An improved Dai–Kou conjugate gradient algorithm for unconstrained optimization

It is gradually accepted that the loss of orthogonality of the gradients in a conjugate gradient algorithm may decelerate the convergence rate to some extent. The Dai–Kou conjugate gradient algorithm (SIAM J Optim 23(1):296–320, 2013), called CGOPT, has attracted many researchers’ attentions due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications Jg. 75; H. 1; S. 145 - 167
Hauptverfasser: Liu, Zexian, Liu, Hongwei, Dai, Yu-Hong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.01.2020
Springer Nature B.V
Schlagworte:
ISSN:0926-6003, 1573-2894
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract It is gradually accepted that the loss of orthogonality of the gradients in a conjugate gradient algorithm may decelerate the convergence rate to some extent. The Dai–Kou conjugate gradient algorithm (SIAM J Optim 23(1):296–320, 2013), called CGOPT, has attracted many researchers’ attentions due to its numerical efficiency. In this paper, we present an improved Dai–Kou conjugate gradient algorithm for unconstrained optimization, which only consists of two kinds of iterations. In the improved Dai–Kou conjugate gradient algorithm, we develop a new quasi-Newton method to improve the orthogonality by solving the subproblem in the subspace and design a modified strategy for the choice of the initial stepsize for improving the numerical performance. The global convergence of the improved Dai–Kou conjugate gradient algorithm is established without the strict assumptions in the convergence analysis of other limited memory conjugate gradient methods. Some numerical results suggest that the improved Dai–Kou conjugate gradient algorithm (CGOPT (2.0)) yields a tremendous improvement over the original Dai–Kou CG algorithm (CGOPT (1.0)) and is slightly superior to the latest limited memory conjugate gradient software package CG _ DESCENT (6.8) developed by Hager and Zhang (SIAM J Optim 23(4):2150–2168, 2013) for the CUTEr library.
AbstractList It is gradually accepted that the loss of orthogonality of the gradients in a conjugate gradient algorithm may decelerate the convergence rate to some extent. The Dai–Kou conjugate gradient algorithm (SIAM J Optim 23(1):296–320, 2013), called CGOPT, has attracted many researchers’ attentions due to its numerical efficiency. In this paper, we present an improved Dai–Kou conjugate gradient algorithm for unconstrained optimization, which only consists of two kinds of iterations. In the improved Dai–Kou conjugate gradient algorithm, we develop a new quasi-Newton method to improve the orthogonality by solving the subproblem in the subspace and design a modified strategy for the choice of the initial stepsize for improving the numerical performance. The global convergence of the improved Dai–Kou conjugate gradient algorithm is established without the strict assumptions in the convergence analysis of other limited memory conjugate gradient methods. Some numerical results suggest that the improved Dai–Kou conjugate gradient algorithm (CGOPT (2.0)) yields a tremendous improvement over the original Dai–Kou CG algorithm (CGOPT (1.0)) and is slightly superior to the latest limited memory conjugate gradient software package CG _ DESCENT (6.8) developed by Hager and Zhang (SIAM J Optim 23(4):2150–2168, 2013) for the CUTEr library.
It is gradually accepted that the loss of orthogonality of the gradients in a conjugate gradient algorithm may decelerate the convergence rate to some extent. The Dai–Kou conjugate gradient algorithm (SIAM J Optim 23(1):296–320, 2013), called CGOPT, has attracted many researchers’ attentions due to its numerical efficiency. In this paper, we present an improved Dai–Kou conjugate gradient algorithm for unconstrained optimization, which only consists of two kinds of iterations. In the improved Dai–Kou conjugate gradient algorithm, we develop a new quasi-Newton method to improve the orthogonality by solving the subproblem in the subspace and design a modified strategy for the choice of the initial stepsize for improving the numerical performance. The global convergence of the improved Dai–Kou conjugate gradient algorithm is established without the strict assumptions in the convergence analysis of other limited memory conjugate gradient methods. Some numerical results suggest that the improved Dai–Kou conjugate gradient algorithm (CGOPT (2.0)) yields a tremendous improvement over the original Dai–Kou CG algorithm (CGOPT (1.0)) and is slightly superior to the latest limited memory conjugate gradient software package CG\[\_ \]DESCENT (6.8) developed by Hager and Zhang (SIAM J Optim 23(4):2150–2168, 2013) for the CUTEr library.
Author Liu, Zexian
Dai, Yu-Hong
Liu, Hongwei
Author_xml – sequence: 1
  givenname: Zexian
  surname: Liu
  fullname: Liu, Zexian
  organization: School of Mathematics and Statistics, Xidian University, LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
– sequence: 2
  givenname: Hongwei
  surname: Liu
  fullname: Liu, Hongwei
  organization: School of Mathematics and Statistics, Xidian University
– sequence: 3
  givenname: Yu-Hong
  surname: Dai
  fullname: Dai, Yu-Hong
  email: dyh@lsec.cc.ac.cn
  organization: LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
BookMark eNp9kMtKAzEUhoNUsK2-gKsB16MnydyyLPWKBRF0HTIzyZjSSWqSEXTlO_iGPolpKwguujiczf-d8_NN0MhYIxE6xXCOAcoLjyGvWAo4DuCMptkBGuO8pCmpWDZCY2CkSAsAeoQm3i8BgJWUjNHjzCS6Xzv7JtvkUujvz697OySNNcuhE0EmnROtliYkYtVZp8NLnyjrksHEiA9OaBNBuw661x8iaGuO0aESKy9PfvcUPV9fPc1v08XDzd18tkgbillIiZLQspY0bVZhBorUNQMiJJEKU1ZUdUZqkre4VkVVNtAUtVIlSMGavCKSMDpFZ7u7sfzrIH3gSzs4E19yQikBKHCOY6rapRpnvXdS8UaHbc9N9xXHwDcC-U4gjwL5ViDPIkr-oWune-He90N0B_kYNp10f632UD8VGIcl
CitedBy_id crossref_primary_10_1007_s12190_024_02209_x
crossref_primary_10_1002_ima_22848
crossref_primary_10_1007_s10957_023_02265_6
crossref_primary_10_1080_00207160_2025_2517879
crossref_primary_10_1007_s10957_023_02325_x
crossref_primary_10_1080_10556788_2024_2329591
crossref_primary_10_1007_s40305_025_00593_0
crossref_primary_10_1007_s11075_024_01764_5
crossref_primary_10_1177_01423312231159216
crossref_primary_10_1016_j_matcom_2021_05_038
crossref_primary_10_1007_s11075_023_01559_0
Cites_doi 10.1137/0715085
10.1145/1132973.1132979
10.1137/S1052623499354242
10.1137/S1052623497318992
10.1016/j.cam.2010.10.041
10.1007/s002450010019
10.1137/100813026
10.1007/BF01589116
10.1007/BF03029116
10.1007/s11075-017-0365-2
10.1007/s10957-019-01475-1
10.6028/jres.049.044
10.1007/s101070100263
10.1093/imanum/11.3.325
10.1093/comjnl/7.2.149
10.1007/s10898-015-0310-7
10.1145/962437.962439
10.1007/s00211-006-0028-z
10.1023/A:1014838419611
10.1093/imanum/8.1.141
10.1016/0041-5553(69)90035-4
10.1137/S1052623494268443
10.1137/120898097
10.1007/b98874
10.1137/030601880
10.1016/j.amc.2005.08.027
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Computational Optimization and Applications is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Computational Optimization and Applications is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10589-019-00143-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/Inform Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 167
ExternalDocumentID 10_1007_s10589_019_00143_4
GrantInformation_xml – fundername: Key Project of Chinese National Programs for Fundamental Research and Development
  grantid: 2015CB856002
– fundername: National Natural Science Foundation of China
  grantid: 11901561
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11631013; 11331012
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Guangxi (CN)
  grantid: 2018GXNSFBA281180
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-2fe0d9d2cd48190f2bb902ae2ef13968b42b25d1bf687c0c6bff70ea9c582e293
IEDL.DBID K7-
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493670900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-6003
IngestDate Wed Nov 26 13:52:58 EST 2025
Sat Nov 29 01:51:29 EST 2025
Tue Nov 18 21:17:14 EST 2025
Fri Feb 21 02:36:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Global convergence
Quasi-Newton method
Preconditioned conjugate gradient algorithm
90C06
90C26
65Y20
Limited memory
Conjugate gradient algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2fe0d9d2cd48190f2bb902ae2ef13968b42b25d1bf687c0c6bff70ea9c582e293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2332006151
PQPubID 30811
PageCount 23
ParticipantIDs proquest_journals_2332006151
crossref_citationtrail_10_1007_s10589_019_00143_4
crossref_primary_10_1007_s10589_019_00143_4
springer_journals_10_1007_s10589_019_00143_4
PublicationCentury 2000
PublicationDate 20200100
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Dolan, More (CR32) 2002; 91
Andrei (CR30) 2011; 34
Liu, Liu (CR27) 2019; 181
Fletcher, Reeves (CR1) 1964; 7
Hager, Zhang (CR20) 2006; 32
Li, Fukushima (CR23) 2001; 11
Yuan (CR24) 1991; 11
Tarzanagh, Reza Peyghami (CR28) 2015; 63
Barzilai, Borwein (CR29) 1988; 8
Shanno (CR5) 1978; 15
Polyak (CR4) 1969; 9
Dai, Han, Liu (CR12) 1999; 10
Dai, Yuan, Yuan (CR25) 2002; 22
Liu, Liu (CR26) 2018; 78
Liu, Liu (CR11) 2019; 181
Polak, Ribière (CR3) 1969; 3
Zhang, Zhou, Li (CR10) 2006; 104
Dai, Yuan (CR15) 2000
Schmidt (CR17) 1908; 1
Hager, Zhang (CR14) 2006; 2
Dai, Kou (CR8) 2013; 23
Dai, Liao (CR13) 2001; 43
Hager, Zhang (CR9) 2005; 16
Dai, Yuan (CR7) 1999; 10
Biglari, Hassan, Leong (CR21) 2011; 235
CR6
Hager, Zhang (CR16) 2013; 23
Liu, Nocedal (CR18) 1989; 45
Wei, Li, Qi (CR22) 2006; 175
Gould, Orban, Toint (CR31) 2003; 29
Nocedal, Wright (CR19) 1999
Hestenes, Stiefel (CR2) 1952; 49
ZX Wei (143_CR22) 2006; 175
DH Li (143_CR23) 2001; 11
MR Hestenes (143_CR2) 1952; 49
ZX Liu (143_CR26) 2018; 78
HW Liu (143_CR11) 2019; 181
E Schmidt (143_CR17) 1908; 1
ZX Liu (143_CR27) 2019; 181
R Fletcher (143_CR1) 1964; 7
N Andrei (143_CR30) 2011; 34
143_CR6
L Zhang (143_CR10) 2006; 104
YH Dai (143_CR13) 2001; 43
YH Dai (143_CR8) 2013; 23
BT Polyak (143_CR4) 1969; 9
YH Dai (143_CR7) 1999; 10
YH Dai (143_CR25) 2002; 22
YX Yuan (143_CR24) 1991; 11
E Polak (143_CR3) 1969; 3
F Biglari (143_CR21) 2011; 235
DA Tarzanagh (143_CR28) 2015; 63
WW Hager (143_CR16) 2013; 23
DF Shanno (143_CR5) 1978; 15
YH Dai (143_CR12) 1999; 10
ED Dolan (143_CR32) 2002; 91
J Nocedal (143_CR19) 1999
WW Hager (143_CR20) 2006; 32
WW Hager (143_CR14) 2006; 2
WW Hager (143_CR9) 2005; 16
J Barzilai (143_CR29) 1988; 8
YH Dai (143_CR15) 2000
NIM Gould (143_CR31) 2003; 29
DC Liu (143_CR18) 1989; 45
References_xml – volume: 15
  start-page: 1247
  issue: 6
  year: 1978
  end-page: 1257
  ident: CR5
  article-title: On the convergence of a new conjugate gradient algorithm
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0715085
– volume: 32
  start-page: 113
  issue: 1
  year: 2006
  end-page: 137
  ident: CR20
  article-title: Algorithm 851:conjugate gradient CG DESCENT, a conjugate gradient method with guaranteed descent
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1132973.1132979
– volume: 11
  start-page: 1054
  issue: 4
  year: 2001
  end-page: 1064
  ident: CR23
  article-title: On the global convergence of BFGS method for nonconvex unconstrained optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499354242
– volume: 10
  start-page: 177
  issue: 1
  year: 1999
  end-page: 182
  ident: CR7
  article-title: A nonlinear conjugate gradient method with a strong global convergence property
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497318992
– volume: 3
  start-page: 35
  year: 1969
  end-page: 43
  ident: CR3
  article-title: Note sur la convergence de méthodes de directions conjugées
  publication-title: Rev. Fr. Inform. Rech. Opér.
– volume: 235
  start-page: 2412
  issue: 8
  year: 2011
  end-page: 2422
  ident: CR21
  article-title: New quasi-Newton methods via higher order tensor models
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2010.10.041
– volume: 43
  start-page: 87
  issue: 1
  year: 2001
  end-page: 101
  ident: CR13
  article-title: New conjugacy conditions and related nonlinear conjugate gradient methods
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s002450010019
– volume: 23
  start-page: 296
  issue: 1
  year: 2013
  end-page: 320
  ident: CR8
  article-title: A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search
  publication-title: SIAM J. Optim.
  doi: 10.1137/100813026
– volume: 45
  start-page: 503
  issue: 1–3
  year: 1989
  end-page: 528
  ident: CR18
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– volume: 1
  start-page: 53
  issue: 25
  year: 1908
  end-page: 77
  ident: CR17
  article-title: Über die Auflösung linearer Gleichungen mit Unendlich vielen unbekannten
  publication-title: Rend. Circ. Mat. Palermo. Ser.
  doi: 10.1007/BF03029116
– volume: 78
  start-page: 21
  issue: 1
  year: 2018
  end-page: 39
  ident: CR26
  article-title: An efficient gradient method with approximate optimal stepsize for large-scale unconstrained optimization
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-017-0365-2
– ident: CR6
– volume: 181
  start-page: 608
  issue: 2
  year: 2019
  end-page: 633
  ident: CR11
  article-title: An efficient Barzilai–Borwein conjugate gradient method for unconstrained optimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01475-1
– volume: 49
  start-page: 409
  issue: 6
  year: 1952
  end-page: 436
  ident: CR2
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J. Res. Natl. Bur. Stand.
  doi: 10.6028/jres.049.044
– volume: 175
  start-page: 1156
  issue: 2
  year: 2006
  end-page: 1188
  ident: CR22
  article-title: New quasi-Newton methods for unconstrained optimization problems
  publication-title: Appl. Math. Comput.
– volume: 91
  start-page: 201
  issue: 2
  year: 2002
  end-page: 213
  ident: CR32
  article-title: Benchmarking optimization software with performance profiles
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– volume: 11
  start-page: 325
  issue: 3
  year: 1991
  end-page: 332
  ident: CR24
  article-title: A modified BFGS algorithm for unconstrained optimization
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/11.3.325
– volume: 181
  start-page: 608
  issue: 2
  year: 2019
  end-page: 633
  ident: CR27
  article-title: An efficient gradient method with approximately optimal stepsize based on tensor model for unconstrained optimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01475-1
– volume: 2
  start-page: 35
  issue: 1
  year: 2006
  end-page: 58
  ident: CR14
  article-title: A survey of nonlinear conjugate gradient methods
  publication-title: Pac. J. Optim.
– volume: 7
  start-page: 149
  issue: 2
  year: 1964
  end-page: 154
  ident: CR1
  article-title: Function minimization by conjugate gradients
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.2.149
– year: 2000
  ident: CR15
  publication-title: Nonlinear Conjugate Gradient Methods
– volume: 63
  start-page: 709
  year: 2015
  end-page: 728
  ident: CR28
  article-title: A new regularized limited memory BFGS-type method based on modified secant conditions for unconstrained optimization problems
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-015-0310-7
– volume: 29
  start-page: 373
  issue: 4
  year: 2003
  end-page: 394
  ident: CR31
  article-title: CUTEr and SifDec: a constrained and unconstrained testing environment, revisited
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/962437.962439
– volume: 104
  start-page: 561
  year: 2006
  end-page: 572
  ident: CR10
  article-title: Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search
  publication-title: Numer. Math.
  doi: 10.1007/s00211-006-0028-z
– volume: 22
  start-page: 103
  issue: 1
  year: 2002
  end-page: 109
  ident: CR25
  article-title: Modified two-point stepsize gradient methods for unconstrained optimization problems
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1014838419611
– volume: 8
  start-page: 141
  issue: 1
  year: 1988
  end-page: 148
  ident: CR29
  article-title: Two-point step size gradient methods
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/8.1.141
– volume: 9
  start-page: 94
  year: 1969
  end-page: 112
  ident: CR4
  article-title: The conjugate gradient method in extreme problems
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(69)90035-4
– volume: 34
  start-page: 319
  issue: 2
  year: 2011
  end-page: 330
  ident: CR30
  article-title: Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization
  publication-title: Bull. Malays. Math. Sci. Soc.
– volume: 10
  start-page: 345
  issue: 2
  year: 1999
  end-page: 358
  ident: CR12
  article-title: Convergence properties of nonlinear conjugate gradient methods
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494268443
– volume: 23
  start-page: 2150
  issue: 4
  year: 2013
  end-page: 2168
  ident: CR16
  article-title: The limited memory conjugate gradient method
  publication-title: SIAM J. Optim.
  doi: 10.1137/120898097
– year: 1999
  ident: CR19
  publication-title: Numerical Optimization
  doi: 10.1007/b98874
– volume: 16
  start-page: 170
  issue: 1
  year: 2005
  end-page: 192
  ident: CR9
  article-title: A new conjugate gradient method with guaranteed descent and an efficient line search
  publication-title: SIAM J. Optim.
  doi: 10.1137/030601880
– volume: 10
  start-page: 345
  issue: 2
  year: 1999
  ident: 143_CR12
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494268443
– volume: 23
  start-page: 2150
  issue: 4
  year: 2013
  ident: 143_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/120898097
– volume: 23
  start-page: 296
  issue: 1
  year: 2013
  ident: 143_CR8
  publication-title: SIAM J. Optim.
  doi: 10.1137/100813026
– volume: 181
  start-page: 608
  issue: 2
  year: 2019
  ident: 143_CR11
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01475-1
– volume-title: Numerical Optimization
  year: 1999
  ident: 143_CR19
  doi: 10.1007/b98874
– volume: 29
  start-page: 373
  issue: 4
  year: 2003
  ident: 143_CR31
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/962437.962439
– ident: 143_CR6
– volume: 16
  start-page: 170
  issue: 1
  year: 2005
  ident: 143_CR9
  publication-title: SIAM J. Optim.
  doi: 10.1137/030601880
– volume: 1
  start-page: 53
  issue: 25
  year: 1908
  ident: 143_CR17
  publication-title: Rend. Circ. Mat. Palermo. Ser.
  doi: 10.1007/BF03029116
– volume: 175
  start-page: 1156
  issue: 2
  year: 2006
  ident: 143_CR22
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.08.027
– volume: 15
  start-page: 1247
  issue: 6
  year: 1978
  ident: 143_CR5
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0715085
– volume: 181
  start-page: 608
  issue: 2
  year: 2019
  ident: 143_CR27
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01475-1
– volume: 9
  start-page: 94
  year: 1969
  ident: 143_CR4
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(69)90035-4
– volume: 43
  start-page: 87
  issue: 1
  year: 2001
  ident: 143_CR13
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s002450010019
– volume: 2
  start-page: 35
  issue: 1
  year: 2006
  ident: 143_CR14
  publication-title: Pac. J. Optim.
– volume: 63
  start-page: 709
  year: 2015
  ident: 143_CR28
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-015-0310-7
– volume: 78
  start-page: 21
  issue: 1
  year: 2018
  ident: 143_CR26
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-017-0365-2
– volume: 10
  start-page: 177
  issue: 1
  year: 1999
  ident: 143_CR7
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497318992
– volume-title: Nonlinear Conjugate Gradient Methods
  year: 2000
  ident: 143_CR15
– volume: 32
  start-page: 113
  issue: 1
  year: 2006
  ident: 143_CR20
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1132973.1132979
– volume: 8
  start-page: 141
  issue: 1
  year: 1988
  ident: 143_CR29
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/8.1.141
– volume: 235
  start-page: 2412
  issue: 8
  year: 2011
  ident: 143_CR21
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2010.10.041
– volume: 22
  start-page: 103
  issue: 1
  year: 2002
  ident: 143_CR25
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1014838419611
– volume: 34
  start-page: 319
  issue: 2
  year: 2011
  ident: 143_CR30
  publication-title: Bull. Malays. Math. Sci. Soc.
– volume: 49
  start-page: 409
  issue: 6
  year: 1952
  ident: 143_CR2
  publication-title: J. Res. Natl. Bur. Stand.
  doi: 10.6028/jres.049.044
– volume: 91
  start-page: 201
  issue: 2
  year: 2002
  ident: 143_CR32
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– volume: 11
  start-page: 1054
  issue: 4
  year: 2001
  ident: 143_CR23
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499354242
– volume: 7
  start-page: 149
  issue: 2
  year: 1964
  ident: 143_CR1
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.2.149
– volume: 3
  start-page: 35
  year: 1969
  ident: 143_CR3
  publication-title: Rev. Fr. Inform. Rech. Opér.
– volume: 104
  start-page: 561
  year: 2006
  ident: 143_CR10
  publication-title: Numer. Math.
  doi: 10.1007/s00211-006-0028-z
– volume: 11
  start-page: 325
  issue: 3
  year: 1991
  ident: 143_CR24
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/11.3.325
– volume: 45
  start-page: 503
  issue: 1–3
  year: 1989
  ident: 143_CR18
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
SSID ssj0009732
Score 2.3249662
Snippet It is gradually accepted that the loss of orthogonality of the gradients in a conjugate gradient algorithm may decelerate the convergence rate to some extent....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 145
SubjectTerms Algorithms
Conjugates
Convergence
Convex and Discrete Geometry
Deceleration
Design modifications
Distributed processing
Management Science
Mathematics
Mathematics and Statistics
Multiprocessing
Numerical methods
Operations Research
Operations Research/Decision Theory
Optimization
Orthogonality
Quasi Newton methods
Queuing theory
Statistics
SummonAdditionalLinks – databaseName: SpringerLink Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsMwDLZgcBgHfgaIwUA5cINKXdq1yXECJiTExL92q9I0HUNbh7aOM-_AG_IkOGm7DQRIcKyaRJETx58T-zPAYeQ4oXSZZ4VUooPCUNOZcG2LRtxjUkg8FIUpNuG326zT4Vd5Uti4iHYvniTNST2X7NbQ4T066UaT0lnuIiyhuWNaHW9uH2ZUu74pS2Zz6llozp08Veb7MT6boxnG_PIsaqxNa-1_81yH1Rxdkma2HTZgQSUVWJnjHMSvyylR67gCZQ02M67mTbhuJqRnLhlURE5F7_317WI4IegxP030bRvpjkyAWEpEvzsc9dLHAUHMS9A0apSpi01gxyEeQoM8u3ML7ltndyfnVl5ywZKoi6lFY2VHPKIycjVUiGkYcpsKRVWMUNFjoUtD2ojqYewxX9rSC-PYt5XgssGoQuiwDaVkmKgdIOhzx36sOBWMu3XpYz9XyEjjBY4D1KtQLyQfyJyPXM-0H8yYlLUkA5RkYCQZuFU4mvZ5ztg4fm1dKxY0yDVzHFDHoRmOq8JxsYCz3z-Ptvu35ntQpto1N7c1NSilo4nah2X5gos6OjA79gP6auUe
  priority: 102
  providerName: Springer Nature
Title An improved Dai–Kou conjugate gradient algorithm for unconstrained optimization
URI https://link.springer.com/article/10.1007/s10589-019-00143-4
https://www.proquest.com/docview/2332006151
Volume 75
WOSCitedRecordID wos000493670900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7Rx4EeeBSqLrQrH7hRi2SSje0TKqUVUtXV0vIoXCLHdtpF7W7ZzXLmP_AP-SWMvd6mILUXLnNJxrEy9sw3Y88MwAubZZXJZcErNOSgSNrpUucJR6sKabQhpahDswnR78vTUzWIAbdpvFa50IlBUdux8THyV5hlOLe_r6--c981yp-uxhYaS7CSIqZ-nR8K3hbdFaFBWaKw4GTYs5g0E1Pnev6ykE_h8SXueP63YWrR5j8HpMHuHDz83xk_ggcRcbLd-RJ5DPfcaB3WbtQhfALvd0dsGKILzrK3evj756_D8YyRq_xt5sNs7GwSboY1TF-c0Sea80tGYJeRTfTw0neZIMYxaZ_LmNb5FD4e7H_Ye8djrwVuaBM2HGuXWGXR2NxjhBqrSiWoHbqaMGIhqxwr7Nm0qgspTGKKqq5F4rQyPYmOMMMGLI_GI7cJjJztWtROoZYqT40gvlwb64GCogHSDqSLH12aWIjcz_SibEsoe-GUJJwyCKfMO_DymudqXobjzre3FhIp45aclq04OrCzkGn7-PbRnt092nO4j94HD2GZLVhuJjO3DavmRzOcTrqwJD5_6cLKm_3-4LgblifRo2TPUxx4Kk6IDnpfiR6ffPoDufbtSw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VBQk48F-xpYAPcIKI7MSb2AeEqpaq1ZYVSEXqLTi2Uxa1SbubBXHjHXgPHoonYcabEECitx44J7bi-JuZz-P5AXjskqSwUqVRgZYOKIokXRkZR-h0qqyxpBRNaDaRTSbq8FC_WYHvXS4Mh1V2OjEoaldb9pE_xyTBpf19eXoWcdcovl3tWmgsYTH2Xz7TkW3-Ym-b9vcJ4s6rg63dqO0qEFmCWxNh6WOnHVon2RqWWBQ6RuPRl8SGUlVILHDkhkWZqszGNi3KMou90Xak0CMXXyKVf0lKEgcOFYy3-iK_WWiIFmtMIyISSZuk06bqjTg4iVOGuKReJP80hD27_etCNti5nRv_2x-6CddbRi02lyJwC1Z8dRuu_VZn8Q683azENHhPvBPbZvrj67dxvRC2rj4u2I0ojmYh8q0R5viIltR8OBFE5gXZfKbP3EWDBtakXU_atNW78O5C1rQGq1Vd-XsgMollVnqNRmk5tBmNk8Y6JkKaJhgOYNhtbG7bQuv8pcd5XyKawZATGPIAhlwO4OmvMafLMiPnvr3RISBvVc4877d_AM86DPWP_z3b-vmzPYIruwev9_P9vcn4PlxF9jcEF9QGrDazhX8Al-2nZjqfPQzCIOD9RWPrJ71rREo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VBSE48F-xpYAPcIKo2Yk3sQ8VqlhWVItWiwRSxSU4_imL2qTdzYK49R36Nn0cnoSxNyGARG89cE5sxfHnmW_G8wPw1CRJoblIowI1GSiCTrpQPI7QyFRopUkoqtBsIptMxP6-nK7BeZsL48MqW5kYBLWptPeRb2OS4Er_brsmLGI6HL08Pol8Byl_09q201hBZGy_fyPzbbGzN6S9foY4ev3-1Zuo6TAQaYJeHaGzsZEGteFeMzosChmjsmgdMaNUFBwLHJh-4VKR6VinhXNZbJXUA4EWfSEmEv9XMrIxveE3HXzsCv5moTlaLDGNiFQkTcJOk7Y38IFKPn3Il9eL-J9KsWO6f13OBp03uvU__63bcLNh2mx3dTTuwJot78KN3-ov3oN3uyWbBa-KNWyoZj9Oz8bVkumq_LL07kV2MA8RcTVThwe0pPrzESOSz4gLeFrtu2vQwIqk7lGTznofPlzKmjZgvaxK-wBYxtFlzkpUQvK-zmgcV9p4giRpgn4P-u0m57opwO6_9DDvSkd7YOQEjDwAI-c9eP5rzPGq_MiFb2-1aMgbUbTIOyj04EWLp-7xv2fbvHi2J3CNIJW_3ZuMH8J19G6I4JnagvV6vrSP4Kr-Ws8W88fhXDD4dNnQ-gklxk1b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+Dai%E2%80%93Kou+conjugate+gradient+algorithm+for+unconstrained+optimization&rft.jtitle=Computational+optimization+and+applications&rft.au=Liu%2C+Zexian&rft.au=Liu%2C+Hongwei&rft.au=Yu-Hong%2C+Dai&rft.date=2020-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=75&rft.issue=1&rft.spage=145&rft.epage=167&rft_id=info:doi/10.1007%2Fs10589-019-00143-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon