An improved Dai–Kou conjugate gradient algorithm for unconstrained optimization

It is gradually accepted that the loss of orthogonality of the gradients in a conjugate gradient algorithm may decelerate the convergence rate to some extent. The Dai–Kou conjugate gradient algorithm (SIAM J Optim 23(1):296–320, 2013), called CGOPT, has attracted many researchers’ attentions due to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational optimization and applications Ročník 75; číslo 1; s. 145 - 167
Hlavní autoři: Liu, Zexian, Liu, Hongwei, Dai, Yu-Hong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2020
Springer Nature B.V
Témata:
ISSN:0926-6003, 1573-2894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is gradually accepted that the loss of orthogonality of the gradients in a conjugate gradient algorithm may decelerate the convergence rate to some extent. The Dai–Kou conjugate gradient algorithm (SIAM J Optim 23(1):296–320, 2013), called CGOPT, has attracted many researchers’ attentions due to its numerical efficiency. In this paper, we present an improved Dai–Kou conjugate gradient algorithm for unconstrained optimization, which only consists of two kinds of iterations. In the improved Dai–Kou conjugate gradient algorithm, we develop a new quasi-Newton method to improve the orthogonality by solving the subproblem in the subspace and design a modified strategy for the choice of the initial stepsize for improving the numerical performance. The global convergence of the improved Dai–Kou conjugate gradient algorithm is established without the strict assumptions in the convergence analysis of other limited memory conjugate gradient methods. Some numerical results suggest that the improved Dai–Kou conjugate gradient algorithm (CGOPT (2.0)) yields a tremendous improvement over the original Dai–Kou CG algorithm (CGOPT (1.0)) and is slightly superior to the latest limited memory conjugate gradient software package CG _ DESCENT (6.8) developed by Hager and Zhang (SIAM J Optim 23(4):2150–2168, 2013) for the CUTEr library.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-019-00143-4