Real-time hardware architecture of an ECG compression algorithm for IoT health care systems and its VLSI implementation
The Internet of Things (IoT) in the medical and biomedical field proposes new and efficient hardware for healthcare services. Thanks to machine-machine interaction and real-time solutions, the problems of accessibility and reliability are resolved. In addition, increased patient engagement in decisi...
Uloženo v:
| Vydáno v: | Multimedia tools and applications Ročník 83; číslo 10; s. 30937 - 30961 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.03.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1573-7721, 1380-7501, 1573-7721 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Internet of Things (IoT) in the medical and biomedical field proposes new and efficient hardware for healthcare services. Thanks to machine-machine interaction and real-time solutions, the problems of accessibility and reliability are resolved. In addition, increased patient engagement in decision-making will drive health service compliance. Vital signals like the electrocardiogram (ECG) are some of the most critical biomedical information to process; it is the subject of several studies. The data flow of those signals is enormous, making real-time transmission a tough job, hence the need to compress these vital signals. Designing efficient hardware compression engines is a promising challenge for efficient real-time transmission. This article introduces a new VLSI (Very-Large-Scale Integration) architecture for an ECG compression engine based on the algorithm presented in the same work. The efficiency of our processor was verified using the MIT BIH databases. We have also implemented it using An FPGA, which reaches a frequency of 170 MHz and 65 n TCMS CMOS. The proposed processor uses 1.85 Kgates and consumes 25 nW with a compression ratio of 3.42. |
|---|---|
| AbstractList | The Internet of Things (IoT) in the medical and biomedical field proposes new and efficient hardware for healthcare services. Thanks to machine-machine interaction and real-time solutions, the problems of accessibility and reliability are resolved. In addition, increased patient engagement in decision-making will drive health service compliance. Vital signals like the electrocardiogram (ECG) are some of the most critical biomedical information to process; it is the subject of several studies. The data flow of those signals is enormous, making real-time transmission a tough job, hence the need to compress these vital signals. Designing efficient hardware compression engines is a promising challenge for efficient real-time transmission. This article introduces a new VLSI (Very-Large-Scale Integration) architecture for an ECG compression engine based on the algorithm presented in the same work. The efficiency of our processor was verified using the MIT BIH databases. We have also implemented it using An FPGA, which reaches a frequency of 170 MHz and 65 n TCMS CMOS. The proposed processor uses 1.85 Kgates and consumes 25 nW with a compression ratio of 3.42. The Internet of Things (IoT) in the medical and biomedical field proposes new and efficient hardware for healthcare services. Thanks to machine-machine interaction and real-time solutions, the problems of accessibility and reliability are resolved. In addition, increased patient engagement in decision-making will drive health service compliance. Vital signals like the electrocardiogram (ECG) are some of the most critical biomedical information to process; it is the subject of several studies. The data flow of those signals is enormous, making real-time transmission a tough job, hence the need to compress these vital signals. Designing efficient hardware compression engines is a promising challenge for efficient real-time transmission. This article introduces a new VLSI (Very-Large-Scale Integration) architecture for an ECG compression engine based on the algorithm presented in the same work. The efficiency of our processor was verified using the MIT BIH databases. We have also implemented it using An FPGA, which reaches a frequency of 170 MHz and 65 n TCMS CMOS. The proposed processor uses 1.85 Kgates and consumes 25 nW with a compression ratio of 3.42. |
| Author | Ez-ziymy, Siham Hatim, Anas Hammia, Slama |
| Author_xml | – sequence: 1 givenname: Siham orcidid: 0000-0003-4140-3896 surname: Ez-ziymy fullname: Ez-ziymy, Siham email: sihamezziymy@gmail.com organization: Laboratory of Energy Engineering, Materials, and Systems, National School of Applied Sciences of Agadir, Ibn Zohr University – sequence: 2 givenname: Anas surname: Hatim fullname: Hatim, Anas organization: Technologies, Information, and Multimedia Team, National School of Applied Sciences of Marrakech, Cadi Ayyad University – sequence: 3 givenname: Slama surname: Hammia fullname: Hammia, Slama organization: Technologies, Information, and Multimedia Team, National School of Applied Sciences of Marrakech, Cadi Ayyad University |
| BookMark | eNp9kF1LwzAUhoNMcJv-Aa8CXlfz0TbrpYw5BwNBp7chTZM1o21mkjG2X29mBcWLXeUEzvOec54RGHS2UwDcYnSPEWIPHmOUkgQRmuA8pzg5XoAhzhhNGCN48Ke-AiPvNwjhPCPpEOxflWiSYFoFa-GqvXAKCidrE5QMu_ixGooOzqZzKG27dcp7YzsomrV1JtQt1NbBhV3BOuaEGspTgD_4oFofwQqa4OHH8m0BTbttVKu6IEJMuAaXWjRe3fy8Y_D-NFtNn5Ply3wxfVwmkuIiJKTSGWVVRcqyYKykuZIqL6TGumBkohDNpUA4JaJimZa60ERQLEs9YVhGIRkdg7s-d-vs5075wDd257o4kpMijSTNcB67SN8lnfXeKc23zrTCHThG_CSY94J5FMy_BfNjhCb_IGn644ITpjmP0h71cU63Vu53qzPUFyCqk_4 |
| CitedBy_id | crossref_primary_10_1007_s00034_024_02673_7 crossref_primary_10_1016_j_rineng_2025_105037 crossref_primary_10_1166_jno_2025_3736 crossref_primary_10_1007_s10791_025_09504_6 crossref_primary_10_1142_S0218126625502871 crossref_primary_10_1016_j_measurement_2025_116691 crossref_primary_10_1007_s10470_024_02269_w |
| Cites_doi | 10.3390/s17102288 10.5405/jmbe.715 10.1109/GCCE.2018.8574652 10.1038/s41598-019-53460-3 10.2139/ssrn.3664586 10.1007/s13755-018-0049-x 10.1016/j.bspc.2019.03.004 10.1109/BioCAS.2012.6418435 10.1587/elex.14.20170524 10.1109/ISNE.2017.7968728 10.1109/CIC.1997.647885 10.1109/ACCESS.2020.2998608 10.1049/el.2015.2202 10.1109/JSEN.2022.3195501 10.1016/j.procs.2016.05.201 10.1007/s00034-019-01198-8 10.1109/ICACCI.2017.8125887 10.1049/el.2012.3505 10.1109/TCSII.2020.2978554 10.1080/03091900701797453 10.1016/j.bspc.2020.101879 10.1088/1742-6596/1964/6/062073 10.1109/TCSI.2018.2867746 10.1109/ICCE-China.2018.8448939 10.4067/S0718-33052012000100002 10.1109/BSN.2016.7516240 10.1109/TVLSI.2016.2638826 10.1016/j.bspc.2015.06.012 10.1109/TBCAS.2016.2591923 10.1016/j.micpro.2019.03.007 10.1109/TBME.2011.2156794 10.1109/TBCAS.2020.2974387 10.1109/LSENS.2022.3157030 10.1109/BioCAS.2012.6418396 10.1587/transient.2017EDL8206 10.1007/s11277-020-07241-1 10.1587/elex.14.20170865 10.1007/s10916-018-0953-2 10.1109/TCSII.2022.3204550 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-023-16631-z |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 30961 |
| ExternalDocumentID | 10_1007_s11042_023_16631_z |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7SC 7XB 8AL 8FD 8FK AFFHD JQ2 L.- L7M L~C L~D MBDVC PHGZM PHGZT PKEHL PQEST PQGLB PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-2df537dd2bb977b36ece69cf1f9728e036ca0142ad75fcf9f2a31cbf871c04253 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001066762000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1573-7721 1380-7501 |
| IngestDate | Wed Nov 05 09:12:37 EST 2025 Tue Nov 18 21:51:52 EST 2025 Sat Nov 29 06:20:34 EST 2025 Fri Feb 21 02:41:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | ECG Compression Smart Systems IT FPGA Hardware Architecture |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-2df537dd2bb977b36ece69cf1f9728e036ca0142ad75fcf9f2a31cbf871c04253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4140-3896 |
| PQID | 2941423516 |
| PQPubID | 54626 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2941423516 crossref_primary_10_1007_s11042_023_16631_z crossref_citationtrail_10_1007_s11042_023_16631_z springer_journals_10_1007_s11042_023_16631_z |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Ballesteros DM, Moreno DM, Gaona AE (2012) FPGA compression of ECG signals by using modified convolution scheme of the Discrete Wavelet Transform Volume 20 N° 1. https://doi.org/10.4067/S0718-33052012000100002 Kuppusamy P G, Sureshkumar R, Yuvaraj S A, Dilliraj E, VLSI based lossless ECG compression algorithm implementation for low power devices. J Phys Conf Ser https://doi.org/10.1088/1742-6596/1964/6/062073 CherupallySKYinSKadetotadDSrivastavaGBaeCKimSJSeoJSECG authentication hardware design with low-power signal processing and neural network optimization with low precision and structured compressionIEEE Trans Biomed Circ Syst202014219820810.1109/TBCAS.2020.2974387 Tsai T, Hussain MA (2020) VLSI implementation of lossless ECG compression algorithm for low power devices, in IEEE Trans Circ Syst II: Express Briefs https://doi.org/10.1109/TCSII.2020.2978554 SibasankarPSharmaLNDandapatSMultilead ECG data compression using SVD in multiresolution domainBiomed Signal Process Control201623101810.1016/j.bspc.2015.06.012 Luo, J, Chen, Z, Xiang, X, Meng, J, Shen, H (2017) A dual-mode ECG processor with difference-insensitive QRS detection and lossless compression, IEICE Electronics Express, Vol, No 1–12 https://doi.org/10.1587/elex.14.20170524. Tseng, YH, Chen, YH, Lu, CW (2017) Adaptive integration of the compressed algorithm of CS and NPC for the ECG signal compressed algorithm in VLSI implementation, Sensors, https://doi.org/10.3390/s17102288 ChowdhuryMHCheungRCCReconfigurable architecture for multi-lead ECG signal compression with high-frequency noise reductionSci Rep20199172332019NatSR...917233C1:CAS:528:DC%2BC1MXit1KrsrfP10.1038/s41598-019-53460-3317542176872821 Lin KJ, Huang HH, Lin YY (2018) An FPGA implementation of lossless ECG compressors based on multi-stage Huffman coding. In IEEE 7th global conference on consumer Electronics (GCCE), pp 132–133. https://doi.org/10.1109/GCCE.2018.8574652 Kumar, A, Kumar, M, Komaragiri, R (2018) Design of a Biorthogonal Wavelet Transform Based R-peak detection and data compression scheme for implantable cardiac pacemaker systems, J Med Syst, https://doi.org/10.1007/s10916-018-0953-2 AhmedSMAl-AjlouniAFAbo-ZahhadMHarbBECG signal compression using combined modified discrete cosine and discrete wavelet transformsJ Med Eng Technol2009331181:STN:280:DC%2BD1M%2FhtlGqtg%3D%3D10.1080/0309190070179745319116848 Chen, WJ, Lu, CC, Jiang, YH, Fang, HW (2017) FPGA design and verification for lossless ECG coding compression, 6th International Symposium on Next Generation Electronics (ISNE), https://doi.org/10.1109/ISNE.2017.7968728 Buxi D, Berset T, Hijdra M et al (2012) Wireless 3-lead ECG system with on-board digital signal processing for ambulatory monitoring, Biomedical Circuits, and Systems Conference. (BioCAS), 2012 IEEE, pp 308–311. https://doi.org/10.1109/BioCAS.2012.6418435 AliAMElnahelWZakariaHMVLSI architecture for optimization transform technique based on compression of ECG signalsInt J Comput Appl20191814809758887 Kalaivani, S, Tharini, C, Saranya, K et al. (2020) Design and implementation of hybrid compression algorithm for personal health care big data applications. Wirel Pers Commun https://doi.org/10.1007/s11277-020-07241-1 Jla M, Li F, Pu Y, Chen Z, A Lossless Electrocardiogram Compression System Based on Dual-Mode Prediction and Error Modeling https://doi.org/10.1109/ACCESS.2020.2998608 TiwariAFalkTHLossless electrocardiogram signal compression: a review of existing methodsBiomed Signal Process Control20195133834610.1016/j.bspc.2019.03.004 Sang Joon L, Jungkuk K, Myoungho L (2011) A Real-Time ECG Data Compression and Transmission Algorithm for an e-Health Device. IEEE Trans Biomed Eng, Vol. 58, No. 9, https://doi.org/10.1109/TBME.2011.2156794 Preethi, KGM, Thivakaran TK, Huang P (2020) FPGA Based Hardware Accelerator for Data Analytics: An Overview, UGC Care Journal, Vol-40-Issue-70-March −2020 Binu PK, Thomas K, Varghese NP (2017) Highly secure and efficient architectural model for IoT based health care systems. In 2017 international conference on advances in computing, communications, and informatics (ICACCI), pp 487–493. https://doi.org/10.1109/ICACCI.2017.8125887 Ieong, CI, Li, M, Law, MK, Mak, PI, Vai, MI, Martins, RP (2016) A 0.45 V 147–375 nW ECG compression processor with wavelet shrinkage and adaptive temporal decimation architectures, IEEE Trans Very Large Scale Integration (VLSI) Syst, https://doi.org/10.1109/TVLSI.2016.2638826 Deepu, CJ, Heng, CH, Lian, Y (2017) A hybrid data compression scheme for power reduction in wireless sensors for IoT, IEEE Trans Biomed Circ Syst, Volume 11, Issue 2. https://doi.org/10.1109/TBCAS.2016.2591923 KerdjidjOAmiraAGhanemKRamzanNKatsigiannisSChouirebFAn FPGA implementation of the matching pursuit algorithm for compressed sensing enabled e-health monitoring platformMicroprocess Microsyst20196713113910.1016/j.micpro.2019.03.007 TsaiT-HTsaiF-LEfficient lossless compression scheme for multi-channel ECG signal processingBiomed Signal Process Control20205910187910.1016/j.bspc.2020.101879 Luo, J, Chen, Z, Xiang, X, Meng, J (2018) A highly adaptive lossless ECG compression ASIC for wireless sensors based on hybrid Gomlomb coding, IEICE Trans Inf Syst, VOL.E101–D, NO.3, https://doi.org/10.1587/transient.2017EDL8206 IbrahimMKHamadAAAbedMOMohammedRARecent directions in ECG-FPGA researchesJ Univ Babylon Eng Sci2019272242251 Chan HL, Chiu YC, Kao YA, Wang CL (2011) VLSI implementation of wavelet-based electrocardiogram compression and decompression. J Med Biol Eng 31(5):331–338 Chen, YH, Tseng, YH, Chu, PH, Juan, Y, Wang, SP (2019) VLSI implementation of a cost-efficient 3-Lead lossless ECG compressor and decompressor, Circ Syst Signal Process, https://doi.org/10.1007/s00034-019-01198-8 Chen Q, Wenqi W, Zheng H, Zhao B, Ma Z, Chen W (2022) Stream-based lossless compression of sensor signals using an integer adaptive predictor. IEEE Trans Circ Syst https://doi.org/10.1109/TCSII.2022.3204550 MartinezJAlmeidaROlmosSA wavelet-based ECG delineator: evaluation on standard databases, biomedical engineeringIEEE Trans2004514570581 Wang LH, Chen TY, Lee SY et al (2012) A wireless ECG acquisition SOC for body sensor network, in BioCAS, 2012 IEEE, pp 156–159. https://doi.org/10.1109/BioCAS.2012.6418396 Lin KJ, Huang HH, Lin YY (2018) An FPGA implementation of lossless ECG compressors based on multi-stage huffman coding, IEEE 7th Global Conference on Consumer Electronics (GCCE). https://doi.org/10.1109/GCCE.2018.8574652 Tsai, TH, Hussain, MA, Hao, PZ, Hao P-Z (2018) VLSI implementation of ECG compression algorithm using Golomb Rice coding, IEEE international conference on consumer Electronics-Taiwan (ICCE-TW), https://doi.org/10.1109/ICCE-China.2018.8448939 ChenSLTuanMCChiTKLinTLVLSI architecture of lossless ECG compression design based on fuzzy decision and optimization method for wearable devicesElectron Lett 3rd September201551181409141110.1049/el.2015.2202 Zigel Y, Cohen A, Abu-Ful A, Wagshal A, Katz A (1997) Analysis by synthesis ECG signal compression. In: Proceedings of the Computers in Cardiology, Lund, Sweden, pp 279–282. https://doi.org/10.1109/CIC.1997.647885 Sarma J, Biswas R (2022) A VLSI-based hybrid ECG compression scheme for wearable sensor node, IEEE Sensors Lett ( Volume: 6, Issue: 4, April 2022). https://doi.org/10.1109/LSENS.2022.3157030 Tekeste, T, Saleh, H, Mohammad, B, Ismail, M (2018) Ultra-low power QRS detection and ECG compression architecture for IoT healthcare devices, IEEE Trans Circ Syst, https://doi.org/10.1109/TCSI.2018.2867746 Wang L-H, Zhang Z-H, Tsai W-P, Huang P-C, Abu PAR (2022) Low-Power Multi-Lead Wearable ECG System With Sensor Data Compression. IEEE Sens J (Volume: 22, Issue: 18, 15 September 2022). https://doi.org/10.1109/JSEN.2022.3195501 Jagadeeswari V, Subramaniyaswamy V, Logesh R, Vijayakumar V (2018) A study on medical Internet of Things and Big Data in personalized healthcare system. Jagadeeswari et al Health Inf Sci Syst 6:–14. https://doi.org/10.1007/s13755-018-0049-x Chen S-L, Wang J-G (2013) VLSI implementation of low-power cost efficient lossless ECG encoder design for wireless healthcare monitoring application, Electronics Letters 17th January 2013 Vol. 49 No. 2. https://doi.org/10.1049/el.2012.3505 SandanalakshmiRAravindhIVLSI ±fuzzy decision controller based ECG encoderProced Comput Sci20168549650210.1016/j.procs.2016.05.201 Ding YS, Zilic Z (2016) ECG compression for mobile sensor platforms. IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), https://doi.org/10.1109/BSN.2016.7516240 Luo, J, Chen, Z, Xiang, X, Meng, J (2017) A lifting wavelet-based lossless and lossy ECG compression processor for wireless sensors, IEICE Electron Express, Vol.14, https://doi.org/10.1587/elex.14.20170865. P Sibasankar (16631_CR40) 2016; 23 16631_CR22 16631_CR21 O Kerdjidj (16631_CR24) 2019; 67 16631_CR43 16631_CR20 SK Cherupally (16631_CR26) 2020; 14 T-H Tsai (16631_CR27) 2020; 59 16631_CR41 16631_CR37 16631_CR14 16631_CR36 16631_CR13 16631_CR35 16631_CR12 16631_CR34 16631_CR19 16631_CR18 MK Ibrahim (16631_CR8) 2019; 27 A Tiwari (16631_CR9) 2019; 51 16631_CR17 16631_CR39 16631_CR16 16631_CR38 SL Chen (16631_CR32) 2015; 51 MH Chowdhury (16631_CR23) 2019; 9 R Sandanalakshmi (16631_CR15) 2016; 85 16631_CR11 16631_CR33 16631_CR10 16631_CR31 J Martinez (16631_CR4) 2004; 51 16631_CR30 16631_CR29 16631_CR28 16631_CR7 AM Ali (16631_CR25) 2019; 181 SM Ahmed (16631_CR42) 2009; 33 16631_CR6 16631_CR5 16631_CR3 16631_CR2 16631_CR1 |
| References_xml | – reference: Binu PK, Thomas K, Varghese NP (2017) Highly secure and efficient architectural model for IoT based health care systems. In 2017 international conference on advances in computing, communications, and informatics (ICACCI), pp 487–493. https://doi.org/10.1109/ICACCI.2017.8125887 – reference: Sarma J, Biswas R (2022) A VLSI-based hybrid ECG compression scheme for wearable sensor node, IEEE Sensors Lett ( Volume: 6, Issue: 4, April 2022). https://doi.org/10.1109/LSENS.2022.3157030 – reference: Luo, J, Chen, Z, Xiang, X, Meng, J (2017) A lifting wavelet-based lossless and lossy ECG compression processor for wireless sensors, IEICE Electron Express, Vol.14, https://doi.org/10.1587/elex.14.20170865. – reference: Tseng, YH, Chen, YH, Lu, CW (2017) Adaptive integration of the compressed algorithm of CS and NPC for the ECG signal compressed algorithm in VLSI implementation, Sensors, https://doi.org/10.3390/s17102288 – reference: Sang Joon L, Jungkuk K, Myoungho L (2011) A Real-Time ECG Data Compression and Transmission Algorithm for an e-Health Device. IEEE Trans Biomed Eng, Vol. 58, No. 9, https://doi.org/10.1109/TBME.2011.2156794 – reference: Wang LH, Chen TY, Lee SY et al (2012) A wireless ECG acquisition SOC for body sensor network, in BioCAS, 2012 IEEE, pp 156–159. https://doi.org/10.1109/BioCAS.2012.6418396 – reference: Preethi, KGM, Thivakaran TK, Huang P (2020) FPGA Based Hardware Accelerator for Data Analytics: An Overview, UGC Care Journal, Vol-40-Issue-70-March −2020 – reference: Chen S-L, Wang J-G (2013) VLSI implementation of low-power cost efficient lossless ECG encoder design for wireless healthcare monitoring application, Electronics Letters 17th January 2013 Vol. 49 No. 2. https://doi.org/10.1049/el.2012.3505 – reference: Chen, WJ, Lu, CC, Jiang, YH, Fang, HW (2017) FPGA design and verification for lossless ECG coding compression, 6th International Symposium on Next Generation Electronics (ISNE), https://doi.org/10.1109/ISNE.2017.7968728 – reference: AhmedSMAl-AjlouniAFAbo-ZahhadMHarbBECG signal compression using combined modified discrete cosine and discrete wavelet transformsJ Med Eng Technol2009331181:STN:280:DC%2BD1M%2FhtlGqtg%3D%3D10.1080/0309190070179745319116848 – reference: TsaiT-HTsaiF-LEfficient lossless compression scheme for multi-channel ECG signal processingBiomed Signal Process Control20205910187910.1016/j.bspc.2020.101879 – reference: Kumar, A, Kumar, M, Komaragiri, R (2018) Design of a Biorthogonal Wavelet Transform Based R-peak detection and data compression scheme for implantable cardiac pacemaker systems, J Med Syst, https://doi.org/10.1007/s10916-018-0953-2 – reference: Tsai, TH, Hussain, MA, Hao, PZ, Hao P-Z (2018) VLSI implementation of ECG compression algorithm using Golomb Rice coding, IEEE international conference on consumer Electronics-Taiwan (ICCE-TW), https://doi.org/10.1109/ICCE-China.2018.8448939 – reference: TiwariAFalkTHLossless electrocardiogram signal compression: a review of existing methodsBiomed Signal Process Control20195133834610.1016/j.bspc.2019.03.004 – reference: Zigel Y, Cohen A, Abu-Ful A, Wagshal A, Katz A (1997) Analysis by synthesis ECG signal compression. In: Proceedings of the Computers in Cardiology, Lund, Sweden, pp 279–282. https://doi.org/10.1109/CIC.1997.647885 – reference: ChowdhuryMHCheungRCCReconfigurable architecture for multi-lead ECG signal compression with high-frequency noise reductionSci Rep20199172332019NatSR...917233C1:CAS:528:DC%2BC1MXit1KrsrfP10.1038/s41598-019-53460-3317542176872821 – reference: Lin KJ, Huang HH, Lin YY (2018) An FPGA implementation of lossless ECG compressors based on multi-stage Huffman coding. In IEEE 7th global conference on consumer Electronics (GCCE), pp 132–133. https://doi.org/10.1109/GCCE.2018.8574652 – reference: ChenSLTuanMCChiTKLinTLVLSI architecture of lossless ECG compression design based on fuzzy decision and optimization method for wearable devicesElectron Lett 3rd September201551181409141110.1049/el.2015.2202 – reference: SibasankarPSharmaLNDandapatSMultilead ECG data compression using SVD in multiresolution domainBiomed Signal Process Control201623101810.1016/j.bspc.2015.06.012 – reference: Kalaivani, S, Tharini, C, Saranya, K et al. (2020) Design and implementation of hybrid compression algorithm for personal health care big data applications. Wirel Pers Commun https://doi.org/10.1007/s11277-020-07241-1 – reference: KerdjidjOAmiraAGhanemKRamzanNKatsigiannisSChouirebFAn FPGA implementation of the matching pursuit algorithm for compressed sensing enabled e-health monitoring platformMicroprocess Microsyst20196713113910.1016/j.micpro.2019.03.007 – reference: Ding YS, Zilic Z (2016) ECG compression for mobile sensor platforms. IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), https://doi.org/10.1109/BSN.2016.7516240 – reference: Deepu, CJ, Heng, CH, Lian, Y (2017) A hybrid data compression scheme for power reduction in wireless sensors for IoT, IEEE Trans Biomed Circ Syst, Volume 11, Issue 2. https://doi.org/10.1109/TBCAS.2016.2591923 – reference: Chen Q, Wenqi W, Zheng H, Zhao B, Ma Z, Chen W (2022) Stream-based lossless compression of sensor signals using an integer adaptive predictor. IEEE Trans Circ Syst https://doi.org/10.1109/TCSII.2022.3204550 – reference: Jagadeeswari V, Subramaniyaswamy V, Logesh R, Vijayakumar V (2018) A study on medical Internet of Things and Big Data in personalized healthcare system. Jagadeeswari et al Health Inf Sci Syst 6:–14. https://doi.org/10.1007/s13755-018-0049-x – reference: Lin KJ, Huang HH, Lin YY (2018) An FPGA implementation of lossless ECG compressors based on multi-stage huffman coding, IEEE 7th Global Conference on Consumer Electronics (GCCE). https://doi.org/10.1109/GCCE.2018.8574652 – reference: Jla M, Li F, Pu Y, Chen Z, A Lossless Electrocardiogram Compression System Based on Dual-Mode Prediction and Error Modeling https://doi.org/10.1109/ACCESS.2020.2998608 – reference: CherupallySKYinSKadetotadDSrivastavaGBaeCKimSJSeoJSECG authentication hardware design with low-power signal processing and neural network optimization with low precision and structured compressionIEEE Trans Biomed Circ Syst202014219820810.1109/TBCAS.2020.2974387 – reference: Luo, J, Chen, Z, Xiang, X, Meng, J, Shen, H (2017) A dual-mode ECG processor with difference-insensitive QRS detection and lossless compression, IEICE Electronics Express, Vol, No 1–12 https://doi.org/10.1587/elex.14.20170524. – reference: Ieong, CI, Li, M, Law, MK, Mak, PI, Vai, MI, Martins, RP (2016) A 0.45 V 147–375 nW ECG compression processor with wavelet shrinkage and adaptive temporal decimation architectures, IEEE Trans Very Large Scale Integration (VLSI) Syst, https://doi.org/10.1109/TVLSI.2016.2638826 – reference: MartinezJAlmeidaROlmosSA wavelet-based ECG delineator: evaluation on standard databases, biomedical engineeringIEEE Trans2004514570581 – reference: Ballesteros DM, Moreno DM, Gaona AE (2012) FPGA compression of ECG signals by using modified convolution scheme of the Discrete Wavelet Transform Volume 20 N° 1. https://doi.org/10.4067/S0718-33052012000100002 – reference: Kuppusamy P G, Sureshkumar R, Yuvaraj S A, Dilliraj E, VLSI based lossless ECG compression algorithm implementation for low power devices. J Phys Conf Ser https://doi.org/10.1088/1742-6596/1964/6/062073 – reference: Wang L-H, Zhang Z-H, Tsai W-P, Huang P-C, Abu PAR (2022) Low-Power Multi-Lead Wearable ECG System With Sensor Data Compression. IEEE Sens J (Volume: 22, Issue: 18, 15 September 2022). https://doi.org/10.1109/JSEN.2022.3195501 – reference: SandanalakshmiRAravindhIVLSI ±fuzzy decision controller based ECG encoderProced Comput Sci20168549650210.1016/j.procs.2016.05.201 – reference: Buxi D, Berset T, Hijdra M et al (2012) Wireless 3-lead ECG system with on-board digital signal processing for ambulatory monitoring, Biomedical Circuits, and Systems Conference. (BioCAS), 2012 IEEE, pp 308–311. https://doi.org/10.1109/BioCAS.2012.6418435 – reference: Chen, YH, Tseng, YH, Chu, PH, Juan, Y, Wang, SP (2019) VLSI implementation of a cost-efficient 3-Lead lossless ECG compressor and decompressor, Circ Syst Signal Process, https://doi.org/10.1007/s00034-019-01198-8 – reference: Tsai T, Hussain MA (2020) VLSI implementation of lossless ECG compression algorithm for low power devices, in IEEE Trans Circ Syst II: Express Briefs https://doi.org/10.1109/TCSII.2020.2978554 – reference: Tekeste, T, Saleh, H, Mohammad, B, Ismail, M (2018) Ultra-low power QRS detection and ECG compression architecture for IoT healthcare devices, IEEE Trans Circ Syst, https://doi.org/10.1109/TCSI.2018.2867746 – reference: AliAMElnahelWZakariaHMVLSI architecture for optimization transform technique based on compression of ECG signalsInt J Comput Appl20191814809758887 – reference: IbrahimMKHamadAAAbedMOMohammedRARecent directions in ECG-FPGA researchesJ Univ Babylon Eng Sci2019272242251 – reference: Chan HL, Chiu YC, Kao YA, Wang CL (2011) VLSI implementation of wavelet-based electrocardiogram compression and decompression. J Med Biol Eng 31(5):331–338 – reference: Luo, J, Chen, Z, Xiang, X, Meng, J (2018) A highly adaptive lossless ECG compression ASIC for wireless sensors based on hybrid Gomlomb coding, IEICE Trans Inf Syst, VOL.E101–D, NO.3, https://doi.org/10.1587/transient.2017EDL8206 – ident: 16631_CR17 doi: 10.3390/s17102288 – ident: 16631_CR33 doi: 10.5405/jmbe.715 – ident: 16631_CR1 doi: 10.1109/GCCE.2018.8574652 – volume: 9 start-page: 17233 year: 2019 ident: 16631_CR23 publication-title: Sci Rep doi: 10.1038/s41598-019-53460-3 – ident: 16631_CR7 doi: 10.2139/ssrn.3664586 – ident: 16631_CR6 doi: 10.1007/s13755-018-0049-x – volume: 27 start-page: 242 issue: 2 year: 2019 ident: 16631_CR8 publication-title: J Univ Babylon Eng Sci – volume: 51 start-page: 346 issue: 338 year: 2019 ident: 16631_CR9 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.03.004 – ident: 16631_CR3 doi: 10.1109/BioCAS.2012.6418435 – ident: 16631_CR14 doi: 10.1587/elex.14.20170524 – ident: 16631_CR19 doi: 10.1109/ISNE.2017.7968728 – ident: 16631_CR5 doi: 10.1109/CIC.1997.647885 – ident: 16631_CR35 doi: 10.1109/ACCESS.2020.2998608 – volume: 51 start-page: 1409 issue: 18 year: 2015 ident: 16631_CR32 publication-title: Electron Lett 3rd September doi: 10.1049/el.2015.2202 – ident: 16631_CR37 doi: 10.1109/JSEN.2022.3195501 – volume: 85 start-page: 496 year: 2016 ident: 16631_CR15 publication-title: Proced Comput Sci doi: 10.1016/j.procs.2016.05.201 – ident: 16631_CR12 doi: 10.1007/s00034-019-01198-8 – ident: 16631_CR10 doi: 10.1109/ICACCI.2017.8125887 – volume: 181 start-page: 0975 issue: 48 year: 2019 ident: 16631_CR25 publication-title: Int J Comput Appl – ident: 16631_CR31 doi: 10.1049/el.2012.3505 – ident: 16631_CR30 doi: 10.1109/TCSII.2020.2978554 – volume: 33 start-page: 1 issue: 1 year: 2009 ident: 16631_CR42 publication-title: J Med Eng Technol doi: 10.1080/03091900701797453 – volume: 59 start-page: 101879 year: 2020 ident: 16631_CR27 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.101879 – ident: 16631_CR36 doi: 10.1088/1742-6596/1964/6/062073 – ident: 16631_CR16 doi: 10.1109/TCSI.2018.2867746 – ident: 16631_CR20 doi: 10.1109/ICCE-China.2018.8448939 – ident: 16631_CR43 doi: 10.4067/S0718-33052012000100002 – ident: 16631_CR28 doi: 10.1109/GCCE.2018.8574652 – ident: 16631_CR41 doi: 10.1109/BSN.2016.7516240 – ident: 16631_CR18 doi: 10.1109/TVLSI.2016.2638826 – volume: 23 start-page: 10 year: 2016 ident: 16631_CR40 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2015.06.012 – ident: 16631_CR22 doi: 10.1109/TBCAS.2016.2591923 – volume: 51 start-page: 570 issue: 4 year: 2004 ident: 16631_CR4 publication-title: IEEE Trans – volume: 67 start-page: 131 year: 2019 ident: 16631_CR24 publication-title: Microprocess Microsyst doi: 10.1016/j.micpro.2019.03.007 – ident: 16631_CR39 doi: 10.1109/TBME.2011.2156794 – volume: 14 start-page: 198 issue: 2 year: 2020 ident: 16631_CR26 publication-title: IEEE Trans Biomed Circ Syst doi: 10.1109/TBCAS.2020.2974387 – ident: 16631_CR38 doi: 10.1109/LSENS.2022.3157030 – ident: 16631_CR2 doi: 10.1109/BioCAS.2012.6418396 – ident: 16631_CR13 doi: 10.1587/transient.2017EDL8206 – ident: 16631_CR29 doi: 10.1007/s11277-020-07241-1 – ident: 16631_CR11 doi: 10.1587/elex.14.20170865 – ident: 16631_CR21 doi: 10.1007/s10916-018-0953-2 – ident: 16631_CR34 doi: 10.1109/TCSII.2022.3204550 |
| SSID | ssj0016524 |
| Score | 2.4017804 |
| Snippet | The Internet of Things (IoT) in the medical and biomedical field proposes new and efficient hardware for healthcare services. Thanks to machine-machine... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 30937 |
| SubjectTerms | Algorithms Compression ratio Computer architecture Computer Communication Networks Computer Science Data Structures and Information Theory Electrocardiography Hardware Health services Internet of Things Large scale integration Medical electronics Microprocessors Multimedia Information Systems Real time Special Purpose and Application-Based Systems Track 2: Medical Applications of Multimedia Very large scale integration |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH5iO9ADW1t1WoreoTewiLP7hNAIWiRAFZu4RY4XOhJk6CQtEr-e58RhAAkunBNblt7yPfstH8APnpDDs4FiueSWxUJpJsskYDqPbGxkkGnTjsw_zI6P88tL8ds_uNW-rLL3ia2j1mPl3si3QxFzgv6Epzu3f5ljjXLZVU-hMQvzLrJxJX1HwfAxi5AmntQ2DxghI_dNM13rHHeNKYRYjBPocnb_HJim0eaLBGmLO_vL7z3xCiz5iBN3OxVZhRlTrcFyz-aA3rjX4MOT0YQf4e6EIkjmmOfR9WXdyYnBp0kHHFuUFe4Nf6KrSu-qaSuU11d0hObPDVIwjAfjM-waLdFVmGE3NrqmhRpHTY0Xh6cHOLrpS9idjnyC8_29s-Ev5kkamCLrbViobRJlWodlSaFkGaVGmVQoy63IwtwQQCpJ17BQ6iyxygobyoir0tJFTTmHEX2GuWpcmS-AIV3HZRaX3DVViSQSyg37k4LLMk3LOBgA7yVUKD_B3BFpXBfT2ctOqgVJtWilWtwPYPNxzW03v-PNv9d7URbelutiKscBbPXKMP38-m5f397tGyyGFCF1BW3rMNdM_pnvsKD-N6N6stFq8gOAHfkW priority: 102 providerName: ProQuest |
| Title | Real-time hardware architecture of an ECG compression algorithm for IoT health care systems and its VLSI implementation |
| URI | https://link.springer.com/article/10.1007/s11042-023-16631-z https://www.proquest.com/docview/2941423516 |
| Volume | 83 |
| WOSCitedRecordID | wos001066762000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-7721 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7721 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7721 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7721 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1573-7721 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: M2O dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ_w4YM-iKDEE7jMA2_aZNv97KNcDiHieTkQ0ZdNt9vCJbBnbhdI-Oud7geHRkz0pUmz7aZpZzrTzPx-A7DLQ7rwrKdZorhlgdQ5U1nosTzxbWCUF-empsw_ikej5OxMjltQWNllu3chyfqmXoDduIOSkI1hnMwkZ3fLsErmLnEFGybHp_exgygUQQuP-fO8X03Qwq_8LRRaW5j9tf9b2wt43nqU-L4RgXVYMsUGrHXVGrBV3g149oB68CXcTshDZK6yPDrc1a2aG3wYVMCZRVXgcPABXdZ5ky1boLo8n82n1cUVkrOLh7MTbICU6DLIsKGFLmlijtOqxNOj40OcXnUp6k4GXsGX_eHJ4IC1RRiYJu2smMht6Md5LrKMXMXMj4w2kdSWWxmLxJAB1IqeWULlcWi1lVYon-vM0kNMuwvB34SVYlaY14CCntsqDjLuQFMy9KV2ZH5KcpVFURZ4PeDduaS6ZSh3hTIu0wW3stvnlPY5rfc5vevB2_s5Pxp-jr-O3u6OO211tUyFDGj9fsijHrzrjnfx-fG_vfm34VvwVJBH1CSwbcNKNb82O_BE31TTct6H5fjrtz6s7g1H4wn1PsaM2k_ewLXiM7Xj8Hu_lvSf60b0aA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQcKBQQgQJzgBOs8K7fh6pCpaVRQoQgoN7c9T7aSI1TYkPU_qj-Rmb9aAoSvfXA2fZKXn_zWM983wC84iE5POsplkhuWZAqzWQeekwnvg2M9GJtasn8YTwaJfv76ecVOO-4MK6tsvOJtaPWM-X-kb8TacAp9Ic82jr5wdzUKFdd7UZoNLAYmNMFHdnKzf4H-r6vhdjdGW_vsXaqAFMEt4oJbUM_1lrkOeU-uR8ZZaJUWW7TWCSGPLqSdG4QUsehVTa1Qvpc5ZZOFsoh3Kd1b8DNwE9iZ1eDmF1ULaKwHaKbeIwiMW9JOg1VjzsiDEVIxinIc3b2ZyBcZrd_FWTrOLe79r_t0H2412bU-L4xgQewYop1WOumVWDrvNbh7iXpxYew-EIZMqsmU4OOd7aQc4OXiyo4sygL3Nn-iK7rvukWLlAeH9IrV0dTpGQf-7MxNkRSdB102Mhil_SgxklV4vfh1z5Opl2LvrOBR_DtWjbjMawWs8I8ARRxksg4yLkjjaWhnyonZihTLvMoygOvB7xDRKZahXY3KOQ4W2pLOxRlhKKsRlF21oM3F8-cNPokV9690UEna31VmS1x04O3HfiWl_-92tOrV3sJt_fGn4bZsD8aPIM7grLBpnlvA1ar-U_zHG6pX9WknL-orQjh4LpB-RsFLFdo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAcWiggQgvMAU6wqnf9PlQItQ1EjaIICqq4uOt9QKTGKbEhoj-tv45ZP5qCRG89cLa9ktffzsPzfTMAL3hIBs96iiWSWxakSjOZhx7TiW8DI71Ym7pl_jAejZKjo3S8AuedFsbRKjubWBtqPVPuH_m2SANOrj_k0bZtaRHjvf6b0-_MTZByldZunEYDkQPza0HpW7kz2KNv_VKI_v7h7nvWThhgiqBXMaFt6MdaizynOCj3I6NMlCrLbRqLxJB1V5JyCCF1HFplUyukz1VuKctQDu0-rXsDbsaUYzo64Tj8clHBiMJ2oG7iMfLKvBXsNLI97kQx5C0ZJ4fP2dmfTnEZ6f5VnK19Xn_9f96te7DWRtr4tjka92HFFBuw3k2xwNaobcDdSy0ZH8DiA0XOrJpMDTo92kLODV4utuDMoixwf_cdOjZ-wyIuUJ58pVeuvk2RkgAczA6xEZiiY9Zh0y67pAc1TqoSPw8_DnAy7aj77mw8hE_XshmPYLWYFeYxoIiTRMZBzp2YLA39VLkmhzLlMo-iPPB6wDt0ZKrt3O4GiJxky57TDlEZISqrEZWd9eDVxTOnTd-SK-_e6mCUtTaszJYY6sHrDojLy_9e7cnVqz2H24TFbDgYHWzCHUFBYsPp24LVav7DPIVb6mc1KefP6gOFcHzdmPwNjX5gjA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+hardware+architecture+of+an+ECG+compression+algorithm+for+IoT+health+care+systems+and+its+VLSI+implementation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Ez-ziymy%2C+Siham&rft.au=Hatim%2C+Anas&rft.au=Hammia%2C+Slama&rft.date=2024-03-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=10&rft.spage=30937&rft.epage=30961&rft_id=info:doi/10.1007%2Fs11042-023-16631-z&rft.externalDocID=10_1007_s11042_023_16631_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |