHagrasHType-2 fuzzy entropy setsIEEE Trans. Fuzzy Syst.2017254993100510.1109/TFUZZ.2016.2593497
Mújica-VargasDKinaniJMVRubioJDColor-based image segmentation by means of a robust intuitionistic fuzzy c-means algorithmInt J. Fuzzy Syst.20202290191610.1007/s40815-020-00824-x
ShresthaDSStewardBBirrellSVideo processing for early stage maize plant detectionBiosyst. Eng.200489211912910.1016/j.biosystemseng.2004.06.007
LeTHuynhTLinLLinCChaoFA K-means interval type-2 fuzzy neural network for medical diagnosisInt. J. Fuzzy Syst.20192172258226910.1007/s40815-019-00730-x
MeyerGENetoJCJonesDDHindmanTWIntensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color imagesComput. Electron. Agric.200442316118010.1016/j.compag.2003.08.002
WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans. Image Process.200413460061210.1109/TIP.2003.819861
GaoYWangDPanJWangZChenBA novel fuzzy c-means clustering algorithm using adaptive normInt. J. Fuzzy Syst.20192182632264910.1007/s40815-019-00740-9
CiesielskiKCUdupaJKAffinity functions in fuzzy connectedness based image segmentation I: equivalence of affinitiesComput. Vis. Image Underst.2010114114615410.1016/j.cviu.2009.09.006
Fazel ZarandiMHKhadangiAKarimiFTurksenIBA computer-aided type-II fuzzy image processing for diagnosis of meniscus tearJ. Digit. Imaging201629667769510.1007/s10278-016-9884-y
HuangY-PSinghPKuoH-CA hybrid fuzzy clustering approach for the recognition and visualization of MRI images of Parkinson’s diseaseIEEE Access202027250412505110.1109/ACCESS.2020.2969806
PareSKumarABajajVSinghGKA multilevel color image segmentation technique based on cuckoo search algorithm and energy curveAppl. Soft Comput.2016477610210.1016/j.asoc.2016.05.040
RubioJJKashiwaTLaiteerapongTDengWNagaiKEscaleraSNakayamaKMatsuoYPrendingerHMulti-class structural damage segmentation using fully convolutional networksComput. Ind.201911210312110.1016/j.compind.2019.08.002
ZadehLAFuzzy setsInf. Control1965833383530139.2460610.1016/S0019-9958(65)90241-X
YaoHDuanQLiDWangJAn improved K-means clustering algorithm for fish image segmentationMath. Comput. Model.2013583–47907981297.6821310.1016/j.mcm.2012.12.025
LanJZengYMulti-threshold image segmentation using maximum fuzzy entropy based on a new 2D histogramOptik2013124183756376010.1016/j.ijleo.2012.11.023
MendelJMJohnRIBType-2 fuzzy sets made simpleIEEE Trans. Fuzzy Syst.200210211712710.1109/91.995115
YuZCaoZWuXBaiXQinYZhuoWXiaoYZhangXXueHAutomatic image-based detection technology for two critical growth stages of maize: emergence and three-leaf stageAgric. For. Meteorol.2013174–175658410.1016/j.agrformet.2013.02.011
TanKSIsaNAMColor image segmentation using histogram thresholding—fuzzy c-means hybrid approachPattern Recognit.20114411151207.6831910.1016/j.patcog.2010.07.013
HeLHuangSModified firefly algorithm based multilevel thresholding for color image segmentationNeurocomputing201724015217410.1016/j.neucom.2017.02.040
C. S. Division, Taiwan Agriculture Research Institute (June 2020). https://www.tari.gov.tw/english/.
HemmingJRathTPA-precision agriculture: computer-vision based weed identification under field conditions using controlled lightingJ. Agric. Eng. Res.200178323324310.1006/jaer.2000.0639
BaiXCaoZWangYYuZHuZZhangXLiCVegetation segmentation robust to illumination variations based on clustering and morphology modellingBiosyst. Eng.2014125809710.1016/j.biosystemseng.2014.06.015
GuerreroJPajaresGMontalvoMRomeoJGuijarroMSupport vector machines for crop/weeds identification in maize fieldsExpert Syst. Appl.20123912111491115510.1016/j.eswa.2012.03.040
FritzHGarcía-EscuderoLAMayo-IscarARobust constrained fuzzy clusteringInf. Sci.2013245385230958491321.6207010.1016/j.ins.2013.03.056
ChengH-DJiangXWangJColor image segmentation based on homogram thresholding and region mergingPattern Recognit.20023523733930987.6877510.1016/S0031-3203(01)00054-1
X-Y Wang (1009_CR10) 2011; 74
M Abbasgholipour (1009_CR17) 2011; 38
H-D Cheng (1009_CR5) 2002; 35
DS Shrestha (1009_CR9) 2004; 89
GE Meyer (1009_CR22) 2004; 42
KC Ciesielski (1009_CR23) 2010; 114
H Cuevas-Velasquez (1009_CR3) 2020; 171
1009_CR37
1009_CR36
S Pare (1009_CR15) 2016; 47
Z Yu (1009_CR2) 2013; 174–175
LA Zadeh (1009_CR31) 1965; 8
J Hemming (1009_CR6) 2001; 78
H Fritz (1009_CR12) 2013; 245
D Mújica-Vargas (1009_CR28) 2020; 22
Y-P Huang (1009_CR32) 2020; 27
J Guerrero (1009_CR11) 2012; 39
O Castillo (1009_CR30) 2017; 8
KS Tan (1009_CR19) 2011; 44
MH Fazel Zarandi (1009_CR29) 2016; 29
J Lan (1009_CR24) 2013; 124
A Tellaeche (1009_CR7) 2008; 41
XD Bai (1009_CR8) 2013; 99
K Li (1009_CR18) 2019; 7
M Meila (1009_CR38) 2007; 98
E Schrodinger (1009_CR33) 1935; 23
P Singh (1009_CR34) 2019; 111
T Le (1009_CR21) 2019; 21
L He (1009_CR16) 2017; 240
JJ Rubio (1009_CR4) 2019; 112
1009_CR26
Z Wang (1009_CR35) 2004; 13
1009_CR1
Y Gao (1009_CR20) 2019; 21
H Yao (1009_CR13) 2013; 58
X Bai (1009_CR14) 2014; 125
JM Mendel (1009_CR25) 2002; 10
LD Miguel (1009_CR27) 2017; 25
References_xml – reference: ZadehLAFuzzy setsInf. Control1965833383530139.2460610.1016/S0019-9958(65)90241-X
– reference: Clairet, J., Bigand, A., Colot, O.: Color image segmentation using type-2 fuzzy sets. In: Proceedings of 1st IEEE International Conference on E-Learning in Industrial Electronics, Hammamet, Tunisia, December 2006, pp. 52–57
– reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans. Image Process.200413460061210.1109/TIP.2003.819861
– reference: Cuevas-VelasquezHGallegoA-JFisherRBSegmentation and 3D reconstruction of rose plants from stereoscopic imagesComput. Electron. Agric.202017111810.1016/j.compag.2020.105296
– reference: C. S. Division, Taiwan Agriculture Research Institute (June 2020). https://www.tari.gov.tw/english/.
– reference: CastilloOSanchezMAGonzalezCIMartinezGEReview of recent type-2 fuzzy image processing applicationsInformation2017897118
– reference: MiguelLDSantosHSesma-SaraMBedregalBJurioABustinceHHagrasHType-2 fuzzy entropy setsIEEE Trans. Fuzzy Syst.2017254993100510.1109/TFUZZ.2016.2593497
– reference: LiKTanZAn improved flower pollination optimizer algorithm for multilevel image thresholdingIEEE Access2019716557116558210.1109/ACCESS.2019.2953494
– reference: AbbasgholipourMOmidMKeyhaniAMohtasebiSColor image segmentation with genetic algorithm in a raisin sorting system based on machine vision in variable conditionsExpert Syst. Appl.20113843671367810.1016/j.eswa.2010.09.023
– reference: SinghPHuangY-PA new hybrid time series forecasting model based on the neutrosophic set and quantum optimization algorithmComput. Ind.201911112113910.1016/j.compind.2019.06.004
– reference: Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th IEEE International Conference on Computer Vision, Vancouver, BC, Canada, vol. 2, July 2001, pp. 416–423
– reference: WangX-YWangQ-YYangH-YBuJColor image segmentation using automatic pixel classification with support vector machineNeurocomputing20117418389839111213.9402310.1016/j.neucom.2011.08.004
– reference: MendelJMJohnRIBType-2 fuzzy sets made simpleIEEE Trans. Fuzzy Syst.200210211712710.1109/91.995115
– reference: ShresthaDSStewardBBirrellSVideo processing for early stage maize plant detectionBiosyst. Eng.200489211912910.1016/j.biosystemseng.2004.06.007
– reference: GaoYWangDPanJWangZChenBA novel fuzzy c-means clustering algorithm using adaptive normInt. J. Fuzzy Syst.20192182632264910.1007/s40815-019-00740-9
– reference: TanKSIsaNAMColor image segmentation using histogram thresholding—fuzzy c-means hybrid approachPattern Recognit.20114411151207.6831910.1016/j.patcog.2010.07.013
– reference: HemmingJRathTPA-precision agriculture: computer-vision based weed identification under field conditions using controlled lightingJ. Agric. Eng. Res.200178323324310.1006/jaer.2000.0639
– reference: CiesielskiKCUdupaJKAffinity functions in fuzzy connectedness based image segmentation I: equivalence of affinitiesComput. Vis. Image Underst.2010114114615410.1016/j.cviu.2009.09.006
– reference: HeLHuangSModified firefly algorithm based multilevel thresholding for color image segmentationNeurocomputing201724015217410.1016/j.neucom.2017.02.040
– reference: BaiXCaoZWangYYuZHuZZhangXLiCVegetation segmentation robust to illumination variations based on clustering and morphology modellingBiosyst. Eng.2014125809710.1016/j.biosystemseng.2014.06.015
– reference: MeilaMComparing clusterings—an information based distanceJ Multivar. Anal.200798587389523254121298.9112410.1016/j.jmva.2006.11.013
– reference: YuZCaoZWuXBaiXQinYZhuoWXiaoYZhangXXueHAutomatic image-based detection technology for two critical growth stages of maize: emergence and three-leaf stageAgric. For. Meteorol.2013174–175658410.1016/j.agrformet.2013.02.011
– reference: MeyerGENetoJCJonesDDHindmanTWIntensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color imagesComput. Electron. Agric.200442316118010.1016/j.compag.2003.08.002
– reference: Mújica-VargasDKinaniJMVRubioJDColor-based image segmentation by means of a robust intuitionistic fuzzy c-means algorithmInt J. Fuzzy Syst.20202290191610.1007/s40815-020-00824-x
– reference: Unnikrishnan, R., Pantofaru, C., Hebert, M.: A measure for objective evaluation of image segmentation algorithms. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, vol. 3, January 2005, pp. 34–41
– reference: SchrodingerEThe present status of quantum mechanicsDie Naturwissenschaften1935234812610.1007/BF01491891
– reference: TellaecheABurgos-ArtizzuXPPajaresGRibeiroAA vision-based method for weeds identification through the Bayesian decision theoryPattern Recognit.20084125215301153.6849110.1016/j.patcog.2007.07.007
– reference: GuerreroJPajaresGMontalvoMRomeoJGuijarroMSupport vector machines for crop/weeds identification in maize fieldsExpert Syst. Appl.20123912111491115510.1016/j.eswa.2012.03.040
– reference: LanJZengYMulti-threshold image segmentation using maximum fuzzy entropy based on a new 2D histogramOptik2013124183756376010.1016/j.ijleo.2012.11.023
– reference: ChengH-DJiangXWangJColor image segmentation based on homogram thresholding and region mergingPattern Recognit.20023523733930987.6877510.1016/S0031-3203(01)00054-1
– reference: FritzHGarcía-EscuderoLAMayo-IscarARobust constrained fuzzy clusteringInf. Sci.2013245385230958491321.6207010.1016/j.ins.2013.03.056
– reference: HuangY-PSinghPKuoH-CA hybrid fuzzy clustering approach for the recognition and visualization of MRI images of Parkinson’s diseaseIEEE Access202027250412505110.1109/ACCESS.2020.2969806
– reference: PareSKumarABajajVSinghGKA multilevel color image segmentation technique based on cuckoo search algorithm and energy curveAppl. Soft Comput.2016477610210.1016/j.asoc.2016.05.040
– reference: Fazel ZarandiMHKhadangiAKarimiFTurksenIBA computer-aided type-II fuzzy image processing for diagnosis of meniscus tearJ. Digit. Imaging201629667769510.1007/s10278-016-9884-y
– reference: BaiXDCaoZGWangYYuZHZhangXFLiCCrop segmentation from images by morphology modeling in the CIE l_a_b_ color spaceComput. Electron. Agric.201399213410.1016/j.compag.2013.08.022
– reference: RubioJJKashiwaTLaiteerapongTDengWNagaiKEscaleraSNakayamaKMatsuoYPrendingerHMulti-class structural damage segmentation using fully convolutional networksComput. Ind.201911210312110.1016/j.compind.2019.08.002
– reference: LeTHuynhTLinLLinCChaoFA K-means interval type-2 fuzzy neural network for medical diagnosisInt. J. Fuzzy Syst.20192172258226910.1007/s40815-019-00730-x
– reference: YaoHDuanQLiDWangJAn improved K-means clustering algorithm for fish image segmentationMath. Comput. Model.2013583–47907981297.6821310.1016/j.mcm.2012.12.025
– volume: 98
  start-page: 873
  issue: 5
  year: 2007
  ident: 1009_CR38
  publication-title: J Multivar. Anal.
  doi: 10.1016/j.jmva.2006.11.013
– ident: 1009_CR26
  doi: 10.1109/ICELIE.2006.347211
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  ident: 1009_CR31
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 21
  start-page: 2258
  issue: 7
  year: 2019
  ident: 1009_CR21
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-019-00730-x
– volume: 89
  start-page: 119
  issue: 2
  year: 2004
  ident: 1009_CR9
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2004.06.007
– volume: 124
  start-page: 3756
  issue: 18
  year: 2013
  ident: 1009_CR24
  publication-title: Optik
  doi: 10.1016/j.ijleo.2012.11.023
– volume: 25
  start-page: 993
  issue: 4
  year: 2017
  ident: 1009_CR27
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2016.2593497
– ident: 1009_CR36
  doi: 10.1109/CVPR.2005.390
– volume: 74
  start-page: 3898
  issue: 18
  year: 2011
  ident: 1009_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.08.004
– volume: 44
  start-page: 1
  issue: 1
  year: 2011
  ident: 1009_CR19
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.07.013
– volume: 174–175
  start-page: 65
  year: 2013
  ident: 1009_CR2
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2013.02.011
– volume: 240
  start-page: 152
  year: 2017
  ident: 1009_CR16
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.040
– volume: 7
  start-page: 165571
  year: 2019
  ident: 1009_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953494
– volume: 58
  start-page: 790
  issue: 3–4
  year: 2013
  ident: 1009_CR13
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2012.12.025
– volume: 39
  start-page: 11149
  issue: 12
  year: 2012
  ident: 1009_CR11
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.03.040
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 1009_CR35
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 171
  start-page: 1
  year: 2020
  ident: 1009_CR3
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105296
– volume: 38
  start-page: 3671
  issue: 4
  year: 2011
  ident: 1009_CR17
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.09.023
– volume: 114
  start-page: 146
  issue: 1
  year: 2010
  ident: 1009_CR23
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2009.09.006
– volume: 99
  start-page: 21
  year: 2013
  ident: 1009_CR8
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2013.08.022
– volume: 111
  start-page: 121
  year: 2019
  ident: 1009_CR34
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.06.004
– volume: 245
  start-page: 38
  year: 2013
  ident: 1009_CR12
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.03.056
– ident: 1009_CR37
  doi: 10.1109/ICCV.2001.937655
– volume: 41
  start-page: 521
  issue: 2
  year: 2008
  ident: 1009_CR7
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.07.007
– volume: 112
  start-page: 103
  year: 2019
  ident: 1009_CR4
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.08.002
– ident: 1009_CR1
– volume: 125
  start-page: 80
  year: 2014
  ident: 1009_CR14
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2014.06.015
– volume: 23
  start-page: 1
  issue: 48
  year: 1935
  ident: 1009_CR33
  publication-title: Die Naturwissenschaften
  doi: 10.1007/BF01491891
– volume: 10
  start-page: 117
  issue: 2
  year: 2002
  ident: 1009_CR25
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.995115
– volume: 21
  start-page: 2632
  issue: 8
  year: 2019
  ident: 1009_CR20
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-019-00740-9
– volume: 47
  start-page: 76
  year: 2016
  ident: 1009_CR15
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.05.040
– volume: 22
  start-page: 901
  year: 2020
  ident: 1009_CR28
  publication-title: Int J. Fuzzy Syst.
  doi: 10.1007/s40815-020-00824-x
– volume: 29
  start-page: 677
  issue: 6
  year: 2016
  ident: 1009_CR29
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-016-9884-y
– volume: 35
  start-page: 373
  issue: 2
  year: 2002
  ident: 1009_CR5
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(01)00054-1
– volume: 8
  start-page: 1
  issue: 97
  year: 2017
  ident: 1009_CR30
  publication-title: Information
– volume: 78
  start-page: 233
  issue: 3
  year: 2001
  ident: 1009_CR6
  publication-title: J. Agric. Eng. Res.
  doi: 10.1006/jaer.2000.0639
– volume: 27
  start-page: 25041
  year: 2020
  ident: 1009_CR32
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2969806
– volume: 42
  start-page: 161
  issue: 3
  year: 2004
  ident: 1009_CR22
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2003.08.002
SSID ssib031263563
ssib053833614
ssib026410675
ssj0002147029
ssib008679421
Score 2.2743886
Snippet Automatic detection of crop yield ripeness is a tedious task because of the presence of various intensities of color in crops. One of the solutions to this...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 615
SubjectTerms Algorithms
Artificial Intelligence
Cluster analysis
Clustering
Color imagery
Computational Intelligence
Computer vision
Crop yield
Engineering
Fuzzy sets
Image segmentation
Management Science
Memberships
Methods
Operations Research
Optimization
Pattern recognition
Researchers
Set theory
Support vector machines
Vector quantization
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6iPuiDd3HeyINvGkiTbm0fx3AoyLxMx95KmosIro5tFdyv9ySm3RQV9LlpaXNOznfSnO87CJ0IFgFqCkUyExsSCqpI0lCCABJRpQBCEsd6711FnU7c7yc3nhQ2LqvdyyNJF6krslsI6GXZxLaQyv7Sh8C7BHAX24YNd91e5UVWQm6OvQmIb2XSKq_lgdVfmYlOwYrn3IOUi9-2cw917c1gb8MIC6PEs22-f43PiDZLU7-crDrAaq__71M30JpPUHHzw6M20YLOt9DqnGzhNuo3sd2-EobbxXT6hlvPhZVbgGtY5ArfFmCtYoCvIRoNPM0TN712OYYkGbdGL8MxvhxALMNd_Tjw_Kd8Bz20z-9bF8R3aCASlu6EgD2jiErDZaaygMlAZIGEIBGbINP10NA4CyLDEi2pANiLTai54nEGnqApJF58Fy3mL7neQ5hLyPQCbWjCaSi0SCJeV6whdMPwUCe0hoJyllPp5cttF43ntBJedrOWwqylbtZSVkOn1T3DD_GOX0cflsZL_UIep5ANcVuBUK_X0FlprNnln5-2_7fhB2iF2WoZVxN0iBYno0IfoWX5Onkaj46dg78Dl6jq_g
  priority: 102
  providerName: Springer Nature
Title A Type-2 Fuzzy Clustering and Quantum Optimization Approach for Crops Image Segmentation
URI https://link.springer.com/article/10.1007/s40815-020-01009-2
https://www.proquest.com/docview/2933420855
Volume 23
WOSCitedRecordID wos000604853800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: P5Z
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: K7-
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: M7S
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: BENPR
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: RSV
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RlgMcWl4VoW3kAzew8GM3u3uq0qhRESiEBqqIy8rrB0JqNiHJVmp_fceukxQkeuHii3ct7c54vrFn5huAt0pkiJrK0MrljiaKGVp0jKKIRMwYhJAiVL1ffM4Gg3w8Lobxwm0R0ypXNjEYajPV_o78A8KS9KHgND2e_aa-a5SPrsYWGluw41kSeEjdG631yZPJ3avjROz3hGlr_ZXcM7Fs6Kdw70sZ4SpYct_Dh4VGZ3jKEVQkWRHrbkL1XYJw6subfWaXjzGIP7Ft47D-FWMN0NXf-9-Pfga70Wkl3Tstew6PbP0Cnt6jMnwJ4y7xR1oqSL-5ubkmvcvGUzDgHFG1IV8blGAzIV_QQk1i6SfpRj5zgo4z6c2nswX5OEH7Rkb25yTWRNWv4Hv_9FvvjMauDVTjdl5SlHGWMe2krkzFheaq4hoNR-54ZdPEsbzimROF1UwhFOYusdLIvELtsAydMbkP2_W0tq-BSI3eH7eOFZIlyqoik6kRHWU7Tia2YC3gq_9d6khp7jtrXJZrMuYgoxJlVAYZlaIF79bvzO4IPR58-nAlmDJu7kW5kUoL3q9Eu5n-92pvHl7tAJ4InzET8oIOYXs5b-wRPNZXy1-LeRt2Tk4Hw_M2bH3KaDsoOo7D9AeO56OLWytS-a8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwEB0tCxJw4BttYQEf4AQWjp3WyQGhqlBt1VJALKi34PgDrbRNS9uAdn8Uv5Gx67QLEnvbA-cklhM_z5uJZ94APFVcImsqQ0uXOZoqZmjeMYoiEzFjkELyUPX-ZSTH42wyyT_swK-mFsanVTY2MRhqM9P-H_lLpCXhj4Lb7dfz79R3jfKnq00LjTUshvbkJ4Zsy1eDN7i-zzjvvz3sHdDYVYBqhNuK4hykZNoJXZoy4TpRZaIR2JlLSttOHcvKRDqeW80UmurMpVYYkZU4e8vQWRA47iW4nIpM-n01lHSDXy9ed6ZuFH0NL9C22S8i8covW7krtDVCRHoMzOF7BrHQWA2jKk55KvNY5xOq_VKkb19O7TPJ_JkG_5NLtw7yX2e6gSr7N_-3j3wLbkSnnHTXu-g27NjqDlw_I9V4FyZd4kN2ykm_Pj09Ib3j2ktM4DWiKkM-1ojQekreowWextJW0o167QQDA9JbzOZLMpii_Saf7LdprPmq7sHnC3m1-7BbzSq7B0Ro9G4T61guWKqsyqVoG95RtuNEanPWgqRZ30JHyXbfOeS42IhNB0wUiIkiYKLgLXi-eWa-Fiw59-79BghFNF7LYouCFrxooLS9_O_RHpw_2hO4enD4blSMBuPhQ7jGfXZQyIHah93VoraP4Ir-sTpaLh6HbUXg60VD7DdAjFHV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIvrgXZzXPPimwTTp1vZxTIeiTMULeytpLiK4OrZV0F_vSZZ1U1QQn5uWNufkfCfN-b6D0IFgEaCmUCQzsSGhoIokNSUIIBFVCiAkcaz3h8uo1Yrb7eR6gsXvqt1HR5JDToNVacoHx11ljkviWwhIZpnFtqjK_t6HIDwT2kJ6u1-_fSg9ysrJTTA5Af2tZFrpwTywWixjASpY_Zx7wHKx3Hbxoa7VGexzGGFhlHjmzfev8Rndxinrl1NWB17Npf9_9jJa9Ikrrg89bQVN6XwVLUzIGa6hdh3bbS1huFm8v7_hxnNhZRjgGha5wjcFWLHo4CuIUh1P_8R1r2mOIXnGjd5Lt4_POxDj8K1-7HheVL6O7pund40z4js3EAlLekDAzlFEpeEyU1nAZCCyQELwiE2Q6WpoaJwFkWGJllQAHMYm1FzxOAMP0RQSMr6BpvOXXG8izCVkgIE2NOE0FFokEa8qVhO6ZnioE1pBwWjGU-llzW13jee0FGR2s5bCrKVu1lJWQYflPd2hqMevo3dGhkz9Au-nkCVxW5lQrVbQ0chw48s_P23rb8P30dz1STO9PG9dbKN5ZgtqXNnQDpoe9Aq9i2bl6-Cp39tzfv8BAe_2xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Type-2+Fuzzy+Clustering+and+Quantum+Optimization+Approach+for+Crops+Image+Segmentation&rft.jtitle=International+journal+of+fuzzy+systems&rft.au=Huang%2C+Yo-Ping&rft.au=Singh%2C+Pritpal&rft.au=Kuo%2C+Wen-Lin&rft.au=Chu%2C+Hung-Chi&rft.date=2021-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1562-2479&rft.eissn=2199-3211&rft.volume=23&rft.issue=3&rft.spage=615&rft.epage=629&rft_id=info:doi/10.1007%2Fs40815-020-01009-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1562-2479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1562-2479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1562-2479&client=summon