An accelerated proximal gradient method for multiobjective optimization

This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously differentiable, convex function and a closed, proper, convex function. Extending first-order methods for multiobjective problems without scalariz...

Full description

Saved in:
Bibliographic Details
Published in:Computational optimization and applications Vol. 86; no. 2; pp. 421 - 455
Main Authors: Tanabe, Hiroki, Fukuda, Ellen H., Yamashita, Nobuo
Format: Journal Article
Language:English
Published: New York Springer US 01.11.2023
Springer Nature B.V
Subjects:
ISSN:0926-6003, 1573-2894
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously differentiable, convex function and a closed, proper, convex function. Extending first-order methods for multiobjective problems without scalarization has been widely studied, but providing accelerated methods with accurate proofs of convergence rates remains an open problem. Our proposed method is a multiobjective generalization of the accelerated proximal gradient method, also known as the Fast Iterative Shrinkage-Thresholding Algorithm, for scalar optimization. The key to this successful extension is solving a subproblem with terms exclusive to the multiobjective case. This approach allows us to demonstrate the global convergence rate of the proposed method ( O ( 1 / k 2 ) ), using a merit function to measure the complexity. Furthermore, we present an efficient way to solve the subproblem via its dual representation, and we confirm the validity of the proposed method through some numerical experiments.
AbstractList This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously differentiable, convex function and a closed, proper, convex function. Extending first-order methods for multiobjective problems without scalarization has been widely studied, but providing accelerated methods with accurate proofs of convergence rates remains an open problem. Our proposed method is a multiobjective generalization of the accelerated proximal gradient method, also known as the Fast Iterative Shrinkage-Thresholding Algorithm, for scalar optimization. The key to this successful extension is solving a subproblem with terms exclusive to the multiobjective case. This approach allows us to demonstrate the global convergence rate of the proposed method (O(1/k2)), using a merit function to measure the complexity. Furthermore, we present an efficient way to solve the subproblem via its dual representation, and we confirm the validity of the proposed method through some numerical experiments.
This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously differentiable, convex function and a closed, proper, convex function. Extending first-order methods for multiobjective problems without scalarization has been widely studied, but providing accelerated methods with accurate proofs of convergence rates remains an open problem. Our proposed method is a multiobjective generalization of the accelerated proximal gradient method, also known as the Fast Iterative Shrinkage-Thresholding Algorithm, for scalar optimization. The key to this successful extension is solving a subproblem with terms exclusive to the multiobjective case. This approach allows us to demonstrate the global convergence rate of the proposed method ( O ( 1 / k 2 ) ), using a merit function to measure the complexity. Furthermore, we present an efficient way to solve the subproblem via its dual representation, and we confirm the validity of the proposed method through some numerical experiments.
Author Yamashita, Nobuo
Tanabe, Hiroki
Fukuda, Ellen H.
Author_xml – sequence: 1
  givenname: Hiroki
  orcidid: 0000-0003-0042-9221
  surname: Tanabe
  fullname: Tanabe, Hiroki
  email: tanabe.hiroki.45n@kyoto-u.jp
  organization: Yahoo Japan Corporation
– sequence: 2
  givenname: Ellen H.
  surname: Fukuda
  fullname: Fukuda, Ellen H.
  organization: Kyoto University
– sequence: 3
  givenname: Nobuo
  surname: Yamashita
  fullname: Yamashita, Nobuo
  organization: Kyoto University
BookMark eNp9kM9LwzAUx4NMcFP_AU8Fz9WXpGmT4xg6hYEXPYc0TWdG28wkc-pfb1wFwcNODx7v874_ZmgyuMEgdIXhBgNUtwED4yIHQnOAQlT5_gRNMatoTrgoJmgKgpR5CUDP0CyEDQCIipIpWs6HTGltOuNVNE229e7D9qrL1l411gwx6018dU3WOp_1uy5aV2-MjvbdZG4bbW-_VNoNF-i0VV0wl7_zHL3c3z0vHvLV0_JxMV_lmmIRcwpca2Y0w6BZQQoKigFoUG0DhmBleAktYF4b3FZlVTOseVtzAZg2pWKYnqPr8W8y-rYzIcqN2_khSUrCS0E5E4ymKzJeae9C8KaVW59S-U-JQf4UJsfCZCpMHgqT-wTxf5C28RAuemW74ygd0ZB0hrXxf66OUN-HLYL-
CitedBy_id crossref_primary_10_1007_s10957_025_02815_0
crossref_primary_10_1007_s10589_024_00577_5
crossref_primary_10_1016_j_mlwa_2025_100700
crossref_primary_10_1007_s10957_024_02389_3
crossref_primary_10_1007_s40324_023_00340_6
crossref_primary_10_1007_s10957_025_02737_x
crossref_primary_10_1137_23M1588512
crossref_primary_10_1007_s10115_025_02505_3
crossref_primary_10_1007_s10589_025_00711_x
crossref_primary_10_1007_s10589_023_00508_w
crossref_primary_10_1007_s10957_025_02691_8
crossref_primary_10_1007_s10589_024_00609_0
crossref_primary_10_1007_s10589_025_00663_2
crossref_primary_10_1007_s10957_025_02824_z
crossref_primary_10_1007_s10957_025_02630_7
crossref_primary_10_1016_j_eswa_2025_126675
crossref_primary_10_1007_s11750_024_00680_0
Cites_doi 10.1007/s10107-015-0962-6
10.1007/s10898-019-00802-0
10.1162/106365600568202
10.2140/pjm.1958.8.171
10.1590/0101-7438.2014.034.03.0585
10.1137/080716542
10.1137/S1052623403429093
10.1561/9781601987174
10.3934/jimo.2018136
10.1007/s10589-012-9501-z
10.1017/CBO9780511804441
10.1007/s10589-018-0043-x
10.1007/s11590-022-01877-7
10.1016/j.orl.2018.05.008
10.1080/10556788.2018.1510928
10.1002/nav.3800020106
10.1007/s10957-020-01785-9
10.1023/B:COAP.0000018877.86161.8b
10.1007/s001860000043
10.1007/s00158-009-0460-7
10.1137/08071692X
10.1007/978-3-642-61859-8
10.1137/1.9781611974997
10.1007/s101070100263
10.1137/17M1126588
10.1007/978-1-4612-1394-9
10.1007/s10589-022-00414-7
10.1109/TAC.1963.1105511
10.1137/S1052623497325107
10.1145/355934.355936
10.1080/02331934.2018.1440553
10.1109/TSMCB.2004.834438
10.1137/10079731X
10.1080/02331934.2023.2232794
10.1111/j.1467-9868.2005.00503.x
10.1016/0022-247X(68)90201-1
10.1007/978-3-642-17144-4
10.1007/s10957-015-0746-4
10.24033/bsmf.1625
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10589-023-00497-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest - ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 455
ExternalDocumentID 10_1007_s10589_023_00497_w
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 20J21961; 21K11769; 19K11840
  funderid: http://dx.doi.org/10.13039/501100001691
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-308cc5ec510c542430a500c0afd0e21ae860f018be1f767b51c8fb89013d6a513
IEDL.DBID RSV
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001005377200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-6003
IngestDate Wed Nov 26 14:41:33 EST 2025
Sat Nov 29 01:51:31 EST 2025
Tue Nov 18 21:53:58 EST 2025
Fri Feb 21 02:41:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords FISTA
Global rate of convergence
90C25
Multiobjective optimization
Pareto optimality
90C29
First-order method
Proximal gradient method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-308cc5ec510c542430a500c0afd0e21ae860f018be1f767b51c8fb89013d6a513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0042-9221
PQID 2869385953
PQPubID 30811
PageCount 35
ParticipantIDs proquest_journals_2869385953
crossref_primary_10_1007_s10589_023_00497_w
crossref_citationtrail_10_1007_s10589_023_00497_w
springer_journals_10_1007_s10589_023_00497_w
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zhao, Jolaoso, Shehu, Yao (CR47) 2021; 5
Tanabe, Fukuda, Yamashita (CR40) 2019; 72
Carrizo, Lotito, Maciel (CR12) 2016; 159
Fukuda, Graña Drummond (CR20) 2013; 54
Moré, Garbow, Hillstrom (CR32) 1981; 7
Lucambio Pérez, Prudente (CR29) 2018; 28
Stadler, Dauer, Kamat (CR38) 1992
Fliege, Vaz, Vicente (CR19) 2019; 34
Fukuda, Graña Drummond (CR21) 2014; 34
Nesterov (CR34) 1983; 269
Beck, Teboulle (CR3) 2009; 2
Svaiter (CR39) 2018; 46
Geoffrion (CR24) 1968; 22
Graña Drummond, Iusem (CR26) 2004; 28
CR49
Boyd, Vandenberghe (CR9) 2004
CR43
Bouza, Tammer (CR8) 2022; 6
Fliege, Graña Drummond, Svaiter (CR17) 2009; 20
CR42
Bonnel, Iusem, Svaiter (CR7) 2005; 15
Beck (CR2) 2017
Köbis, Köbis, Tammer (CR28) 2022; 6
Marler, Arora (CR30) 2010; 41
Bonnans, Shapiro (CR6) 2000
Bertsekas (CR4) 1999
Boţ, Grad (CR5) 2018; 67
Sion (CR37) 1958; 8
Gass, Saaty (CR23) 1955; 2
Chambolle, Dossal (CR13) 2015; 166
Moreau (CR33) 1965; 93
Brent (CR10) 1973
Parikh, Boyd (CR35) 2014
Wang, Wang, Wang (CR44) 2020; 16
Zou, Hastie (CR50) 2005; 67
Bandyopadhyay, Pal, Aruna (CR1) 2004; 34
Byrd, Hribar, Nocedal (CR11) 1999; 9
Tanabe, Fukuda, Yamashita (CR41) 2023; 17
Yosida (CR45) 1995
Custódio, Madeira, Vaz, Vicente (CR14) 2011; 21
Dolan, Moré (CR15) 2002; 91
CR27
Rockafellar, Wets (CR36) 1998
Zadeh (CR46) 1963; 8
Fliege, Svaiter (CR18) 2000; 51
CR22
Gonçalves, Lima, Prudente (CR25) 2022; 83
El Moudden, El Mouatasim (CR16) 2021; 188
Zitzler, Deb, Thiele (CR48) 2000; 8
Mita, Fukuda, Yamashita (CR31) 2019; 75
BF Svaiter (497_CR39) 2018; 46
K Mita (497_CR31) 2019; 75
DP Bertsekas (497_CR4) 1999
J Fliege (497_CR19) 2019; 34
497_CR22
AL Custódio (497_CR14) 2011; 21
JF Bonnans (497_CR6) 2000
RP Brent (497_CR10) 1973
H Tanabe (497_CR40) 2019; 72
W Stadler (497_CR38) 1992
K Yosida (497_CR45) 1995
X Wang (497_CR44) 2020; 16
Y Nesterov (497_CR34) 1983; 269
LA Zadeh (497_CR46) 1963; 8
E Zitzler (497_CR48) 2000; 8
J Fliege (497_CR18) 2000; 51
J-J Moreau (497_CR33) 1965; 93
E Köbis (497_CR28) 2022; 6
H Tanabe (497_CR41) 2023; 17
497_CR49
M El Moudden (497_CR16) 2021; 188
MLN Gonçalves (497_CR25) 2022; 83
LM Graña Drummond (497_CR26) 2004; 28
EH Fukuda (497_CR21) 2014; 34
RT Rockafellar (497_CR36) 1998
M Sion (497_CR37) 1958; 8
N Parikh (497_CR35) 2014
S Bandyopadhyay (497_CR1) 2004; 34
RI Boţ (497_CR5) 2018; 67
RH Byrd (497_CR11) 1999; 9
J Fliege (497_CR17) 2009; 20
497_CR43
S Boyd (497_CR9) 2004
EH Fukuda (497_CR20) 2013; 54
497_CR42
LR Lucambio Pérez (497_CR29) 2018; 28
H Zou (497_CR50) 2005; 67
JJ Moré (497_CR32) 1981; 7
X Zhao (497_CR47) 2021; 5
AM Geoffrion (497_CR24) 1968; 22
S Gass (497_CR23) 1955; 2
ED Dolan (497_CR15) 2002; 91
H Bonnel (497_CR7) 2005; 15
A Chambolle (497_CR13) 2015; 166
GA Carrizo (497_CR12) 2016; 159
497_CR27
A Beck (497_CR2) 2017
A Beck (497_CR3) 2009; 2
RT Marler (497_CR30) 2010; 41
G Bouza (497_CR8) 2022; 6
References_xml – year: 1973
  ident: CR10
  publication-title: Algorithms for Minimization Without Derivatives
– ident: CR22
– ident: CR49
– year: 2014
  ident: CR35
  publication-title: Proximal Algorithms
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: CR50
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
– volume: 28
  start-page: 2690
  year: 2018
  end-page: 2720
  ident: CR29
  article-title: Nonlinear conjugate gradient methods for vector optimization
  publication-title: SIAM J. Optim.
– volume: 9
  start-page: 877
  year: 1999
  end-page: 900
  ident: CR11
  article-title: An interior point algorithm for large-scale nonlinear programming
  publication-title: SIAM J. Optim.
– year: 1998
  ident: CR36
  publication-title: Variational Analysis. Grundlehren der mathematischen Wissenschaften
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: CR3
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imag. Sci.
– volume: 6
  start-page: 725
  year: 2022
  end-page: 735
  ident: CR28
  article-title: A first bibliography on set and vector optimization problems with respect to variable domination structures
  publication-title: J. Nonlinear Var. Anal.
– volume: 269
  start-page: 543
  year: 1983
  end-page: 547
  ident: CR34
  article-title: A method for solving the convex programming problem with convergence rate
  publication-title: Dokl. Akad. Nauk SSSR
– ident: CR42
– volume: 5
  start-page: 441
  year: 2021
  end-page: 457
  ident: CR47
  article-title: Convergence of a nonmonotone projected gradient method for nonconvex multiobjective optimization
  publication-title: J. Nonlinear Var. Anal.
– year: 2017
  ident: CR2
  publication-title: First-Order Methods in Optimization
– volume: 54
  start-page: 473
  year: 2013
  end-page: 493
  ident: CR20
  article-title: Inexact projected gradient method for vector optimization
  publication-title: Comput. Optim. Appl.
– volume: 83
  start-page: 403
  year: 2022
  end-page: 434
  ident: CR25
  article-title: Globally convergent Newton-type methods for multiobjective optimization
  publication-title: Comput. Optim. Appl.
– volume: 6
  start-page: 605
  year: 2022
  end-page: 618
  ident: CR8
  article-title: A steepest descent-like method for vector optimization problems with variable domination structure
  publication-title: J. Nonlinear Var. Anal.
– year: 2004
  ident: CR9
  publication-title: Convex Optimization
– volume: 20
  start-page: 602
  year: 2009
  end-page: 626
  ident: CR17
  article-title: Newton’s method for multiobjective optimization
  publication-title: SIAM J. Optim.
– year: 1995
  ident: CR45
  publication-title: Functional Analysis, Classics in Mathematics
– volume: 15
  start-page: 953
  year: 2005
  end-page: 970
  ident: CR7
  article-title: Proximal methods in vector optimization
  publication-title: SIAM J. Optim.
– volume: 188
  start-page: 220
  year: 2021
  end-page: 242
  ident: CR16
  article-title: Accelerated diagonal steepest descent method for unconstrained multiobjective optimization
  publication-title: J. Optim. Theory Appl.
– volume: 159
  start-page: 339
  year: 2016
  end-page: 369
  ident: CR12
  article-title: Trust region globalization strategy for the nonconvex unconstrained multiobjective optimization problem
  publication-title: Math. Program.
– volume: 166
  start-page: 968
  year: 2015
  end-page: 982
  ident: CR13
  article-title: On the convergence of the iterates of the “fast iterative shrinkage/thresholding algorithm”
  publication-title: J. Optim. Theory Appl.
– volume: 75
  start-page: 63
  year: 2019
  end-page: 90
  ident: CR31
  article-title: Nonmonotone line searches for unconstrained multiobjective optimization problems
  publication-title: J. Global Optim.
– volume: 17
  start-page: 333
  year: 2023
  end-page: 350
  ident: CR41
  article-title: Convergence rates analysis of a multiobjective proximal gradient method
  publication-title: Optim. Lett.
– volume: 41
  start-page: 853
  year: 2010
  end-page: 862
  ident: CR30
  article-title: The weighted sum method for multi-objective optimization: new insights
  publication-title: Struct. Multidiscip. Optim.
– volume: 51
  start-page: 479
  year: 2000
  end-page: 494
  ident: CR18
  article-title: Steepest descent methods for multicriteria optimization
  publication-title: Math. Methods Oper. Res.
– volume: 72
  start-page: 339
  year: 2019
  end-page: 361
  ident: CR40
  article-title: Proximal gradient methods for multiobjective optimization and their applications
  publication-title: Comput. Optim. Appl.
– ident: CR43
– year: 1999
  ident: CR4
  publication-title: Nonlinear Programming
– volume: 21
  start-page: 1109
  year: 2011
  end-page: 1140
  ident: CR14
  article-title: Direct multisearch for multiobjective optimization
  publication-title: SIAM J. Optim.
– volume: 7
  start-page: 17
  year: 1981
  end-page: 41
  ident: CR32
  article-title: Testing unconstrained optimization software
  publication-title: ACM Trans. Math. Softw.
– volume: 93
  start-page: 273
  year: 1965
  end-page: 299
  ident: CR33
  article-title: Proximité et dualité dans un espace hilbertien
  publication-title: Bull. Soc. Math. France
– year: 1992
  ident: CR38
  article-title: Multicriteria optimization in engineering: a tutorial and survey
  publication-title: Progress in Aeronautics and Astronautics: Structural Optimization: Status and Promise
– volume: 34
  start-page: 2088
  year: 2004
  end-page: 2099
  ident: CR1
  article-title: Multiobjective GAs, quantitative indices, and pattern classification
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
– volume: 16
  start-page: 1
  year: 2020
  end-page: 9
  ident: CR44
  article-title: An accelerated augmented Lagrangian method for multi-criteria optimization problem
  publication-title: J. Ind. Manag. Optim.
– volume: 2
  start-page: 39
  year: 1955
  end-page: 45
  ident: CR23
  article-title: The computational algorithm for the parametric objective function
  publication-title: Naval Res. Logist. Q.
– volume: 34
  start-page: 585
  year: 2014
  end-page: 620
  ident: CR21
  article-title: A survey on multiobjective descemt methods
  publication-title: Pesquisa Operacional
– ident: CR27
– volume: 28
  start-page: 5
  year: 2004
  end-page: 29
  ident: CR26
  article-title: A projected gradient method for vector optimization problems
  publication-title: Comput. Optim. Appl.
– volume: 46
  start-page: 430
  year: 2018
  end-page: 433
  ident: CR39
  article-title: The multiobjective steepest descent direction is not Lipschitz continuous, but is Hölder continuous
  publication-title: Oper. Res. Lett.
– volume: 67
  start-page: 959
  year: 2018
  end-page: 974
  ident: CR5
  article-title: Inertial forward–backward methods for solving vector optimization problems
  publication-title: Optimization
– year: 2000
  ident: CR6
  publication-title: Perturbation Analysis of Optimization Problems
– volume: 91
  start-page: 201
  year: 2002
  end-page: 213
  ident: CR15
  article-title: Benchmarking optimization software with performance profiles
  publication-title: Math. Program. Ser. B
– volume: 22
  start-page: 618
  year: 1968
  end-page: 630
  ident: CR24
  article-title: Proper efficiency and the theory of vector maximization
  publication-title: J. Math. Anal. Appl.
– volume: 8
  start-page: 59
  year: 1963
  end-page: 60
  ident: CR46
  article-title: Optimality and non-scalar-valued performance criteria
  publication-title: IEEE Trans. Autom. Control
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: CR48
  article-title: Comparison of multiobjective evolutionary algorithms: empirical results
  publication-title: Evol. Comput.
– volume: 8
  start-page: 171
  year: 1958
  end-page: 176
  ident: CR37
  article-title: On general minimax theorems
  publication-title: Pac. J. Math.
– volume: 34
  start-page: 949
  year: 2019
  end-page: 959
  ident: CR19
  article-title: Complexity of gradient descent for multiobjective optimization
  publication-title: Optim. Methods Softw.
– volume: 159
  start-page: 339
  year: 2016
  ident: 497_CR12
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0962-6
– volume: 75
  start-page: 63
  year: 2019
  ident: 497_CR31
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-019-00802-0
– volume: 8
  start-page: 173
  year: 2000
  ident: 497_CR48
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568202
– volume: 8
  start-page: 171
  year: 1958
  ident: 497_CR37
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1958.8.171
– volume: 34
  start-page: 585
  year: 2014
  ident: 497_CR21
  publication-title: Pesquisa Operacional
  doi: 10.1590/0101-7438.2014.034.03.0585
– ident: 497_CR49
– volume: 2
  start-page: 183
  year: 2009
  ident: 497_CR3
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/080716542
– volume: 6
  start-page: 605
  year: 2022
  ident: 497_CR8
  publication-title: J. Nonlinear Var. Anal.
– volume: 15
  start-page: 953
  year: 2005
  ident: 497_CR7
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623403429093
– volume-title: Nonlinear Programming
  year: 1999
  ident: 497_CR4
– volume-title: Proximal Algorithms
  year: 2014
  ident: 497_CR35
  doi: 10.1561/9781601987174
– volume: 269
  start-page: 543
  year: 1983
  ident: 497_CR34
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 16
  start-page: 1
  year: 2020
  ident: 497_CR44
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2018136
– volume: 54
  start-page: 473
  year: 2013
  ident: 497_CR20
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-012-9501-z
– volume-title: Convex Optimization
  year: 2004
  ident: 497_CR9
  doi: 10.1017/CBO9780511804441
– volume: 72
  start-page: 339
  year: 2019
  ident: 497_CR40
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-018-0043-x
– volume: 17
  start-page: 333
  year: 2023
  ident: 497_CR41
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-022-01877-7
– volume: 6
  start-page: 725
  year: 2022
  ident: 497_CR28
  publication-title: J. Nonlinear Var. Anal.
– ident: 497_CR27
– volume: 46
  start-page: 430
  year: 2018
  ident: 497_CR39
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2018.05.008
– ident: 497_CR43
– volume-title: Algorithms for Minimization Without Derivatives
  year: 1973
  ident: 497_CR10
– volume: 34
  start-page: 949
  year: 2019
  ident: 497_CR19
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2018.1510928
– volume-title: Progress in Aeronautics and Astronautics: Structural Optimization: Status and Promise
  year: 1992
  ident: 497_CR38
– volume: 5
  start-page: 441
  year: 2021
  ident: 497_CR47
  publication-title: J. Nonlinear Var. Anal.
– volume: 2
  start-page: 39
  year: 1955
  ident: 497_CR23
  publication-title: Naval Res. Logist. Q.
  doi: 10.1002/nav.3800020106
– volume: 188
  start-page: 220
  year: 2021
  ident: 497_CR16
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-020-01785-9
– volume: 28
  start-page: 5
  year: 2004
  ident: 497_CR26
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/B:COAP.0000018877.86161.8b
– volume: 51
  start-page: 479
  year: 2000
  ident: 497_CR18
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s001860000043
– volume: 41
  start-page: 853
  year: 2010
  ident: 497_CR30
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-009-0460-7
– volume: 20
  start-page: 602
  year: 2009
  ident: 497_CR17
  publication-title: SIAM J. Optim.
  doi: 10.1137/08071692X
– volume-title: Functional Analysis, Classics in Mathematics
  year: 1995
  ident: 497_CR45
  doi: 10.1007/978-3-642-61859-8
– volume-title: First-Order Methods in Optimization
  year: 2017
  ident: 497_CR2
  doi: 10.1137/1.9781611974997
– volume-title: Variational Analysis. Grundlehren der mathematischen Wissenschaften
  year: 1998
  ident: 497_CR36
– volume: 91
  start-page: 201
  year: 2002
  ident: 497_CR15
  publication-title: Math. Program. Ser. B
  doi: 10.1007/s101070100263
– volume: 28
  start-page: 2690
  year: 2018
  ident: 497_CR29
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1126588
– volume-title: Perturbation Analysis of Optimization Problems
  year: 2000
  ident: 497_CR6
  doi: 10.1007/978-1-4612-1394-9
– volume: 83
  start-page: 403
  year: 2022
  ident: 497_CR25
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-022-00414-7
– volume: 8
  start-page: 59
  year: 1963
  ident: 497_CR46
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1963.1105511
– volume: 9
  start-page: 877
  year: 1999
  ident: 497_CR11
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497325107
– volume: 7
  start-page: 17
  year: 1981
  ident: 497_CR32
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/355934.355936
– volume: 67
  start-page: 959
  year: 2018
  ident: 497_CR5
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1440553
– volume: 34
  start-page: 2088
  year: 2004
  ident: 497_CR1
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
  doi: 10.1109/TSMCB.2004.834438
– volume: 21
  start-page: 1109
  year: 2011
  ident: 497_CR14
  publication-title: SIAM J. Optim.
  doi: 10.1137/10079731X
– ident: 497_CR42
  doi: 10.1080/02331934.2023.2232794
– volume: 67
  start-page: 301
  year: 2005
  ident: 497_CR50
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 22
  start-page: 618
  year: 1968
  ident: 497_CR24
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(68)90201-1
– ident: 497_CR22
  doi: 10.1007/978-3-642-17144-4
– volume: 166
  start-page: 968
  year: 2015
  ident: 497_CR13
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0746-4
– volume: 93
  start-page: 273
  year: 1965
  ident: 497_CR33
  publication-title: Bull. Soc. Math. France
  doi: 10.24033/bsmf.1625
SSID ssj0009732
Score 2.474228
Snippet This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 421
SubjectTerms Algorithms
Convergence
Convex and Discrete Geometry
Iterative methods
Management Science
Mathematics
Mathematics and Statistics
Methods
Multiple objective analysis
Operations Research
Operations Research/Decision Theory
Optimization
Statistics
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMMDAN6JQUAY2sIjtOLYnVCEKC1UHkLpFycVBRTQpbaB_HztxCSDRhTmxFeXsd0_23XsInaeaghYZx1RJjgOdBlhRmWABiVaKaxontdmE6PflcKgG7sBt5soqF5hYAXVagD0jv6IyVMyKcbHryRu2rlH2dtVZaKyiNcNsiC3peqCDRnRXVAZlvqIhNomduaYZ1zrHbbEQZdiSZIHnPxNTwzZ_XZBWeae3_d8v3kFbjnF63XqJ7KIVne-hzW86hPvorpt7MYDJQFY4IvVsbctobAY9T6uKsNKrjaY9w3C9qgSxSF5qpPQKgzlj18x5gJ56t48399g5LGAwW6_EzJcAXIPZmMADGjDfGiSAH2eprymJtQz9zCcy0SQToUg4AZkl0nAIloYxJ-wQtfIi10fIUzLgaeYrYJkKCHApUkNuwMCDgVRORRuRxe-NwMmPWxeM16gRTrYhiUxIoiok0byNLr7GTGrxjaVvdxZxiNxGnEVNENrochHJ5vHfsx0vn-0EbVjj-borsYNa5fRdn6J1-ChHs-lZtQw_AbAq4mw
  priority: 102
  providerName: ProQuest
Title An accelerated proximal gradient method for multiobjective optimization
URI https://link.springer.com/article/10.1007/s10589-023-00497-w
https://www.proquest.com/docview/2869385953
Volume 86
WOSCitedRecordID wos001005377200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7U9aAH3-L6WHrwpoE0aZrkqOIDxGXZ9X0pbZqKoruyu-rfd9LHrooKehkITUOZJDMfdOb7ALZTy4yVmSBMK0ECmwZEM5UQaRKrtbAsTgqxCdlsqutr3SqbwgZVtXv1SzKP1B-a3YQr72GcOFgrydsk1DDdKSfY0O5cjql2ZS5LRjULCaZzXrbKfL_G53Q0xphffovm2eZo_n_fuQBzJbr09orjsAgTtrsEsx84B3F0NiJqHSzBjAObBVfzMhzvdb3YGExEjj8i9VyJy_0TrnfXzwvDhl6hN-0h0PXySsRe8lAETK-Hoeep7OlcgYujw_ODE1IKLRCDN3BIOFXGCGvwfhoRsIBTp5NgaJyl1DI_tiqkGfVVYv1MhjIRvlFZohBK8DSMhc9XYarb69o18LQKRJpRbXimA98IJVPEOAajBEZWwWQd_MrfkSlZyJ0YxmM05k92_ovQf1Huv-itDjujd54LDo5fZ29W2xiV93EQMRVq7qjceB12q20bP_55tfW_Td-AGadHXzQrbsLUsP9it2DavOJW9hswKa9uGlDbP2y22jg6lQTtGT1wlrWclR20LXHbyM_0O-P06S4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0tWyTgQAsUsUCpD_RELRI7ju0DQghKQcBqD1uJW5pMnAoEu8vuwoo_xW_EzkdDK7E3DpwTj5TM88wknnkPYDs1DI3MBGVaCRqYNKCaqYRKTIzWwrA4KcQmZLutLi91pwFP1SyMa6usYmIeqNM-un_ku0yFmjsyLr4_uKNONcqdrlYSGgUszszjxH6yjfZOj6x_vzF2_KN7eEJLVQGKFm5jyj2FKAxaMKIIWMA9JwqAXpylnmF-bFToZZ6vEuNnMpSJ8FFlibJ5k6dhLHxu7c7Ah8Axi7lWQdapSX5lLojmaRZSW0jwckinHNUTrjmJceqKckkn_ybCurr970A2z3PHH9_bG_oEi2VFTQ6KLbAEDdNbhoUXPIsr8POgR2JEm2EdMUZKXO_O1a1d9GeYd7yNSSGkTWwFT_IWy35yXWQC0rcx9bYcVv0Mv97kSVah2ev3zBoQrQKRZp5GnunAR6Fkaos3tOHPpgzBZAv8yp0RlvTqTuXjJqqJoR0EIguBKIdANGnBzt81g4JcZOrdm5XfozLQjKLa6S34XiGnvvy6tfXp1r7C3En34jw6P22fbcA8c8DNJzA3oTke3psvMIsP46vRcCvfAgR-vzWingHPzT4K
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RQBU98NVWLF_1oZxai8SOY_tQVaiwFIFWe6AS4pImE6eigl3Y3bLir_HrOs5HQyvBjUPPSSwlfp4Zx2_eA3ifO4FOF4oLaxSPXB5xK0zGNWbOWuVEmlVmE7rXM2dntj8D900vjKdVNjGxDNT5EP0_8l1hYiu9GJfcLWpaRH-_-_n6hnsHKX_S2thpVBA5dndT2r6NPx3t01zvCNE9OP3yldcOAxwJehMuA4OoHBIwUUUikoE3CMAgLfLAiTB1Jg6KIDSZCwsd60yFaIrMUA6VeZyqUNK4L2BO0x7T0wn76rwV_NWlOVpgRcypqJB1w07dtqc8UUlI7gt0zad_J8W20v3ncLbMed2l__lrLcNiXWmzvWpprMCMG6zCqwf6i6_hcG_AUkTKvF4wI2ee03NxRQ_9GJVMuAmrDLYZVfaspF4Os59VhmBDirVXdRPrG_j2LG_yFmYHw4FbA2ZNpPIisCgLG4WojM6pqEMKi5RKlNAdCJupTbCWXffuH5dJKxjt4ZAQHJISDsm0Ax_-PHNdiY48efdmg4GkDkDjpAVABz42KGovPz7a-tOjvYOXBKTk5Kh3vAELwmO4bMzchNnJ6Jfbgnm8nVyMR9vlamDw_bkB9Rud1kb2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accelerated+proximal+gradient+method+for+multiobjective+optimization&rft.jtitle=Computational+optimization+and+applications&rft.au=Tanabe%2C+Hiroki&rft.au=Fukuda%2C+Ellen+H.&rft.au=Yamashita%2C+Nobuo&rft.date=2023-11-01&rft.pub=Springer+US&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=86&rft.issue=2&rft.spage=421&rft.epage=455&rft_id=info:doi/10.1007%2Fs10589-023-00497-w&rft.externalDocID=10_1007_s10589_023_00497_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon