A compressed string matching algorithm for face recognition with partial occlusion

There has been less attention towards the research on face recognition with partial occlusion. Facial accessories such as masks, sunglasses, and caps, etc., cause partial occlusion which results in a significant performance drop of the face recognition system. In this paper, a novel compressed strin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia systems Jg. 27; H. 2; S. 191 - 203
Hauptverfasser: Bommidi, Krishnaveni, Sundaramurthy, Sridhar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2021
Springer Nature B.V
Schlagworte:
ISSN:0942-4962, 1432-1882
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract There has been less attention towards the research on face recognition with partial occlusion. Facial accessories such as masks, sunglasses, and caps, etc., cause partial occlusion which results in a significant performance drop of the face recognition system. In this paper, a novel compressed string matching algorithm based on run-length encoding (CSM-RL) is proposed to solve the partial occlusion problem. In this, the face image is represented by a string sequence that is then compressed using run-length encoding. The proposed CSM-RL algorithm performs string matching between query face and gallery face string sequences by computing the edit distance between string sequences, finally, classifies query face based on the minimum edit distance. The proposed method does not require a classifier and has less time complexity, thus it is more suitable for real-world face recognition applications. The proposed method performs better than the state-of-the-art methods even limited sample images per person are available in the gallery. Extensive experimental results on benchmark face datasets such as AR and Extended Yale-B prove that the proposed algorithm exhibits significant performance improvement both in terms of speed and recognition accuracy for the recognition of partially occluded faces.
AbstractList There has been less attention towards the research on face recognition with partial occlusion. Facial accessories such as masks, sunglasses, and caps, etc., cause partial occlusion which results in a significant performance drop of the face recognition system. In this paper, a novel compressed string matching algorithm based on run-length encoding (CSM-RL) is proposed to solve the partial occlusion problem. In this, the face image is represented by a string sequence that is then compressed using run-length encoding. The proposed CSM-RL algorithm performs string matching between query face and gallery face string sequences by computing the edit distance between string sequences, finally, classifies query face based on the minimum edit distance. The proposed method does not require a classifier and has less time complexity, thus it is more suitable for real-world face recognition applications. The proposed method performs better than the state-of-the-art methods even limited sample images per person are available in the gallery. Extensive experimental results on benchmark face datasets such as AR and Extended Yale-B prove that the proposed algorithm exhibits significant performance improvement both in terms of speed and recognition accuracy for the recognition of partially occluded faces.
Author Bommidi, Krishnaveni
Sundaramurthy, Sridhar
Author_xml – sequence: 1
  givenname: Krishnaveni
  surname: Bommidi
  fullname: Bommidi, Krishnaveni
  email: krishnaveni@auist.net
  organization: Information Science and Technology Department, Anna University
– sequence: 2
  givenname: Sridhar
  surname: Sundaramurthy
  fullname: Sundaramurthy, Sridhar
  organization: Information Science and Technology Department, Anna University
BookMark eNp9kFtLwzAUgINMcJv-AZ8CPkdza9M8juENBoLoc0izZMtom5pkiP_e1gqCD3sICSfnO5dvAWZd6CwA1wTfEozFXcK4YBhhOhwsqEDyDMwJZxSRqqIzMMeSU8RlSS_AIqUDxkSUDM_B6wqa0PbRpmS3MOXoux1sdTb78aGbXYg-71voQoROGwujNWHX-exDBz-HL9jrmL1uYDCmOaYhfAnOnW6Svfq9l-D94f5t_YQ2L4_P69UGGUZkRgzzragscU5QSuraOG45qQXTVSlrUnCipaSy4sLKUhrNHXNO0oIRXmhLt2wJbqa6fQwfR5uyOoRj7IaWihaYVqXgshiy6JRlYkgpWqf66FsdvxTBanSnJndqcKd-3Ck5QNU_yPisx51z1L45jbIJTf3o0sa_qU5Q3y3ShXs
CitedBy_id crossref_primary_10_1007_s11042_023_16086_2
crossref_primary_10_1007_s00530_024_01399_5
crossref_primary_10_1007_s00530_024_01280_5
Cites_doi 10.1109/TPAMI.2008.79
10.1109/TIP.2017.2713940
10.1109/CVPR.2008.4587598
10.1109/34.927464
10.1109/TIP.2018.2890312
10.1049/iet-bmt.2017.0083
10.1016/S0031-3203(00)00162-X
10.1109/ICCV.2013.80
10.1049/iet-ipr.2017.0757
10.1109/TPAMI.2010.128
10.1109/TIP.2017.2675206
10.1162/neco_a_00990
10.1016/j.patcog.2008.05.024
10.1109/TIFS.2014.2359632
10.1109/TIP.2017.2756450
10.1109/TPAMI.2005.92
10.1109/TNNLS.2018.2836933
10.1007/s11263-014-0722-8
10.1109/CVPRW.2010.5544616
10.1109/CVPR.2007.383052
10.1109/TIP.2016.2515987
10.1016/S0031-3203(01)00023-1
10.1109/AFGR.2008.4813410
10.1109/TIFS.2009.2020772
10.1007/978-3-642-01793-3_31
10.1109/34.598228
10.1109/TIFS.2018.2804919
10.1109/TPAMI.2013.102
10.1109/TIP.2017.2729885
10.1109/TIP.2019.2938307
10.1109/34.41390
10.1109/TIP.2013.2277920
10.1109/TIP.2017.2662213
10.1109/FG.2011.5771439
10.1109/TNN.2002.804287
10.1109/IJCB.2011.6117573
10.1109/CVPR.2009.5206862
10.1109/TNN.2005.849817
10.1109/TIP.2012.2235849
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00530-020-00727-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-1882
EndPage 203
ExternalDocumentID 10_1007_s00530_020_00727_9
GroupedDBID --Z
-4Z
-59
-5G
-BR
-EM
-ET
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
85S
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YIN
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-304d78e1ff7221bbcf4e41b73a869b1541a9929847e969ca4f3ff9253145ae2d3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604844700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0942-4962
IngestDate Thu Sep 25 00:40:02 EDT 2025
Tue Nov 18 22:26:13 EST 2025
Sat Nov 29 03:45:57 EST 2025
Fri Feb 21 02:50:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Biometrics
Occlusion
Edit distance
Face recognition
Compressed string
Run-length encoding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-304d78e1ff7221bbcf4e41b73a869b1541a9929847e969ca4f3ff9253145ae2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2502867495
PQPubID 2043725
PageCount 13
ParticipantIDs proquest_journals_2502867495
crossref_primary_10_1007_s00530_020_00727_9
crossref_citationtrail_10_1007_s00530_020_00727_9
springer_journals_10_1007_s00530_020_00727_9
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Multimedia systems
PublicationTitleAbbrev Multimedia Systems
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BelhumeurPNHespanhaJPKriegmanDJEigenfaces vs. fishy faces: recognition using class specific linear projectionIEEE Trans. Pattern Anal. Mach. Intell.199719771172010.1109/34.598228
YueqiDLuJFengJZhouJTopology preserving structural matching for automatic partial face recognitionIEEE Trans. Inf. Forensics Secur.20181371823183710.1109/TIFS.2018.2804919
LuJWangGZhouJSimultaneous feature and dictionary learning for image set based face recognitionIEEE Trans. Image Process.20172640424054366654210.1109/TIP.2017.2713940
ChenWGaoYRecognizing partially occluded faces from a single sample per class using string-based matchingProc. Eur. Conf. Comput. Vis.20103496509
VuTHMongaVFast low-rank shared dictionary learning for image classificationIEEE Trans. Image Process.2017261151605175369076910.1109/TIP.2017.2729885
Meng, Y., Lei, Z., Jian, Y., et al.: Robust sparse coding for face recognition. In: Proceedings IEEE International Conference Computer Vision Pattern Recognition, pp. 625–632 (2011)
Turk, M. A., Pentland, A. P., Face recognition using eigenfaces. In: Proceedings of the IEEE Conference on CVPR, pp. 586–591 (1991)
LeeKHoJKriegmanDAcquiring Linear subspaces for face recognition under variable lightingIEEE Trans. Pattern Anal. Mach. Intell.200527568469810.1109/TPAMI.2005.92
GeorghiadesABelhumeurPKriegmanDFrom few to many: Illumination cone models for face recognition under variable lighting and poseIEEE Trans. Pattern Anal. Mach. Intell.200123664366010.1109/34.927464
TanXChenSZhouZHRecognizing partially occluded, expression variant faces from a single training image per person with SOM and soft k-NN ensembleIEEE Trans. Neural Netw.200516487588610.1109/TNN.2005.849817
FritzKDamianaLSerenaMA robust group sparse representation variational method with applications to face recognitionIEEE Trans. Image Process.201928627852798393754510.1109/TIP.2018.2890312
Mario, F.: Face recognition using approximate string matching. Program Studi Teknik Informatika, Sekolah Teknik Electro dan Informatika ITB, Corpus (2014)
ChangCCLinCJLIBSVM: A library for support vector machines ACM TransIntell. Syst. Technol.20112327
Liao, S., Jain, A.K.: Partial face recognition: an alignment-free approach. In: Proceedings of the International Joint Conference on Biometrics (IJCB 11) (2011)
LiadisMWangHMolinaRKatsaggelosAKRobust and low-rank representation for fast face identification with occlusionsIEEE Trans. Image Process.201726522032218364042910.1109/TIP.2017.2675206
TanXChenSZhouZHLiuJFace recognition under occlusions and variant expressions with partial similarityIEEE Trans. Inform. Forensics Secur.20094221723010.1109/TIFS.2009.2020772
WeiXLiCTLeiZDynamic image-to-class warping for occluded face recognitionIEEE Trans. Inf. Forensics Secur.20149122035205010.1109/TIFS.2014.2359632
MartinezAMBenaventeRThe AR face databaseTech. Rep.1998245
KirbyMSirovichLApplication of the Karhunen-Loève procedure for the characterization of the human faceIEEE Trans. Pattern Anal. Mach. Intell.199010.1109/34.41390
ChenWGaoYFace recognition using ensemble string matchingIEEE Trans. Image Process.2013221247984808311870510.1109/TIP.2013.2277920
BartlettMSMovellanJRSejnowskiTJFace recognition by independent component analysisIEEE Trans. Neural Netw.2002131450146410.1109/TNN.2002.804287
SuYZheLMengyaoWSparse representation-based face recognition against expression and illuminationIET Image Proc.201812582683210.1049/iet-ipr.2017.0757
YangMZhangLYangJZhangDRegularized robust coding for face recognitionIEEE Trans. Image Process.201322517531766306162010.1109/TIP.2012.2235849
XieJYangJQianJJTaiYZhangHMRobust nuclear norm-based matrix regression with applications to robust face recognitionIEEE Trans. Image Process.201726522862295364043510.1109/TIP.2017.2662213
YangMZhangLFengXSparse representation based Fisher discrimination dictionary learning for image classificationInt. J. Comput. Vis.20141093209232324088110.1007/s11263-014-0722-8
Weng, R., Lu, J., Hu, J., Yang, G., Tan, Y.P.: Robust feature set matching for partial face recognition. In: Proceedings of IEEE International Conference Computer Vision (ICCV), pp. 601–608 (2013)
Mehdipour, M., Ghazi, K., Ekenel, H.: A comprehensive analysis of deep learning based representation for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 34–41(2016)
Jia, H., Martinez, A.M.: Support vector machines in face recognition with occlusions. In: Proceedings of the IEEE 10th Scientific World Journal Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR 09), pp. 136–141(2009)
Min, R., Hadid, A., Dugelay, J.L.: Improving the recognition of faces occluded by facial accessories. In: Proceedings IEEE International Conference Automatic Face Gesture Recognition (FG), pp. 442–447 (2011)
Zhang, L.: Matlab Code for RRC_L1, http://www4.comp.polyu.edu.hk/ (2013). Accessed Dec 2014
Ekenel, H.K., Stiefelhagen, R.: Why is facial occlusion a challenging problem. In: Proceedings IAPR 3rd International Conference Biometrics (ICB), pp. 299–308 (2009)
Storer, M., Urschler, M., Bischof, H.: Occlusion detection for ICAO compliant facial photographs. In: Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 122–129 (2010)
HuGPengXYangYLearning deep face representations using small dataIEEE Trans. Image Process.201827293303372984910.1109/TIP.2017.2756450
YuHYangJA direct LDA algorithm for high-dimensional data with application to face recognitionPattern Recogn.2001342067207010.1016/S0031-3203(00)00162-X
Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: Proceedings of IEEE Conference Computer Vision Pattern Recognition (CVPR), pp. 1–8 (2008)
Zhou, E., Cao, Z., Yin, Q.: Naive-Deep face recognition: touching the limit of LFW benchmark or not? (2015). arXiv:1501.04690
WrightJYangAYGaneshARobust face recognition via sparse RepresentationIEEE Trans. Pattern Anal. Mach. Intell.200931221022710.1109/TPAMI.2008.79
WengRLuJTanYPRobust point set matching for partial face recognitionIEEE Trans. Image Process.201625311631176345548410.1109/TIP.2016.2515987
GaoYLeungMKHHuman face profile recognition using attributed stringPattern Recogn.200235235336010.1016/S0031-3203(01)00023-1
Jia, H., Martinez, A.M.: Face recognition with occlusions in the training and testing sets. In: Proceedings IEEE International Conference Automatic Face Gesture Recognition (FG), pp. 1–6 (2008)
Zhou, Z., Wagner, A., Mobahi, H., et al.: Face recognition with contiguous occlusion using Markov random fields. IEEE International Conference Computer Vision (ICCV), pp. 1050–1057 (2009)
ZhangLLiuJZhangBDeep cascade model-based face recognition: When deep-layered learning meets small dataIEEE Trans. Image Process.20202910161029403074610.1109/TIP.2019.2938307
JiaKChanTHMaYRobust and practical face recognition via structured sparsityProc. Eur. Conf. Comput. Vis. (ECCV)20127575331344
Liadis, M., Wang, H., Molina, R., et al.: https://github.com/miliadis/FIRC2017. Accessed 5 Jan 2018
Lin, D., Tang, X.: Quality-driven face occlusion detection and recovery. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–7 (2007)
Zhang, D., Yang, M., Feng, X.: Sparse representation or collaborative representation: Which helps face recognition? In: Proceedings of IEEE International Conference Computer Vision (ICCV), pp. 471–478 (2011)
BingrongXQingshanLTingwenHA discrete-time projection neural network for sparse signal reconstruction with application to face recognitionIEEE Trans. Neural Netw. Learn. Syst.2019301151162390140110.1109/TNNLS.2018.2836933
GrmKStrucVArtigesAStrengths and weaknesses of deep learning models for face recognition against image degradationsIET Biom.201771818910.1049/iet-bmt.2017.0083
KananHRFaezKGaoYFace recognition using adaptively weighted patch pzm array from a single exemplar image per personPattern Recognit.200841123799381210.1016/j.patcog.2008.05.024
HeRZhengWSTanTSunZHalf-quadratic-based iterative minimization for robust sparse representationIEEE Trans. Pattern Anal. Mach. Intell.201436226127510.1109/TPAMI.2013.102
NaseemAITogneriBRBennamounCMLinear regression for face recognitionIEEE Trans. Pattern Anal. Mach. Intell.201032112106211210.1109/TPAMI.2010.128
NefianAVHayesMHHidden Markov models for face recognitionProc. IEEE Int. Conf. Acoust. Speech Signal Process.1998527212724
RawatWWangADeepZConvolutional neural networks for image classification. A comprehensive reviewNeural Comput.20172923522449386678110.1162/neco_a_00990
X Bingrong (727_CR41) 2019; 30
X Tan (727_CR14) 2009; 4
M Liadis (727_CR38) 2017; 26
AV Nefian (727_CR11) 1998; 5
W Chen (727_CR29) 2013; 22
M Yang (727_CR25) 2014; 109
HR Kanan (727_CR13) 2008; 41
W Rawat (727_CR45) 2017; 29
727_CR21
727_CR20
727_CR22
Y Gao (727_CR31) 2002; 35
R He (727_CR24) 2014; 36
J Wright (727_CR19) 2009; 31
MS Bartlett (727_CR10) 2002; 13
R Weng (727_CR18) 2016; 25
M Yang (727_CR34) 2013; 22
M Kirby (727_CR6) 1990
727_CR39
727_CR36
727_CR35
X Wei (727_CR17) 2014; 9
727_CR32
CC Chang (727_CR53) 2011; 2
L Zhang (727_CR48) 2020; 29
PN Belhumeur (727_CR9) 1997; 19
K Fritz (727_CR28) 2019; 28
K Jia (727_CR23) 2012; 7575
W Chen (727_CR30) 2010; 3
X Tan (727_CR12) 2005; 16
727_CR47
727_CR7
727_CR2
727_CR3
727_CR42
G Hu (727_CR44) 2018; 27
727_CR4
727_CR5
J Lu (727_CR43) 2017; 26
727_CR52
727_CR1
AM Martinez (727_CR49) 1998; 24
Y Su (727_CR27) 2018; 12
J Xie (727_CR37) 2017; 26
A Georghiades (727_CR50) 2001; 23
TH Vu (727_CR26) 2017; 26
D Yueqi (727_CR40) 2018; 13
AI Naseem (727_CR33) 2010; 32
K Lee (727_CR51) 2005; 27
727_CR16
727_CR15
K Grm (727_CR46) 2017; 7
H Yu (727_CR8) 2001; 34
References_xml – reference: Liadis, M., Wang, H., Molina, R., et al.: https://github.com/miliadis/FIRC2017. Accessed 5 Jan 2018
– reference: TanXChenSZhouZHRecognizing partially occluded, expression variant faces from a single training image per person with SOM and soft k-NN ensembleIEEE Trans. Neural Netw.200516487588610.1109/TNN.2005.849817
– reference: LuJWangGZhouJSimultaneous feature and dictionary learning for image set based face recognitionIEEE Trans. Image Process.20172640424054366654210.1109/TIP.2017.2713940
– reference: NefianAVHayesMHHidden Markov models for face recognitionProc. IEEE Int. Conf. Acoust. Speech Signal Process.1998527212724
– reference: BartlettMSMovellanJRSejnowskiTJFace recognition by independent component analysisIEEE Trans. Neural Netw.2002131450146410.1109/TNN.2002.804287
– reference: ChenWGaoYRecognizing partially occluded faces from a single sample per class using string-based matchingProc. Eur. Conf. Comput. Vis.20103496509
– reference: WrightJYangAYGaneshARobust face recognition via sparse RepresentationIEEE Trans. Pattern Anal. Mach. Intell.200931221022710.1109/TPAMI.2008.79
– reference: BelhumeurPNHespanhaJPKriegmanDJEigenfaces vs. fishy faces: recognition using class specific linear projectionIEEE Trans. Pattern Anal. Mach. Intell.199719771172010.1109/34.598228
– reference: Meng, Y., Lei, Z., Jian, Y., et al.: Robust sparse coding for face recognition. In: Proceedings IEEE International Conference Computer Vision Pattern Recognition, pp. 625–632 (2011)
– reference: GrmKStrucVArtigesAStrengths and weaknesses of deep learning models for face recognition against image degradationsIET Biom.201771818910.1049/iet-bmt.2017.0083
– reference: GaoYLeungMKHHuman face profile recognition using attributed stringPattern Recogn.200235235336010.1016/S0031-3203(01)00023-1
– reference: Storer, M., Urschler, M., Bischof, H.: Occlusion detection for ICAO compliant facial photographs. In: Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 122–129 (2010)
– reference: Zhou, E., Cao, Z., Yin, Q.: Naive-Deep face recognition: touching the limit of LFW benchmark or not? (2015). arXiv:1501.04690
– reference: MartinezAMBenaventeRThe AR face databaseTech. Rep.1998245
– reference: FritzKDamianaLSerenaMA robust group sparse representation variational method with applications to face recognitionIEEE Trans. Image Process.201928627852798393754510.1109/TIP.2018.2890312
– reference: Zhang, D., Yang, M., Feng, X.: Sparse representation or collaborative representation: Which helps face recognition? In: Proceedings of IEEE International Conference Computer Vision (ICCV), pp. 471–478 (2011)
– reference: SuYZheLMengyaoWSparse representation-based face recognition against expression and illuminationIET Image Proc.201812582683210.1049/iet-ipr.2017.0757
– reference: YangMZhangLYangJZhangDRegularized robust coding for face recognitionIEEE Trans. Image Process.201322517531766306162010.1109/TIP.2012.2235849
– reference: Min, R., Hadid, A., Dugelay, J.L.: Improving the recognition of faces occluded by facial accessories. In: Proceedings IEEE International Conference Automatic Face Gesture Recognition (FG), pp. 442–447 (2011)
– reference: VuTHMongaVFast low-rank shared dictionary learning for image classificationIEEE Trans. Image Process.2017261151605175369076910.1109/TIP.2017.2729885
– reference: Lin, D., Tang, X.: Quality-driven face occlusion detection and recovery. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–7 (2007)
– reference: Mario, F.: Face recognition using approximate string matching. Program Studi Teknik Informatika, Sekolah Teknik Electro dan Informatika ITB, Corpus (2014)
– reference: LiadisMWangHMolinaRKatsaggelosAKRobust and low-rank representation for fast face identification with occlusionsIEEE Trans. Image Process.201726522032218364042910.1109/TIP.2017.2675206
– reference: ChangCCLinCJLIBSVM: A library for support vector machines ACM TransIntell. Syst. Technol.20112327
– reference: Jia, H., Martinez, A.M.: Support vector machines in face recognition with occlusions. In: Proceedings of the IEEE 10th Scientific World Journal Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR 09), pp. 136–141(2009)
– reference: LeeKHoJKriegmanDAcquiring Linear subspaces for face recognition under variable lightingIEEE Trans. Pattern Anal. Mach. Intell.200527568469810.1109/TPAMI.2005.92
– reference: YueqiDLuJFengJZhouJTopology preserving structural matching for automatic partial face recognitionIEEE Trans. Inf. Forensics Secur.20181371823183710.1109/TIFS.2018.2804919
– reference: Jia, H., Martinez, A.M.: Face recognition with occlusions in the training and testing sets. In: Proceedings IEEE International Conference Automatic Face Gesture Recognition (FG), pp. 1–6 (2008)
– reference: YangMZhangLFengXSparse representation based Fisher discrimination dictionary learning for image classificationInt. J. Comput. Vis.20141093209232324088110.1007/s11263-014-0722-8
– reference: Mehdipour, M., Ghazi, K., Ekenel, H.: A comprehensive analysis of deep learning based representation for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 34–41(2016)
– reference: NaseemAITogneriBRBennamounCMLinear regression for face recognitionIEEE Trans. Pattern Anal. Mach. Intell.201032112106211210.1109/TPAMI.2010.128
– reference: KananHRFaezKGaoYFace recognition using adaptively weighted patch pzm array from a single exemplar image per personPattern Recognit.200841123799381210.1016/j.patcog.2008.05.024
– reference: Turk, M. A., Pentland, A. P., Face recognition using eigenfaces. In: Proceedings of the IEEE Conference on CVPR, pp. 586–591 (1991)
– reference: Zhou, Z., Wagner, A., Mobahi, H., et al.: Face recognition with contiguous occlusion using Markov random fields. IEEE International Conference Computer Vision (ICCV), pp. 1050–1057 (2009)
– reference: HeRZhengWSTanTSunZHalf-quadratic-based iterative minimization for robust sparse representationIEEE Trans. Pattern Anal. Mach. Intell.201436226127510.1109/TPAMI.2013.102
– reference: WeiXLiCTLeiZDynamic image-to-class warping for occluded face recognitionIEEE Trans. Inf. Forensics Secur.20149122035205010.1109/TIFS.2014.2359632
– reference: ChenWGaoYFace recognition using ensemble string matchingIEEE Trans. Image Process.2013221247984808311870510.1109/TIP.2013.2277920
– reference: WengRLuJTanYPRobust point set matching for partial face recognitionIEEE Trans. Image Process.201625311631176345548410.1109/TIP.2016.2515987
– reference: Weng, R., Lu, J., Hu, J., Yang, G., Tan, Y.P.: Robust feature set matching for partial face recognition. In: Proceedings of IEEE International Conference Computer Vision (ICCV), pp. 601–608 (2013)
– reference: RawatWWangADeepZConvolutional neural networks for image classification. A comprehensive reviewNeural Comput.20172923522449386678110.1162/neco_a_00990
– reference: Zhang, L.: Matlab Code for RRC_L1, http://www4.comp.polyu.edu.hk/ (2013). Accessed Dec 2014
– reference: Ekenel, H.K., Stiefelhagen, R.: Why is facial occlusion a challenging problem. In: Proceedings IAPR 3rd International Conference Biometrics (ICB), pp. 299–308 (2009)
– reference: BingrongXQingshanLTingwenHA discrete-time projection neural network for sparse signal reconstruction with application to face recognitionIEEE Trans. Neural Netw. Learn. Syst.2019301151162390140110.1109/TNNLS.2018.2836933
– reference: JiaKChanTHMaYRobust and practical face recognition via structured sparsityProc. Eur. Conf. Comput. Vis. (ECCV)20127575331344
– reference: Liao, S., Jain, A.K.: Partial face recognition: an alignment-free approach. In: Proceedings of the International Joint Conference on Biometrics (IJCB 11) (2011)
– reference: YuHYangJA direct LDA algorithm for high-dimensional data with application to face recognitionPattern Recogn.2001342067207010.1016/S0031-3203(00)00162-X
– reference: TanXChenSZhouZHLiuJFace recognition under occlusions and variant expressions with partial similarityIEEE Trans. Inform. Forensics Secur.20094221723010.1109/TIFS.2009.2020772
– reference: XieJYangJQianJJTaiYZhangHMRobust nuclear norm-based matrix regression with applications to robust face recognitionIEEE Trans. Image Process.201726522862295364043510.1109/TIP.2017.2662213
– reference: ZhangLLiuJZhangBDeep cascade model-based face recognition: When deep-layered learning meets small dataIEEE Trans. Image Process.20202910161029403074610.1109/TIP.2019.2938307
– reference: HuGPengXYangYLearning deep face representations using small dataIEEE Trans. Image Process.201827293303372984910.1109/TIP.2017.2756450
– reference: GeorghiadesABelhumeurPKriegmanDFrom few to many: Illumination cone models for face recognition under variable lighting and poseIEEE Trans. Pattern Anal. Mach. Intell.200123664366010.1109/34.927464
– reference: Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: Proceedings of IEEE Conference Computer Vision Pattern Recognition (CVPR), pp. 1–8 (2008)
– reference: KirbyMSirovichLApplication of the Karhunen-Loève procedure for the characterization of the human faceIEEE Trans. Pattern Anal. Mach. Intell.199010.1109/34.41390
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  ident: 727_CR19
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– volume: 26
  start-page: 4042
  year: 2017
  ident: 727_CR43
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2713940
– ident: 727_CR52
  doi: 10.1109/CVPR.2008.4587598
– volume: 23
  start-page: 643
  issue: 6
  year: 2001
  ident: 727_CR50
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.927464
– volume: 28
  start-page: 2785
  issue: 6
  year: 2019
  ident: 727_CR28
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2890312
– volume: 7
  start-page: 81
  issue: 1
  year: 2017
  ident: 727_CR46
  publication-title: IET Biom.
  doi: 10.1049/iet-bmt.2017.0083
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 727_CR53
  publication-title: Intell. Syst. Technol.
– volume: 34
  start-page: 2067
  year: 2001
  ident: 727_CR8
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(00)00162-X
– volume: 5
  start-page: 2721
  year: 1998
  ident: 727_CR11
  publication-title: Proc. IEEE Int. Conf. Acoust. Speech Signal Process.
– ident: 727_CR20
– ident: 727_CR47
– ident: 727_CR16
  doi: 10.1109/ICCV.2013.80
– volume: 12
  start-page: 826
  issue: 5
  year: 2018
  ident: 727_CR27
  publication-title: IET Image Proc.
  doi: 10.1049/iet-ipr.2017.0757
– volume: 32
  start-page: 2106
  issue: 11
  year: 2010
  ident: 727_CR33
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.128
– volume: 3
  start-page: 496
  year: 2010
  ident: 727_CR30
  publication-title: Proc. Eur. Conf. Comput. Vis.
– volume: 26
  start-page: 2203
  issue: 5
  year: 2017
  ident: 727_CR38
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2675206
– volume: 29
  start-page: 2352
  year: 2017
  ident: 727_CR45
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_00990
– volume: 41
  start-page: 3799
  issue: 12
  year: 2008
  ident: 727_CR13
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.05.024
– volume: 9
  start-page: 2035
  issue: 12
  year: 2014
  ident: 727_CR17
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2014.2359632
– volume: 27
  start-page: 293
  year: 2018
  ident: 727_CR44
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2756450
– ident: 727_CR32
– volume: 27
  start-page: 684
  issue: 5
  year: 2005
  ident: 727_CR51
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.92
– volume: 30
  start-page: 151
  issue: 1
  year: 2019
  ident: 727_CR41
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2836933
– volume: 109
  start-page: 209
  issue: 3
  year: 2014
  ident: 727_CR25
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0722-8
– ident: 727_CR36
– ident: 727_CR5
  doi: 10.1109/CVPRW.2010.5544616
– ident: 727_CR4
  doi: 10.1109/CVPR.2007.383052
– volume: 25
  start-page: 1163
  issue: 3
  year: 2016
  ident: 727_CR18
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2515987
– ident: 727_CR22
– volume: 24
  start-page: 5
  year: 1998
  ident: 727_CR49
  publication-title: Tech. Rep.
– ident: 727_CR39
– volume: 35
  start-page: 353
  issue: 2
  year: 2002
  ident: 727_CR31
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(01)00023-1
– ident: 727_CR3
  doi: 10.1109/AFGR.2008.4813410
– volume: 4
  start-page: 217
  issue: 2
  year: 2009
  ident: 727_CR14
  publication-title: IEEE Trans. Inform. Forensics Secur.
  doi: 10.1109/TIFS.2009.2020772
– ident: 727_CR1
  doi: 10.1007/978-3-642-01793-3_31
– volume: 19
  start-page: 711
  issue: 7
  year: 1997
  ident: 727_CR9
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.598228
– volume: 13
  start-page: 1823
  issue: 7
  year: 2018
  ident: 727_CR40
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2804919
– volume: 36
  start-page: 261
  issue: 2
  year: 2014
  ident: 727_CR24
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.102
– volume: 26
  start-page: 5160
  issue: 11
  year: 2017
  ident: 727_CR26
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2729885
– volume: 29
  start-page: 1016
  year: 2020
  ident: 727_CR48
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2938307
– ident: 727_CR35
– year: 1990
  ident: 727_CR6
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.41390
– volume: 22
  start-page: 4798
  issue: 12
  year: 2013
  ident: 727_CR29
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2277920
– volume: 26
  start-page: 2286
  issue: 5
  year: 2017
  ident: 727_CR37
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2662213
– ident: 727_CR42
– volume: 7575
  start-page: 331
  year: 2012
  ident: 727_CR23
  publication-title: Proc. Eur. Conf. Comput. Vis. (ECCV)
– ident: 727_CR2
  doi: 10.1109/FG.2011.5771439
– volume: 13
  start-page: 1450
  year: 2002
  ident: 727_CR10
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2002.804287
– ident: 727_CR21
  doi: 10.1109/IJCB.2011.6117573
– ident: 727_CR15
  doi: 10.1109/CVPR.2009.5206862
– ident: 727_CR7
– volume: 16
  start-page: 875
  issue: 4
  year: 2005
  ident: 727_CR12
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.849817
– volume: 22
  start-page: 1753
  issue: 5
  year: 2013
  ident: 727_CR34
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2235849
SSID ssj0017630
Score 2.293679
Snippet There has been less attention towards the research on face recognition with partial occlusion. Facial accessories such as masks, sunglasses, and caps, etc.,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 191
SubjectTerms Algorithms
Computer Communication Networks
Computer Graphics
Computer Science
Cryptology
Data Storage Representation
Face recognition
Occlusion
Operating Systems
Regular Paper
String matching
Sunglasses
Title A compressed string matching algorithm for face recognition with partial occlusion
URI https://link.springer.com/article/10.1007/s00530-020-00727-9
https://www.proquest.com/docview/2502867495
Volume 27
WOSCitedRecordID wos000604844700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYWChPEWhIA9sYClxHDseK0TFgCrES90ix7ELUkmqPvj92G6SCgRIMMexk_Od7_P5_B3AeRjrLE-4wSKSFFMhJbZOL8bO1etAMWak55m95YNBMhyKu-pS2KzOdq-PJP1K3Vx2c_oSYLfdcXTXHIt12Igd24zboz88N2cH1mJ8ZEVQYgdnpLoq830fn93RCmN-ORb13qbf_t937sB2hS5Rb6kOu7Cmiz1o15UbUGXI-3DfQy6X3BOH58iV7ihGyGJXn1iJ5HhUTl_nL2_IIlpkpNKoyTMqC-RCt2jiVM4OVSo1XriI2wE89a8fr25wVV0BK2t2cxwFNOeJDo3hhIRZpgzVNMx4JBMmMousQiksdrLeSwsmlKQmMkYQa7M0lprk0SG0irLQR4BiKRw1WsgsvqAq1sL-dkwyrnIeiITJDoS1kFNVUY-7ChjjtCFN9kJLrdBSL7RUdOCieWeyJN74tXW3nru0MsJZatEdSRi3W8AOXNZztXr8c2_Hf2t-AlvEZbr4fJ4utObThT6FTfU-f51Nz7xyfgA_R9vA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1Dz4poE1TZvmcYhj4hyiU3wraZrMwezGPvz7TbK2Q1FBn5sm7eUu98vl8juAcy9QSRoxjbkvKKZcCGycXoCtq1cNGYZaOJ7ZDut2o5cXfp9fCpsW2e7FkaRbqcvLblZfGthudyzdNcN8FdaoLbNj9-iPz-XZgbEYF1nhlJjBQ5Jflfm-j8_uaIkxvxyLOm_Tqv7vO7dhK0eXqLlQhx1YUdkuVIvKDSg35D14aCKbS-6Iw1NkS3dkfWSwq0usRGLYH00Gs9c3ZBAt0kIqVOYZjTJkQ7dobFXODDWScji3Ebd9eGpd967aOK-ugKUxuxn2GzRlkfK0ZoR4SSI1VdRLmC-ikCcGWXmCG-xkvJfiIZeCal9rTozN0kAokvoHUMlGmToEFAhuqdG80OALKgPFzW8HJGEyZQ0ehaIGXiHkWObU47YCxjAuSZOd0GIjtNgJLeY1uCjfGS-IN35tXS_mLs6NcBobdEeikJktYA0ui7laPv65t6O_NT-DjXbvrhN3brq3x7BJbNaLy-2pQ2U2masTWJfvs8F0cuoU9QOVLN6k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IV58i-szB28a3KZp0xxFXRRlEV94K2maqLB2l7X6-51k2_pABfHcNE0nM8yXzMw3ADtBZLI8EZbKUHHKpVIUnV5Enas3bR3HVnme2XPR7SZ3d_LiQxW_z3avQ5KjmgbH0lSU-4Pc7jeFb0532tQdfRz1taByHCY5nmRcUtfl1W0TR0Dr8bcskjNcSMyqspnv5_jsmt7x5pcQqfc8nbn_r3keZivUSQ5GarIAY6ZYhLm6owOpDHwJLg-IyzH3hOI5cS09inuCmNYnXBLVu-8PH8uHJ4JIl1ilDWnyj_oFcVe6ZOBUET_V17r34m7iluGmc3x9eEKrrgtUozmWNGzzXCQmsFYwFmSZttzwIBOhSmKZIeIKlERMhV7NyFhqxW1orWRoyzxShuXhCkwU_cKsAomUdJRpQYy4g-vISPztiGVC56Itk1i1IKgFnuqKktx1xuilDZmyF1qKQku90FLZgt3mncGIkOPX0Rv1PqaVcT6niPpYEgs8GrZgr96398c_z7b2t-HbMH1x1EnPT7tn6zDDXDKMT_nZgIly-GI2YUq_lo_Pwy2vs28PsOeI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+compressed+string+matching+algorithm+for+face+recognition+with+partial+occlusion&rft.jtitle=Multimedia+systems&rft.au=Bommidi%2C+Krishnaveni&rft.au=Sundaramurthy%2C+Sridhar&rft.date=2021-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0942-4962&rft.eissn=1432-1882&rft.volume=27&rft.issue=2&rft.spage=191&rft.epage=203&rft_id=info:doi/10.1007%2Fs00530-020-00727-9&rft.externalDocID=10_1007_s00530_020_00727_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-4962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-4962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-4962&client=summon