An accelerated proximal gradient method for multiobjective optimization
This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously differentiable, convex function and a closed, proper, convex function. Extending first-order methods for multiobjective problems without scalariz...
Saved in:
| Published in: | Computational optimization and applications Vol. 86; no. 2; pp. 421 - 455 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.11.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0926-6003, 1573-2894 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously differentiable, convex function and a closed, proper, convex function. Extending first-order methods for multiobjective problems without scalarization has been widely studied, but providing accelerated methods with accurate proofs of convergence rates remains an open problem. Our proposed method is a multiobjective generalization of the accelerated proximal gradient method, also known as the Fast Iterative Shrinkage-Thresholding Algorithm, for scalar optimization. The key to this successful extension is solving a subproblem with terms exclusive to the multiobjective case. This approach allows us to demonstrate the global convergence rate of the proposed method (
O
(
1
/
k
2
)
), using a merit function to measure the complexity. Furthermore, we present an efficient way to solve the subproblem via its dual representation, and we confirm the validity of the proposed method through some numerical experiments. |
|---|---|
| AbstractList | This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously differentiable, convex function and a closed, proper, convex function. Extending first-order methods for multiobjective problems without scalarization has been widely studied, but providing accelerated methods with accurate proofs of convergence rates remains an open problem. Our proposed method is a multiobjective generalization of the accelerated proximal gradient method, also known as the Fast Iterative Shrinkage-Thresholding Algorithm, for scalar optimization. The key to this successful extension is solving a subproblem with terms exclusive to the multiobjective case. This approach allows us to demonstrate the global convergence rate of the proposed method (O(1/k2)), using a merit function to measure the complexity. Furthermore, we present an efficient way to solve the subproblem via its dual representation, and we confirm the validity of the proposed method through some numerical experiments. This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously differentiable, convex function and a closed, proper, convex function. Extending first-order methods for multiobjective problems without scalarization has been widely studied, but providing accelerated methods with accurate proofs of convergence rates remains an open problem. Our proposed method is a multiobjective generalization of the accelerated proximal gradient method, also known as the Fast Iterative Shrinkage-Thresholding Algorithm, for scalar optimization. The key to this successful extension is solving a subproblem with terms exclusive to the multiobjective case. This approach allows us to demonstrate the global convergence rate of the proposed method ( O ( 1 / k 2 ) ), using a merit function to measure the complexity. Furthermore, we present an efficient way to solve the subproblem via its dual representation, and we confirm the validity of the proposed method through some numerical experiments. |
| Author | Yamashita, Nobuo Tanabe, Hiroki Fukuda, Ellen H. |
| Author_xml | – sequence: 1 givenname: Hiroki orcidid: 0000-0003-0042-9221 surname: Tanabe fullname: Tanabe, Hiroki email: tanabe.hiroki.45n@kyoto-u.jp organization: Yahoo Japan Corporation – sequence: 2 givenname: Ellen H. surname: Fukuda fullname: Fukuda, Ellen H. organization: Kyoto University – sequence: 3 givenname: Nobuo surname: Yamashita fullname: Yamashita, Nobuo organization: Kyoto University |
| BookMark | eNp9kM9LwzAUx4NMcFP_AU8Fz9WXpGmT4xg6hYEXPYc0TWdG28wkc-pfb1wFwcNODx7v874_ZmgyuMEgdIXhBgNUtwED4yIHQnOAQlT5_gRNMatoTrgoJmgKgpR5CUDP0CyEDQCIipIpWs6HTGltOuNVNE229e7D9qrL1l411gwx6018dU3WOp_1uy5aV2-MjvbdZG4bbW-_VNoNF-i0VV0wl7_zHL3c3z0vHvLV0_JxMV_lmmIRcwpca2Y0w6BZQQoKigFoUG0DhmBleAktYF4b3FZlVTOseVtzAZg2pWKYnqPr8W8y-rYzIcqN2_khSUrCS0E5E4ymKzJeae9C8KaVW59S-U-JQf4UJsfCZCpMHgqT-wTxf5C28RAuemW74ygd0ZB0hrXxf66OUN-HLYL- |
| CitedBy_id | crossref_primary_10_1007_s10957_025_02815_0 crossref_primary_10_1007_s10589_024_00577_5 crossref_primary_10_1016_j_mlwa_2025_100700 crossref_primary_10_1007_s10957_024_02389_3 crossref_primary_10_1007_s40324_023_00340_6 crossref_primary_10_1007_s10957_025_02737_x crossref_primary_10_1137_23M1588512 crossref_primary_10_1007_s10115_025_02505_3 crossref_primary_10_1007_s10589_025_00711_x crossref_primary_10_1007_s10589_023_00508_w crossref_primary_10_1007_s10957_025_02691_8 crossref_primary_10_1007_s10589_024_00609_0 crossref_primary_10_1007_s10589_025_00663_2 crossref_primary_10_1007_s10957_025_02824_z crossref_primary_10_1007_s10957_025_02630_7 crossref_primary_10_1016_j_eswa_2025_126675 crossref_primary_10_1007_s11750_024_00680_0 |
| Cites_doi | 10.1007/s10107-015-0962-6 10.1007/s10898-019-00802-0 10.1162/106365600568202 10.2140/pjm.1958.8.171 10.1590/0101-7438.2014.034.03.0585 10.1137/080716542 10.1137/S1052623403429093 10.1561/9781601987174 10.3934/jimo.2018136 10.1007/s10589-012-9501-z 10.1017/CBO9780511804441 10.1007/s10589-018-0043-x 10.1007/s11590-022-01877-7 10.1016/j.orl.2018.05.008 10.1080/10556788.2018.1510928 10.1002/nav.3800020106 10.1007/s10957-020-01785-9 10.1023/B:COAP.0000018877.86161.8b 10.1007/s001860000043 10.1007/s00158-009-0460-7 10.1137/08071692X 10.1007/978-3-642-61859-8 10.1137/1.9781611974997 10.1007/s101070100263 10.1137/17M1126588 10.1007/978-1-4612-1394-9 10.1007/s10589-022-00414-7 10.1109/TAC.1963.1105511 10.1137/S1052623497325107 10.1145/355934.355936 10.1080/02331934.2018.1440553 10.1109/TSMCB.2004.834438 10.1137/10079731X 10.1080/02331934.2023.2232794 10.1111/j.1467-9868.2005.00503.x 10.1016/0022-247X(68)90201-1 10.1007/978-3-642-17144-4 10.1007/s10957-015-0746-4 10.24033/bsmf.1625 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10589-023-00497-w |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest - ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Mathematics |
| EISSN | 1573-2894 |
| EndPage | 455 |
| ExternalDocumentID | 10_1007_s10589_023_00497_w |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 20J21961; 21K11769; 19K11840 funderid: http://dx.doi.org/10.13039/501100001691 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8U Z8W Z92 ZL0 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-308cc5ec510c542430a500c0afd0e21ae860f018be1f767b51c8fb89013d6a513 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001005377200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-6003 |
| IngestDate | Wed Nov 26 14:41:33 EST 2025 Sat Nov 29 01:51:31 EST 2025 Tue Nov 18 21:53:58 EST 2025 Fri Feb 21 02:41:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | FISTA Global rate of convergence 90C25 Multiobjective optimization Pareto optimality 90C29 First-order method Proximal gradient method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-308cc5ec510c542430a500c0afd0e21ae860f018be1f767b51c8fb89013d6a513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0042-9221 |
| PQID | 2869385953 |
| PQPubID | 30811 |
| PageCount | 35 |
| ParticipantIDs | proquest_journals_2869385953 crossref_primary_10_1007_s10589_023_00497_w crossref_citationtrail_10_1007_s10589_023_00497_w springer_journals_10_1007_s10589_023_00497_w |
| PublicationCentury | 2000 |
| PublicationDate | 20231100 2023-11-00 20231101 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Computational optimization and applications |
| PublicationTitleAbbrev | Comput Optim Appl |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Zhao, Jolaoso, Shehu, Yao (CR47) 2021; 5 Tanabe, Fukuda, Yamashita (CR40) 2019; 72 Carrizo, Lotito, Maciel (CR12) 2016; 159 Fukuda, Graña Drummond (CR20) 2013; 54 Moré, Garbow, Hillstrom (CR32) 1981; 7 Lucambio Pérez, Prudente (CR29) 2018; 28 Stadler, Dauer, Kamat (CR38) 1992 Fliege, Vaz, Vicente (CR19) 2019; 34 Fukuda, Graña Drummond (CR21) 2014; 34 Nesterov (CR34) 1983; 269 Beck, Teboulle (CR3) 2009; 2 Svaiter (CR39) 2018; 46 Geoffrion (CR24) 1968; 22 Graña Drummond, Iusem (CR26) 2004; 28 CR49 Boyd, Vandenberghe (CR9) 2004 CR43 Bouza, Tammer (CR8) 2022; 6 Fliege, Graña Drummond, Svaiter (CR17) 2009; 20 CR42 Bonnel, Iusem, Svaiter (CR7) 2005; 15 Beck (CR2) 2017 Köbis, Köbis, Tammer (CR28) 2022; 6 Marler, Arora (CR30) 2010; 41 Bonnans, Shapiro (CR6) 2000 Bertsekas (CR4) 1999 Boţ, Grad (CR5) 2018; 67 Sion (CR37) 1958; 8 Gass, Saaty (CR23) 1955; 2 Chambolle, Dossal (CR13) 2015; 166 Moreau (CR33) 1965; 93 Brent (CR10) 1973 Parikh, Boyd (CR35) 2014 Wang, Wang, Wang (CR44) 2020; 16 Zou, Hastie (CR50) 2005; 67 Bandyopadhyay, Pal, Aruna (CR1) 2004; 34 Byrd, Hribar, Nocedal (CR11) 1999; 9 Tanabe, Fukuda, Yamashita (CR41) 2023; 17 Yosida (CR45) 1995 Custódio, Madeira, Vaz, Vicente (CR14) 2011; 21 Dolan, Moré (CR15) 2002; 91 CR27 Rockafellar, Wets (CR36) 1998 Zadeh (CR46) 1963; 8 Fliege, Svaiter (CR18) 2000; 51 CR22 Gonçalves, Lima, Prudente (CR25) 2022; 83 El Moudden, El Mouatasim (CR16) 2021; 188 Zitzler, Deb, Thiele (CR48) 2000; 8 Mita, Fukuda, Yamashita (CR31) 2019; 75 BF Svaiter (497_CR39) 2018; 46 K Mita (497_CR31) 2019; 75 DP Bertsekas (497_CR4) 1999 J Fliege (497_CR19) 2019; 34 497_CR22 AL Custódio (497_CR14) 2011; 21 JF Bonnans (497_CR6) 2000 RP Brent (497_CR10) 1973 H Tanabe (497_CR40) 2019; 72 W Stadler (497_CR38) 1992 K Yosida (497_CR45) 1995 X Wang (497_CR44) 2020; 16 Y Nesterov (497_CR34) 1983; 269 LA Zadeh (497_CR46) 1963; 8 E Zitzler (497_CR48) 2000; 8 J Fliege (497_CR18) 2000; 51 J-J Moreau (497_CR33) 1965; 93 E Köbis (497_CR28) 2022; 6 H Tanabe (497_CR41) 2023; 17 497_CR49 M El Moudden (497_CR16) 2021; 188 MLN Gonçalves (497_CR25) 2022; 83 LM Graña Drummond (497_CR26) 2004; 28 EH Fukuda (497_CR21) 2014; 34 RT Rockafellar (497_CR36) 1998 M Sion (497_CR37) 1958; 8 N Parikh (497_CR35) 2014 S Bandyopadhyay (497_CR1) 2004; 34 RI Boţ (497_CR5) 2018; 67 RH Byrd (497_CR11) 1999; 9 J Fliege (497_CR17) 2009; 20 497_CR43 S Boyd (497_CR9) 2004 EH Fukuda (497_CR20) 2013; 54 497_CR42 LR Lucambio Pérez (497_CR29) 2018; 28 H Zou (497_CR50) 2005; 67 JJ Moré (497_CR32) 1981; 7 X Zhao (497_CR47) 2021; 5 AM Geoffrion (497_CR24) 1968; 22 S Gass (497_CR23) 1955; 2 ED Dolan (497_CR15) 2002; 91 H Bonnel (497_CR7) 2005; 15 A Chambolle (497_CR13) 2015; 166 GA Carrizo (497_CR12) 2016; 159 497_CR27 A Beck (497_CR2) 2017 A Beck (497_CR3) 2009; 2 RT Marler (497_CR30) 2010; 41 G Bouza (497_CR8) 2022; 6 |
| References_xml | – year: 1973 ident: CR10 publication-title: Algorithms for Minimization Without Derivatives – ident: CR22 – ident: CR49 – year: 2014 ident: CR35 publication-title: Proximal Algorithms – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: CR50 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) – volume: 28 start-page: 2690 year: 2018 end-page: 2720 ident: CR29 article-title: Nonlinear conjugate gradient methods for vector optimization publication-title: SIAM J. Optim. – volume: 9 start-page: 877 year: 1999 end-page: 900 ident: CR11 article-title: An interior point algorithm for large-scale nonlinear programming publication-title: SIAM J. Optim. – year: 1998 ident: CR36 publication-title: Variational Analysis. Grundlehren der mathematischen Wissenschaften – volume: 2 start-page: 183 year: 2009 end-page: 202 ident: CR3 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imag. Sci. – volume: 6 start-page: 725 year: 2022 end-page: 735 ident: CR28 article-title: A first bibliography on set and vector optimization problems with respect to variable domination structures publication-title: J. Nonlinear Var. Anal. – volume: 269 start-page: 543 year: 1983 end-page: 547 ident: CR34 article-title: A method for solving the convex programming problem with convergence rate publication-title: Dokl. Akad. Nauk SSSR – ident: CR42 – volume: 5 start-page: 441 year: 2021 end-page: 457 ident: CR47 article-title: Convergence of a nonmonotone projected gradient method for nonconvex multiobjective optimization publication-title: J. Nonlinear Var. Anal. – year: 2017 ident: CR2 publication-title: First-Order Methods in Optimization – volume: 54 start-page: 473 year: 2013 end-page: 493 ident: CR20 article-title: Inexact projected gradient method for vector optimization publication-title: Comput. Optim. Appl. – volume: 83 start-page: 403 year: 2022 end-page: 434 ident: CR25 article-title: Globally convergent Newton-type methods for multiobjective optimization publication-title: Comput. Optim. Appl. – volume: 6 start-page: 605 year: 2022 end-page: 618 ident: CR8 article-title: A steepest descent-like method for vector optimization problems with variable domination structure publication-title: J. Nonlinear Var. Anal. – year: 2004 ident: CR9 publication-title: Convex Optimization – volume: 20 start-page: 602 year: 2009 end-page: 626 ident: CR17 article-title: Newton’s method for multiobjective optimization publication-title: SIAM J. Optim. – year: 1995 ident: CR45 publication-title: Functional Analysis, Classics in Mathematics – volume: 15 start-page: 953 year: 2005 end-page: 970 ident: CR7 article-title: Proximal methods in vector optimization publication-title: SIAM J. Optim. – volume: 188 start-page: 220 year: 2021 end-page: 242 ident: CR16 article-title: Accelerated diagonal steepest descent method for unconstrained multiobjective optimization publication-title: J. Optim. Theory Appl. – volume: 159 start-page: 339 year: 2016 end-page: 369 ident: CR12 article-title: Trust region globalization strategy for the nonconvex unconstrained multiobjective optimization problem publication-title: Math. Program. – volume: 166 start-page: 968 year: 2015 end-page: 982 ident: CR13 article-title: On the convergence of the iterates of the “fast iterative shrinkage/thresholding algorithm” publication-title: J. Optim. Theory Appl. – volume: 75 start-page: 63 year: 2019 end-page: 90 ident: CR31 article-title: Nonmonotone line searches for unconstrained multiobjective optimization problems publication-title: J. Global Optim. – volume: 17 start-page: 333 year: 2023 end-page: 350 ident: CR41 article-title: Convergence rates analysis of a multiobjective proximal gradient method publication-title: Optim. Lett. – volume: 41 start-page: 853 year: 2010 end-page: 862 ident: CR30 article-title: The weighted sum method for multi-objective optimization: new insights publication-title: Struct. Multidiscip. Optim. – volume: 51 start-page: 479 year: 2000 end-page: 494 ident: CR18 article-title: Steepest descent methods for multicriteria optimization publication-title: Math. Methods Oper. Res. – volume: 72 start-page: 339 year: 2019 end-page: 361 ident: CR40 article-title: Proximal gradient methods for multiobjective optimization and their applications publication-title: Comput. Optim. Appl. – ident: CR43 – year: 1999 ident: CR4 publication-title: Nonlinear Programming – volume: 21 start-page: 1109 year: 2011 end-page: 1140 ident: CR14 article-title: Direct multisearch for multiobjective optimization publication-title: SIAM J. Optim. – volume: 7 start-page: 17 year: 1981 end-page: 41 ident: CR32 article-title: Testing unconstrained optimization software publication-title: ACM Trans. Math. Softw. – volume: 93 start-page: 273 year: 1965 end-page: 299 ident: CR33 article-title: Proximité et dualité dans un espace hilbertien publication-title: Bull. Soc. Math. France – year: 1992 ident: CR38 article-title: Multicriteria optimization in engineering: a tutorial and survey publication-title: Progress in Aeronautics and Astronautics: Structural Optimization: Status and Promise – volume: 34 start-page: 2088 year: 2004 end-page: 2099 ident: CR1 article-title: Multiobjective GAs, quantitative indices, and pattern classification publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) – volume: 16 start-page: 1 year: 2020 end-page: 9 ident: CR44 article-title: An accelerated augmented Lagrangian method for multi-criteria optimization problem publication-title: J. Ind. Manag. Optim. – volume: 2 start-page: 39 year: 1955 end-page: 45 ident: CR23 article-title: The computational algorithm for the parametric objective function publication-title: Naval Res. Logist. Q. – volume: 34 start-page: 585 year: 2014 end-page: 620 ident: CR21 article-title: A survey on multiobjective descemt methods publication-title: Pesquisa Operacional – ident: CR27 – volume: 28 start-page: 5 year: 2004 end-page: 29 ident: CR26 article-title: A projected gradient method for vector optimization problems publication-title: Comput. Optim. Appl. – volume: 46 start-page: 430 year: 2018 end-page: 433 ident: CR39 article-title: The multiobjective steepest descent direction is not Lipschitz continuous, but is Hölder continuous publication-title: Oper. Res. Lett. – volume: 67 start-page: 959 year: 2018 end-page: 974 ident: CR5 article-title: Inertial forward–backward methods for solving vector optimization problems publication-title: Optimization – year: 2000 ident: CR6 publication-title: Perturbation Analysis of Optimization Problems – volume: 91 start-page: 201 year: 2002 end-page: 213 ident: CR15 article-title: Benchmarking optimization software with performance profiles publication-title: Math. Program. Ser. B – volume: 22 start-page: 618 year: 1968 end-page: 630 ident: CR24 article-title: Proper efficiency and the theory of vector maximization publication-title: J. Math. Anal. Appl. – volume: 8 start-page: 59 year: 1963 end-page: 60 ident: CR46 article-title: Optimality and non-scalar-valued performance criteria publication-title: IEEE Trans. Autom. Control – volume: 8 start-page: 173 year: 2000 end-page: 195 ident: CR48 article-title: Comparison of multiobjective evolutionary algorithms: empirical results publication-title: Evol. Comput. – volume: 8 start-page: 171 year: 1958 end-page: 176 ident: CR37 article-title: On general minimax theorems publication-title: Pac. J. Math. – volume: 34 start-page: 949 year: 2019 end-page: 959 ident: CR19 article-title: Complexity of gradient descent for multiobjective optimization publication-title: Optim. Methods Softw. – volume: 159 start-page: 339 year: 2016 ident: 497_CR12 publication-title: Math. Program. doi: 10.1007/s10107-015-0962-6 – volume: 75 start-page: 63 year: 2019 ident: 497_CR31 publication-title: J. Global Optim. doi: 10.1007/s10898-019-00802-0 – volume: 8 start-page: 173 year: 2000 ident: 497_CR48 publication-title: Evol. Comput. doi: 10.1162/106365600568202 – volume: 8 start-page: 171 year: 1958 ident: 497_CR37 publication-title: Pac. J. Math. doi: 10.2140/pjm.1958.8.171 – volume: 34 start-page: 585 year: 2014 ident: 497_CR21 publication-title: Pesquisa Operacional doi: 10.1590/0101-7438.2014.034.03.0585 – ident: 497_CR49 – volume: 2 start-page: 183 year: 2009 ident: 497_CR3 publication-title: SIAM J. Imag. Sci. doi: 10.1137/080716542 – volume: 6 start-page: 605 year: 2022 ident: 497_CR8 publication-title: J. Nonlinear Var. Anal. – volume: 15 start-page: 953 year: 2005 ident: 497_CR7 publication-title: SIAM J. Optim. doi: 10.1137/S1052623403429093 – volume-title: Nonlinear Programming year: 1999 ident: 497_CR4 – volume-title: Proximal Algorithms year: 2014 ident: 497_CR35 doi: 10.1561/9781601987174 – volume: 269 start-page: 543 year: 1983 ident: 497_CR34 publication-title: Dokl. Akad. Nauk SSSR – volume: 16 start-page: 1 year: 2020 ident: 497_CR44 publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2018136 – volume: 54 start-page: 473 year: 2013 ident: 497_CR20 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-012-9501-z – volume-title: Convex Optimization year: 2004 ident: 497_CR9 doi: 10.1017/CBO9780511804441 – volume: 72 start-page: 339 year: 2019 ident: 497_CR40 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-018-0043-x – volume: 17 start-page: 333 year: 2023 ident: 497_CR41 publication-title: Optim. Lett. doi: 10.1007/s11590-022-01877-7 – volume: 6 start-page: 725 year: 2022 ident: 497_CR28 publication-title: J. Nonlinear Var. Anal. – ident: 497_CR27 – volume: 46 start-page: 430 year: 2018 ident: 497_CR39 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2018.05.008 – ident: 497_CR43 – volume-title: Algorithms for Minimization Without Derivatives year: 1973 ident: 497_CR10 – volume: 34 start-page: 949 year: 2019 ident: 497_CR19 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2018.1510928 – volume-title: Progress in Aeronautics and Astronautics: Structural Optimization: Status and Promise year: 1992 ident: 497_CR38 – volume: 5 start-page: 441 year: 2021 ident: 497_CR47 publication-title: J. Nonlinear Var. Anal. – volume: 2 start-page: 39 year: 1955 ident: 497_CR23 publication-title: Naval Res. Logist. Q. doi: 10.1002/nav.3800020106 – volume: 188 start-page: 220 year: 2021 ident: 497_CR16 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-020-01785-9 – volume: 28 start-page: 5 year: 2004 ident: 497_CR26 publication-title: Comput. Optim. Appl. doi: 10.1023/B:COAP.0000018877.86161.8b – volume: 51 start-page: 479 year: 2000 ident: 497_CR18 publication-title: Math. Methods Oper. Res. doi: 10.1007/s001860000043 – volume: 41 start-page: 853 year: 2010 ident: 497_CR30 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-009-0460-7 – volume: 20 start-page: 602 year: 2009 ident: 497_CR17 publication-title: SIAM J. Optim. doi: 10.1137/08071692X – volume-title: Functional Analysis, Classics in Mathematics year: 1995 ident: 497_CR45 doi: 10.1007/978-3-642-61859-8 – volume-title: First-Order Methods in Optimization year: 2017 ident: 497_CR2 doi: 10.1137/1.9781611974997 – volume-title: Variational Analysis. Grundlehren der mathematischen Wissenschaften year: 1998 ident: 497_CR36 – volume: 91 start-page: 201 year: 2002 ident: 497_CR15 publication-title: Math. Program. Ser. B doi: 10.1007/s101070100263 – volume: 28 start-page: 2690 year: 2018 ident: 497_CR29 publication-title: SIAM J. Optim. doi: 10.1137/17M1126588 – volume-title: Perturbation Analysis of Optimization Problems year: 2000 ident: 497_CR6 doi: 10.1007/978-1-4612-1394-9 – volume: 83 start-page: 403 year: 2022 ident: 497_CR25 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-022-00414-7 – volume: 8 start-page: 59 year: 1963 ident: 497_CR46 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1963.1105511 – volume: 9 start-page: 877 year: 1999 ident: 497_CR11 publication-title: SIAM J. Optim. doi: 10.1137/S1052623497325107 – volume: 7 start-page: 17 year: 1981 ident: 497_CR32 publication-title: ACM Trans. Math. Softw. doi: 10.1145/355934.355936 – volume: 67 start-page: 959 year: 2018 ident: 497_CR5 publication-title: Optimization doi: 10.1080/02331934.2018.1440553 – volume: 34 start-page: 2088 year: 2004 ident: 497_CR1 publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) doi: 10.1109/TSMCB.2004.834438 – volume: 21 start-page: 1109 year: 2011 ident: 497_CR14 publication-title: SIAM J. Optim. doi: 10.1137/10079731X – ident: 497_CR42 doi: 10.1080/02331934.2023.2232794 – volume: 67 start-page: 301 year: 2005 ident: 497_CR50 publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) doi: 10.1111/j.1467-9868.2005.00503.x – volume: 22 start-page: 618 year: 1968 ident: 497_CR24 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(68)90201-1 – ident: 497_CR22 doi: 10.1007/978-3-642-17144-4 – volume: 166 start-page: 968 year: 2015 ident: 497_CR13 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-015-0746-4 – volume: 93 start-page: 273 year: 1965 ident: 497_CR33 publication-title: Bull. Soc. Math. France doi: 10.24033/bsmf.1625 |
| SSID | ssj0009732 |
| Score | 2.474228 |
| Snippet | This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 421 |
| SubjectTerms | Algorithms Convergence Convex and Discrete Geometry Iterative methods Management Science Mathematics Mathematics and Statistics Methods Multiple objective analysis Operations Research Operations Research/Decision Theory Optimization Statistics |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMMDAN6JQUAY2sIjtOLYnVCEKC1UHkLpFycVBRTQpbaB_HztxCSDRhTmxFeXsd0_23XsInaeaghYZx1RJjgOdBlhRmWABiVaKaxontdmE6PflcKgG7sBt5soqF5hYAXVagD0jv6IyVMyKcbHryRu2rlH2dtVZaKyiNcNsiC3peqCDRnRXVAZlvqIhNomduaYZ1zrHbbEQZdiSZIHnPxNTwzZ_XZBWeae3_d8v3kFbjnF63XqJ7KIVne-hzW86hPvorpt7MYDJQFY4IvVsbctobAY9T6uKsNKrjaY9w3C9qgSxSF5qpPQKgzlj18x5gJ56t48399g5LGAwW6_EzJcAXIPZmMADGjDfGiSAH2eprymJtQz9zCcy0SQToUg4AZkl0nAIloYxJ-wQtfIi10fIUzLgaeYrYJkKCHApUkNuwMCDgVRORRuRxe-NwMmPWxeM16gRTrYhiUxIoiok0byNLr7GTGrxjaVvdxZxiNxGnEVNENrochHJ5vHfsx0vn-0EbVjj-borsYNa5fRdn6J1-ChHs-lZtQw_AbAq4mw priority: 102 providerName: ProQuest |
| Title | An accelerated proximal gradient method for multiobjective optimization |
| URI | https://link.springer.com/article/10.1007/s10589-023-00497-w https://www.proquest.com/docview/2869385953 |
| Volume | 86 |
| WOSCitedRecordID | wos001005377200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2894 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7U9aAH3-L6WHrwpoE0aZrkqOIDxGXZ9X0pbZqKoruyu-rfd9LHrooKehkITUOZJDMfdOb7ALZTy4yVmSBMK0ECmwZEM5UQaRKrtbAsTgqxCdlsqutr3SqbwgZVtXv1SzKP1B-a3YQr72GcOFgrydsk1DDdKSfY0O5cjql2ZS5LRjULCaZzXrbKfL_G53Q0xphffovm2eZo_n_fuQBzJbr09orjsAgTtrsEsx84B3F0NiJqHSzBjAObBVfzMhzvdb3YGExEjj8i9VyJy_0TrnfXzwvDhl6hN-0h0PXySsRe8lAETK-Hoeep7OlcgYujw_ODE1IKLRCDN3BIOFXGCGvwfhoRsIBTp5NgaJyl1DI_tiqkGfVVYv1MhjIRvlFZohBK8DSMhc9XYarb69o18LQKRJpRbXimA98IJVPEOAajBEZWwWQd_MrfkSlZyJ0YxmM05k92_ovQf1Huv-itDjujd54LDo5fZ29W2xiV93EQMRVq7qjceB12q20bP_55tfW_Td-AGadHXzQrbsLUsP9it2DavOJW9hswKa9uGlDbP2y22jg6lQTtGT1wlrWclR20LXHbyM_0O-P06S4 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0tWyTgQAsUsUCpD_RELRI7ju0DQghKQcBqD1uJW5pMnAoEu8vuwoo_xW_EzkdDK7E3DpwTj5TM88wknnkPYDs1DI3MBGVaCRqYNKCaqYRKTIzWwrA4KcQmZLutLi91pwFP1SyMa6usYmIeqNM-un_ku0yFmjsyLr4_uKNONcqdrlYSGgUszszjxH6yjfZOj6x_vzF2_KN7eEJLVQGKFm5jyj2FKAxaMKIIWMA9JwqAXpylnmF-bFToZZ6vEuNnMpSJ8FFlibJ5k6dhLHxu7c7Ah8Axi7lWQdapSX5lLojmaRZSW0jwckinHNUTrjmJceqKckkn_ybCurr970A2z3PHH9_bG_oEi2VFTQ6KLbAEDdNbhoUXPIsr8POgR2JEm2EdMUZKXO_O1a1d9GeYd7yNSSGkTWwFT_IWy35yXWQC0rcx9bYcVv0Mv97kSVah2ev3zBoQrQKRZp5GnunAR6Fkaos3tOHPpgzBZAv8yp0RlvTqTuXjJqqJoR0EIguBKIdANGnBzt81g4JcZOrdm5XfozLQjKLa6S34XiGnvvy6tfXp1r7C3En34jw6P22fbcA8c8DNJzA3oTke3psvMIsP46vRcCvfAgR-vzWingHPzT4K |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RQBU98NVWLF_1oZxai8SOY_tQVaiwFIFWe6AS4pImE6eigl3Y3bLir_HrOs5HQyvBjUPPSSwlfp4Zx2_eA3ifO4FOF4oLaxSPXB5xK0zGNWbOWuVEmlVmE7rXM2dntj8D900vjKdVNjGxDNT5EP0_8l1hYiu9GJfcLWpaRH-_-_n6hnsHKX_S2thpVBA5dndT2r6NPx3t01zvCNE9OP3yldcOAxwJehMuA4OoHBIwUUUikoE3CMAgLfLAiTB1Jg6KIDSZCwsd60yFaIrMUA6VeZyqUNK4L2BO0x7T0wn76rwV_NWlOVpgRcypqJB1w07dtqc8UUlI7gt0zad_J8W20v3ncLbMed2l__lrLcNiXWmzvWpprMCMG6zCqwf6i6_hcG_AUkTKvF4wI2ee03NxRQ_9GJVMuAmrDLYZVfaspF4Os59VhmBDirVXdRPrG_j2LG_yFmYHw4FbA2ZNpPIisCgLG4WojM6pqEMKi5RKlNAdCJupTbCWXffuH5dJKxjt4ZAQHJISDsm0Ax_-PHNdiY48efdmg4GkDkDjpAVABz42KGovPz7a-tOjvYOXBKTk5Kh3vAELwmO4bMzchNnJ6Jfbgnm8nVyMR9vlamDw_bkB9Rud1kb2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accelerated+proximal+gradient+method+for+multiobjective+optimization&rft.jtitle=Computational+optimization+and+applications&rft.au=Tanabe%2C+Hiroki&rft.au=Fukuda%2C+Ellen+H.&rft.au=Yamashita%2C+Nobuo&rft.date=2023-11-01&rft.pub=Springer+US&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=86&rft.issue=2&rft.spage=421&rft.epage=455&rft_id=info:doi/10.1007%2Fs10589-023-00497-w&rft.externalDocID=10_1007_s10589_023_00497_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon |