Local projection stabilization with discontinuous Galerkin method in time applied to convection dominated problems in time-dependent domains
This paper presents the numerical analysis of a stabilized finite element scheme with discontinuous Galerkin (dG) discretization in time for the solution of a transient convection–diffusion–reaction equation in time-dependent domains. In particular, the local projection stabilization and the higher...
Saved in:
| Published in: | BIT Vol. 60; no. 2; pp. 481 - 507 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.06.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0006-3835, 1572-9125 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents the numerical analysis of a stabilized finite element scheme with discontinuous Galerkin (dG) discretization in time for the solution of a transient convection–diffusion–reaction equation in time-dependent domains. In particular, the local projection stabilization and the higher order dG time stepping scheme are used for convection dominated problems. Further, an arbitrary Lagrangian–Eulerian formulation is used to handle the time-dependent domain. The stability and error estimates are given for the proposed numerical scheme. The validation of the proposed local projection stabilization scheme with higher order dG time discretization is demonstrated with appropriate numerical examples. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0006-3835 1572-9125 |
| DOI: | 10.1007/s10543-019-00783-2 |