An improved Dai–Kou conjugate gradient algorithm for unconstrained optimization
It is gradually accepted that the loss of orthogonality of the gradients in a conjugate gradient algorithm may decelerate the convergence rate to some extent. The Dai–Kou conjugate gradient algorithm (SIAM J Optim 23(1):296–320, 2013), called CGOPT, has attracted many researchers’ attentions due to...
Gespeichert in:
| Veröffentlicht in: | Computational optimization and applications Jg. 75; H. 1; S. 145 - 167 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.01.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0926-6003, 1573-2894 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | It is gradually accepted that the loss of orthogonality of the gradients in a conjugate gradient algorithm may decelerate the convergence rate to some extent. The Dai–Kou conjugate gradient algorithm (SIAM J Optim 23(1):296–320, 2013), called CGOPT, has attracted many researchers’ attentions due to its numerical efficiency. In this paper, we present an improved Dai–Kou conjugate gradient algorithm for unconstrained optimization, which only consists of two kinds of iterations. In the improved Dai–Kou conjugate gradient algorithm, we develop a new quasi-Newton method to improve the orthogonality by solving the subproblem in the subspace and design a modified strategy for the choice of the initial stepsize for improving the numerical performance. The global convergence of the improved Dai–Kou conjugate gradient algorithm is established without the strict assumptions in the convergence analysis of other limited memory conjugate gradient methods. Some numerical results suggest that the improved Dai–Kou conjugate gradient algorithm (CGOPT (2.0)) yields a tremendous improvement over the original Dai–Kou CG algorithm (CGOPT (1.0)) and is slightly superior to the latest limited memory conjugate gradient software package CG
_
DESCENT (6.8) developed by Hager and Zhang (SIAM J Optim 23(4):2150–2168, 2013) for the CUTEr library. |
|---|---|
| AbstractList | It is gradually accepted that the loss of orthogonality of the gradients in a conjugate gradient algorithm may decelerate the convergence rate to some extent. The Dai–Kou conjugate gradient algorithm (SIAM J Optim 23(1):296–320, 2013), called CGOPT, has attracted many researchers’ attentions due to its numerical efficiency. In this paper, we present an improved Dai–Kou conjugate gradient algorithm for unconstrained optimization, which only consists of two kinds of iterations. In the improved Dai–Kou conjugate gradient algorithm, we develop a new quasi-Newton method to improve the orthogonality by solving the subproblem in the subspace and design a modified strategy for the choice of the initial stepsize for improving the numerical performance. The global convergence of the improved Dai–Kou conjugate gradient algorithm is established without the strict assumptions in the convergence analysis of other limited memory conjugate gradient methods. Some numerical results suggest that the improved Dai–Kou conjugate gradient algorithm (CGOPT (2.0)) yields a tremendous improvement over the original Dai–Kou CG algorithm (CGOPT (1.0)) and is slightly superior to the latest limited memory conjugate gradient software package CG
_
DESCENT (6.8) developed by Hager and Zhang (SIAM J Optim 23(4):2150–2168, 2013) for the CUTEr library. It is gradually accepted that the loss of orthogonality of the gradients in a conjugate gradient algorithm may decelerate the convergence rate to some extent. The Dai–Kou conjugate gradient algorithm (SIAM J Optim 23(1):296–320, 2013), called CGOPT, has attracted many researchers’ attentions due to its numerical efficiency. In this paper, we present an improved Dai–Kou conjugate gradient algorithm for unconstrained optimization, which only consists of two kinds of iterations. In the improved Dai–Kou conjugate gradient algorithm, we develop a new quasi-Newton method to improve the orthogonality by solving the subproblem in the subspace and design a modified strategy for the choice of the initial stepsize for improving the numerical performance. The global convergence of the improved Dai–Kou conjugate gradient algorithm is established without the strict assumptions in the convergence analysis of other limited memory conjugate gradient methods. Some numerical results suggest that the improved Dai–Kou conjugate gradient algorithm (CGOPT (2.0)) yields a tremendous improvement over the original Dai–Kou CG algorithm (CGOPT (1.0)) and is slightly superior to the latest limited memory conjugate gradient software package CG\[\_ \]DESCENT (6.8) developed by Hager and Zhang (SIAM J Optim 23(4):2150–2168, 2013) for the CUTEr library. |
| Author | Liu, Zexian Dai, Yu-Hong Liu, Hongwei |
| Author_xml | – sequence: 1 givenname: Zexian surname: Liu fullname: Liu, Zexian organization: School of Mathematics and Statistics, Xidian University, LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences – sequence: 2 givenname: Hongwei surname: Liu fullname: Liu, Hongwei organization: School of Mathematics and Statistics, Xidian University – sequence: 3 givenname: Yu-Hong surname: Dai fullname: Dai, Yu-Hong email: dyh@lsec.cc.ac.cn organization: LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKsB16MnydyyLPWKBRF0HTIzyZjSSWqSEXTlO_iGPolpKwguujiczf-d8_NN0MhYIxE6xXCOAcoLjyGvWAo4DuCMptkBGuO8pCmpWDZCY2CkSAsAeoQm3i8BgJWUjNHjzCS6Xzv7JtvkUujvz697OySNNcuhE0EmnROtliYkYtVZp8NLnyjrksHEiA9OaBNBuw661x8iaGuO0aESKy9PfvcUPV9fPc1v08XDzd18tkgbillIiZLQspY0bVZhBorUNQMiJJEKU1ZUdUZqkre4VkVVNtAUtVIlSMGavCKSMDpFZ7u7sfzrIH3gSzs4E19yQikBKHCOY6rapRpnvXdS8UaHbc9N9xXHwDcC-U4gjwL5ViDPIkr-oWune-He90N0B_kYNp10f632UD8VGIcl |
| CitedBy_id | crossref_primary_10_1007_s12190_024_02209_x crossref_primary_10_1002_ima_22848 crossref_primary_10_1007_s10957_023_02265_6 crossref_primary_10_1080_00207160_2025_2517879 crossref_primary_10_1007_s10957_023_02325_x crossref_primary_10_1080_10556788_2024_2329591 crossref_primary_10_1007_s40305_025_00593_0 crossref_primary_10_1007_s11075_024_01764_5 crossref_primary_10_1177_01423312231159216 crossref_primary_10_1016_j_matcom_2021_05_038 crossref_primary_10_1007_s11075_023_01559_0 |
| Cites_doi | 10.1137/0715085 10.1145/1132973.1132979 10.1137/S1052623499354242 10.1137/S1052623497318992 10.1016/j.cam.2010.10.041 10.1007/s002450010019 10.1137/100813026 10.1007/BF01589116 10.1007/BF03029116 10.1007/s11075-017-0365-2 10.1007/s10957-019-01475-1 10.6028/jres.049.044 10.1007/s101070100263 10.1093/imanum/11.3.325 10.1093/comjnl/7.2.149 10.1007/s10898-015-0310-7 10.1145/962437.962439 10.1007/s00211-006-0028-z 10.1023/A:1014838419611 10.1093/imanum/8.1.141 10.1016/0041-5553(69)90035-4 10.1137/S1052623494268443 10.1137/120898097 10.1007/b98874 10.1137/030601880 10.1016/j.amc.2005.08.027 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Computational Optimization and Applications is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Computational Optimization and Applications is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10589-019-00143-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/Inform Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Mathematics |
| EISSN | 1573-2894 |
| EndPage | 167 |
| ExternalDocumentID | 10_1007_s10589_019_00143_4 |
| GrantInformation_xml | – fundername: Key Project of Chinese National Programs for Fundamental Research and Development grantid: 2015CB856002 – fundername: National Natural Science Foundation of China grantid: 11901561 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 11631013; 11331012 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Guangxi (CN) grantid: 2018GXNSFBA281180 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8U Z8W Z92 ZL0 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-2fe0d9d2cd48190f2bb902ae2ef13968b42b25d1bf687c0c6bff70ea9c582e293 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493670900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-6003 |
| IngestDate | Wed Nov 26 13:52:58 EST 2025 Sat Nov 29 01:51:29 EST 2025 Tue Nov 18 21:17:14 EST 2025 Fri Feb 21 02:36:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Global convergence Quasi-Newton method Preconditioned conjugate gradient algorithm 90C06 90C26 65Y20 Limited memory Conjugate gradient algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-2fe0d9d2cd48190f2bb902ae2ef13968b42b25d1bf687c0c6bff70ea9c582e293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2332006151 |
| PQPubID | 30811 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2332006151 crossref_citationtrail_10_1007_s10589_019_00143_4 crossref_primary_10_1007_s10589_019_00143_4 springer_journals_10_1007_s10589_019_00143_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20200100 2020-01-00 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 1 year: 2020 text: 20200100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Computational optimization and applications |
| PublicationTitleAbbrev | Comput Optim Appl |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Dolan, More (CR32) 2002; 91 Andrei (CR30) 2011; 34 Liu, Liu (CR27) 2019; 181 Fletcher, Reeves (CR1) 1964; 7 Hager, Zhang (CR20) 2006; 32 Li, Fukushima (CR23) 2001; 11 Yuan (CR24) 1991; 11 Tarzanagh, Reza Peyghami (CR28) 2015; 63 Barzilai, Borwein (CR29) 1988; 8 Shanno (CR5) 1978; 15 Polyak (CR4) 1969; 9 Dai, Han, Liu (CR12) 1999; 10 Dai, Yuan, Yuan (CR25) 2002; 22 Liu, Liu (CR26) 2018; 78 Liu, Liu (CR11) 2019; 181 Polak, Ribière (CR3) 1969; 3 Zhang, Zhou, Li (CR10) 2006; 104 Dai, Yuan (CR15) 2000 Schmidt (CR17) 1908; 1 Hager, Zhang (CR14) 2006; 2 Dai, Kou (CR8) 2013; 23 Dai, Liao (CR13) 2001; 43 Hager, Zhang (CR9) 2005; 16 Dai, Yuan (CR7) 1999; 10 Biglari, Hassan, Leong (CR21) 2011; 235 CR6 Hager, Zhang (CR16) 2013; 23 Liu, Nocedal (CR18) 1989; 45 Wei, Li, Qi (CR22) 2006; 175 Gould, Orban, Toint (CR31) 2003; 29 Nocedal, Wright (CR19) 1999 Hestenes, Stiefel (CR2) 1952; 49 ZX Wei (143_CR22) 2006; 175 DH Li (143_CR23) 2001; 11 MR Hestenes (143_CR2) 1952; 49 ZX Liu (143_CR26) 2018; 78 HW Liu (143_CR11) 2019; 181 E Schmidt (143_CR17) 1908; 1 ZX Liu (143_CR27) 2019; 181 R Fletcher (143_CR1) 1964; 7 N Andrei (143_CR30) 2011; 34 143_CR6 L Zhang (143_CR10) 2006; 104 YH Dai (143_CR13) 2001; 43 YH Dai (143_CR8) 2013; 23 BT Polyak (143_CR4) 1969; 9 YH Dai (143_CR7) 1999; 10 YH Dai (143_CR25) 2002; 22 YX Yuan (143_CR24) 1991; 11 E Polak (143_CR3) 1969; 3 F Biglari (143_CR21) 2011; 235 DA Tarzanagh (143_CR28) 2015; 63 WW Hager (143_CR16) 2013; 23 DF Shanno (143_CR5) 1978; 15 YH Dai (143_CR12) 1999; 10 ED Dolan (143_CR32) 2002; 91 J Nocedal (143_CR19) 1999 WW Hager (143_CR20) 2006; 32 WW Hager (143_CR14) 2006; 2 WW Hager (143_CR9) 2005; 16 J Barzilai (143_CR29) 1988; 8 YH Dai (143_CR15) 2000 NIM Gould (143_CR31) 2003; 29 DC Liu (143_CR18) 1989; 45 |
| References_xml | – volume: 15 start-page: 1247 issue: 6 year: 1978 end-page: 1257 ident: CR5 article-title: On the convergence of a new conjugate gradient algorithm publication-title: SIAM J. Numer. Anal. doi: 10.1137/0715085 – volume: 32 start-page: 113 issue: 1 year: 2006 end-page: 137 ident: CR20 article-title: Algorithm 851:conjugate gradient CG DESCENT, a conjugate gradient method with guaranteed descent publication-title: ACM Trans. Math. Softw. doi: 10.1145/1132973.1132979 – volume: 11 start-page: 1054 issue: 4 year: 2001 end-page: 1064 ident: CR23 article-title: On the global convergence of BFGS method for nonconvex unconstrained optimization problems publication-title: SIAM J. Optim. doi: 10.1137/S1052623499354242 – volume: 10 start-page: 177 issue: 1 year: 1999 end-page: 182 ident: CR7 article-title: A nonlinear conjugate gradient method with a strong global convergence property publication-title: SIAM J. Optim. doi: 10.1137/S1052623497318992 – volume: 3 start-page: 35 year: 1969 end-page: 43 ident: CR3 article-title: Note sur la convergence de méthodes de directions conjugées publication-title: Rev. Fr. Inform. Rech. Opér. – volume: 235 start-page: 2412 issue: 8 year: 2011 end-page: 2422 ident: CR21 article-title: New quasi-Newton methods via higher order tensor models publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2010.10.041 – volume: 43 start-page: 87 issue: 1 year: 2001 end-page: 101 ident: CR13 article-title: New conjugacy conditions and related nonlinear conjugate gradient methods publication-title: Appl. Math. Optim. doi: 10.1007/s002450010019 – volume: 23 start-page: 296 issue: 1 year: 2013 end-page: 320 ident: CR8 article-title: A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search publication-title: SIAM J. Optim. doi: 10.1137/100813026 – volume: 45 start-page: 503 issue: 1–3 year: 1989 end-page: 528 ident: CR18 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program. doi: 10.1007/BF01589116 – volume: 1 start-page: 53 issue: 25 year: 1908 end-page: 77 ident: CR17 article-title: Über die Auflösung linearer Gleichungen mit Unendlich vielen unbekannten publication-title: Rend. Circ. Mat. Palermo. Ser. doi: 10.1007/BF03029116 – volume: 78 start-page: 21 issue: 1 year: 2018 end-page: 39 ident: CR26 article-title: An efficient gradient method with approximate optimal stepsize for large-scale unconstrained optimization publication-title: Numer. Algorithms doi: 10.1007/s11075-017-0365-2 – ident: CR6 – volume: 181 start-page: 608 issue: 2 year: 2019 end-page: 633 ident: CR11 article-title: An efficient Barzilai–Borwein conjugate gradient method for unconstrained optimization publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-019-01475-1 – volume: 49 start-page: 409 issue: 6 year: 1952 end-page: 436 ident: CR2 article-title: Methods of conjugate gradients for solving linear systems publication-title: J. Res. Natl. Bur. Stand. doi: 10.6028/jres.049.044 – volume: 175 start-page: 1156 issue: 2 year: 2006 end-page: 1188 ident: CR22 article-title: New quasi-Newton methods for unconstrained optimization problems publication-title: Appl. Math. Comput. – volume: 91 start-page: 201 issue: 2 year: 2002 end-page: 213 ident: CR32 article-title: Benchmarking optimization software with performance profiles publication-title: Math. Program. doi: 10.1007/s101070100263 – volume: 11 start-page: 325 issue: 3 year: 1991 end-page: 332 ident: CR24 article-title: A modified BFGS algorithm for unconstrained optimization publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/11.3.325 – volume: 181 start-page: 608 issue: 2 year: 2019 end-page: 633 ident: CR27 article-title: An efficient gradient method with approximately optimal stepsize based on tensor model for unconstrained optimization publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-019-01475-1 – volume: 2 start-page: 35 issue: 1 year: 2006 end-page: 58 ident: CR14 article-title: A survey of nonlinear conjugate gradient methods publication-title: Pac. J. Optim. – volume: 7 start-page: 149 issue: 2 year: 1964 end-page: 154 ident: CR1 article-title: Function minimization by conjugate gradients publication-title: Comput. J. doi: 10.1093/comjnl/7.2.149 – year: 2000 ident: CR15 publication-title: Nonlinear Conjugate Gradient Methods – volume: 63 start-page: 709 year: 2015 end-page: 728 ident: CR28 article-title: A new regularized limited memory BFGS-type method based on modified secant conditions for unconstrained optimization problems publication-title: J. Glob. Optim. doi: 10.1007/s10898-015-0310-7 – volume: 29 start-page: 373 issue: 4 year: 2003 end-page: 394 ident: CR31 article-title: CUTEr and SifDec: a constrained and unconstrained testing environment, revisited publication-title: ACM Trans. Math. Softw. doi: 10.1145/962437.962439 – volume: 104 start-page: 561 year: 2006 end-page: 572 ident: CR10 article-title: Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search publication-title: Numer. Math. doi: 10.1007/s00211-006-0028-z – volume: 22 start-page: 103 issue: 1 year: 2002 end-page: 109 ident: CR25 article-title: Modified two-point stepsize gradient methods for unconstrained optimization problems publication-title: Comput. Optim. Appl. doi: 10.1023/A:1014838419611 – volume: 8 start-page: 141 issue: 1 year: 1988 end-page: 148 ident: CR29 article-title: Two-point step size gradient methods publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/8.1.141 – volume: 9 start-page: 94 year: 1969 end-page: 112 ident: CR4 article-title: The conjugate gradient method in extreme problems publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(69)90035-4 – volume: 34 start-page: 319 issue: 2 year: 2011 end-page: 330 ident: CR30 article-title: Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization publication-title: Bull. Malays. Math. Sci. Soc. – volume: 10 start-page: 345 issue: 2 year: 1999 end-page: 358 ident: CR12 article-title: Convergence properties of nonlinear conjugate gradient methods publication-title: SIAM J. Optim. doi: 10.1137/S1052623494268443 – volume: 23 start-page: 2150 issue: 4 year: 2013 end-page: 2168 ident: CR16 article-title: The limited memory conjugate gradient method publication-title: SIAM J. Optim. doi: 10.1137/120898097 – year: 1999 ident: CR19 publication-title: Numerical Optimization doi: 10.1007/b98874 – volume: 16 start-page: 170 issue: 1 year: 2005 end-page: 192 ident: CR9 article-title: A new conjugate gradient method with guaranteed descent and an efficient line search publication-title: SIAM J. Optim. doi: 10.1137/030601880 – volume: 10 start-page: 345 issue: 2 year: 1999 ident: 143_CR12 publication-title: SIAM J. Optim. doi: 10.1137/S1052623494268443 – volume: 23 start-page: 2150 issue: 4 year: 2013 ident: 143_CR16 publication-title: SIAM J. Optim. doi: 10.1137/120898097 – volume: 23 start-page: 296 issue: 1 year: 2013 ident: 143_CR8 publication-title: SIAM J. Optim. doi: 10.1137/100813026 – volume: 181 start-page: 608 issue: 2 year: 2019 ident: 143_CR11 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-019-01475-1 – volume-title: Numerical Optimization year: 1999 ident: 143_CR19 doi: 10.1007/b98874 – volume: 29 start-page: 373 issue: 4 year: 2003 ident: 143_CR31 publication-title: ACM Trans. Math. Softw. doi: 10.1145/962437.962439 – ident: 143_CR6 – volume: 16 start-page: 170 issue: 1 year: 2005 ident: 143_CR9 publication-title: SIAM J. Optim. doi: 10.1137/030601880 – volume: 1 start-page: 53 issue: 25 year: 1908 ident: 143_CR17 publication-title: Rend. Circ. Mat. Palermo. Ser. doi: 10.1007/BF03029116 – volume: 175 start-page: 1156 issue: 2 year: 2006 ident: 143_CR22 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.08.027 – volume: 15 start-page: 1247 issue: 6 year: 1978 ident: 143_CR5 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0715085 – volume: 181 start-page: 608 issue: 2 year: 2019 ident: 143_CR27 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-019-01475-1 – volume: 9 start-page: 94 year: 1969 ident: 143_CR4 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(69)90035-4 – volume: 43 start-page: 87 issue: 1 year: 2001 ident: 143_CR13 publication-title: Appl. Math. Optim. doi: 10.1007/s002450010019 – volume: 2 start-page: 35 issue: 1 year: 2006 ident: 143_CR14 publication-title: Pac. J. Optim. – volume: 63 start-page: 709 year: 2015 ident: 143_CR28 publication-title: J. Glob. Optim. doi: 10.1007/s10898-015-0310-7 – volume: 78 start-page: 21 issue: 1 year: 2018 ident: 143_CR26 publication-title: Numer. Algorithms doi: 10.1007/s11075-017-0365-2 – volume: 10 start-page: 177 issue: 1 year: 1999 ident: 143_CR7 publication-title: SIAM J. Optim. doi: 10.1137/S1052623497318992 – volume-title: Nonlinear Conjugate Gradient Methods year: 2000 ident: 143_CR15 – volume: 32 start-page: 113 issue: 1 year: 2006 ident: 143_CR20 publication-title: ACM Trans. Math. Softw. doi: 10.1145/1132973.1132979 – volume: 8 start-page: 141 issue: 1 year: 1988 ident: 143_CR29 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/8.1.141 – volume: 235 start-page: 2412 issue: 8 year: 2011 ident: 143_CR21 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2010.10.041 – volume: 22 start-page: 103 issue: 1 year: 2002 ident: 143_CR25 publication-title: Comput. Optim. Appl. doi: 10.1023/A:1014838419611 – volume: 34 start-page: 319 issue: 2 year: 2011 ident: 143_CR30 publication-title: Bull. Malays. Math. Sci. Soc. – volume: 49 start-page: 409 issue: 6 year: 1952 ident: 143_CR2 publication-title: J. Res. Natl. Bur. Stand. doi: 10.6028/jres.049.044 – volume: 91 start-page: 201 issue: 2 year: 2002 ident: 143_CR32 publication-title: Math. Program. doi: 10.1007/s101070100263 – volume: 11 start-page: 1054 issue: 4 year: 2001 ident: 143_CR23 publication-title: SIAM J. Optim. doi: 10.1137/S1052623499354242 – volume: 7 start-page: 149 issue: 2 year: 1964 ident: 143_CR1 publication-title: Comput. J. doi: 10.1093/comjnl/7.2.149 – volume: 3 start-page: 35 year: 1969 ident: 143_CR3 publication-title: Rev. Fr. Inform. Rech. Opér. – volume: 104 start-page: 561 year: 2006 ident: 143_CR10 publication-title: Numer. Math. doi: 10.1007/s00211-006-0028-z – volume: 11 start-page: 325 issue: 3 year: 1991 ident: 143_CR24 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/11.3.325 – volume: 45 start-page: 503 issue: 1–3 year: 1989 ident: 143_CR18 publication-title: Math. Program. doi: 10.1007/BF01589116 |
| SSID | ssj0009732 |
| Score | 2.3249662 |
| Snippet | It is gradually accepted that the loss of orthogonality of the gradients in a conjugate gradient algorithm may decelerate the convergence rate to some extent.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 145 |
| SubjectTerms | Algorithms Conjugates Convergence Convex and Discrete Geometry Deceleration Design modifications Distributed processing Management Science Mathematics Mathematics and Statistics Multiprocessing Numerical methods Operations Research Operations Research/Decision Theory Optimization Orthogonality Quasi Newton methods Queuing theory Statistics |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsMwDLZgcBgHfgaIwUA5cINKXdq1yXECJiTExL92q9I0HUNbh7aOM-_AG_IkOGm7DQRIcKyaRJETx58T-zPAYeQ4oXSZZ4VUooPCUNOZcG2LRtxjUkg8FIUpNuG326zT4Vd5Uti4iHYvniTNST2X7NbQ4T066UaT0lnuIiyhuWNaHW9uH2ZUu74pS2Zz6llozp08Veb7MT6boxnG_PIsaqxNa-1_81yH1Rxdkma2HTZgQSUVWJnjHMSvyylR67gCZQ02M67mTbhuJqRnLhlURE5F7_317WI4IegxP030bRvpjkyAWEpEvzsc9dLHAUHMS9A0apSpi01gxyEeQoM8u3ML7ltndyfnVl5ywZKoi6lFY2VHPKIycjVUiGkYcpsKRVWMUNFjoUtD2ojqYewxX9rSC-PYt5XgssGoQuiwDaVkmKgdIOhzx36sOBWMu3XpYz9XyEjjBY4D1KtQLyQfyJyPXM-0H8yYlLUkA5RkYCQZuFU4mvZ5ztg4fm1dKxY0yDVzHFDHoRmOq8JxsYCz3z-Ptvu35ntQpto1N7c1NSilo4nah2X5gos6OjA79gP6auUe priority: 102 providerName: Springer Nature |
| Title | An improved Dai–Kou conjugate gradient algorithm for unconstrained optimization |
| URI | https://link.springer.com/article/10.1007/s10589-019-00143-4 https://www.proquest.com/docview/2332006151 |
| Volume | 75 |
| WOSCitedRecordID | wos000493670900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2894 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7Rx4EeeBSqLrQrH7hRi2SSje0TKqUVUtXV0vIoXCLHdtpF7W7ZzXLmP_AP-SWMvd6mILUXLnNJxrEy9sw3Y88MwAubZZXJZcErNOSgSNrpUucJR6sKabQhpahDswnR78vTUzWIAbdpvFa50IlBUdux8THyV5hlOLe_r6--c981yp-uxhYaS7CSIqZ-nR8K3hbdFaFBWaKw4GTYs5g0E1Pnev6ykE_h8SXueP63YWrR5j8HpMHuHDz83xk_ggcRcbLd-RJ5DPfcaB3WbtQhfALvd0dsGKILzrK3evj756_D8YyRq_xt5sNs7GwSboY1TF-c0Sea80tGYJeRTfTw0neZIMYxaZ_LmNb5FD4e7H_Ye8djrwVuaBM2HGuXWGXR2NxjhBqrSiWoHbqaMGIhqxwr7Nm0qgspTGKKqq5F4rQyPYmOMMMGLI_GI7cJjJztWtROoZYqT40gvlwb64GCogHSDqSLH12aWIjcz_SibEsoe-GUJJwyCKfMO_DymudqXobjzre3FhIp45aclq04OrCzkGn7-PbRnt092nO4j94HD2GZLVhuJjO3DavmRzOcTrqwJD5_6cLKm_3-4LgblifRo2TPUxx4Kk6IDnpfiR6ffPoDufbtSw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VBQk48F-xpYAPcIKI7MSb2AeEqpaq1ZYVSEXqLTi2Uxa1SbubBXHjHXgPHoonYcabEECitx44J7bi-JuZz-P5AXjskqSwUqVRgZYOKIokXRkZR-h0qqyxpBRNaDaRTSbq8FC_WYHvXS4Mh1V2OjEoaldb9pE_xyTBpf19eXoWcdcovl3tWmgsYTH2Xz7TkW3-Ym-b9vcJ4s6rg63dqO0qEFmCWxNh6WOnHVon2RqWWBQ6RuPRl8SGUlVILHDkhkWZqszGNi3KMou90Xak0CMXXyKVf0lKEgcOFYy3-iK_WWiIFmtMIyISSZuk06bqjTg4iVOGuKReJP80hD27_etCNti5nRv_2x-6CddbRi02lyJwC1Z8dRuu_VZn8Q683azENHhPvBPbZvrj67dxvRC2rj4u2I0ojmYh8q0R5viIltR8OBFE5gXZfKbP3EWDBtakXU_atNW78O5C1rQGq1Vd-XsgMollVnqNRmk5tBmNk8Y6JkKaJhgOYNhtbG7bQuv8pcd5XyKawZATGPIAhlwO4OmvMafLMiPnvr3RISBvVc4877d_AM86DPWP_z3b-vmzPYIruwev9_P9vcn4PlxF9jcEF9QGrDazhX8Al-2nZjqfPQzCIOD9RWPrJ71rREo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VBSE48F-xpYAPcIKo2Yk3sQ8VqlhWVItWiwRSxSU4_imL2qTdzYK49R36Nn0cnoSxNyGARG89cE5sxfHnmW_G8wPw1CRJoblIowI1GSiCTrpQPI7QyFRopUkoqtBsIptMxP6-nK7BeZsL48MqW5kYBLWptPeRb2OS4Er_brsmLGI6HL08Pol8Byl_09q201hBZGy_fyPzbbGzN6S9foY4ev3-1Zuo6TAQaYJeHaGzsZEGteFeMzosChmjsmgdMaNUFBwLHJh-4VKR6VinhXNZbJXUA4EWfSEmEv9XMrIxveE3HXzsCv5moTlaLDGNiFQkTcJOk7Y38IFKPn3Il9eL-J9KsWO6f13OBp03uvU__63bcLNh2mx3dTTuwJot78KN3-ov3oN3uyWbBa-KNWyoZj9Oz8bVkumq_LL07kV2MA8RcTVThwe0pPrzESOSz4gLeFrtu2vQwIqk7lGTznofPlzKmjZgvaxK-wBYxtFlzkpUQvK-zmgcV9p4giRpgn4P-u0m57opwO6_9DDvSkd7YOQEjDwAI-c9eP5rzPGq_MiFb2-1aMgbUbTIOyj04EWLp-7xv2fbvHi2J3CNIJW_3ZuMH8J19G6I4JnagvV6vrSP4Kr-Ws8W88fhXDD4dNnQ-gklxk1b |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+Dai%E2%80%93Kou+conjugate+gradient+algorithm+for+unconstrained+optimization&rft.jtitle=Computational+optimization+and+applications&rft.au=Liu%2C+Zexian&rft.au=Liu%2C+Hongwei&rft.au=Yu-Hong%2C+Dai&rft.date=2020-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=75&rft.issue=1&rft.spage=145&rft.epage=167&rft_id=info:doi/10.1007%2Fs10589-019-00143-4&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon |