Real-time hardware architecture of an ECG compression algorithm for IoT health care systems and its VLSI implementation

The Internet of Things (IoT) in the medical and biomedical field proposes new and efficient hardware for healthcare services. Thanks to machine-machine interaction and real-time solutions, the problems of accessibility and reliability are resolved. In addition, increased patient engagement in decisi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 83; číslo 10; s. 30937 - 30961
Hlavní autoři: Ez-ziymy, Siham, Hatim, Anas, Hammia, Slama
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2024
Springer Nature B.V
Témata:
ISSN:1573-7721, 1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Internet of Things (IoT) in the medical and biomedical field proposes new and efficient hardware for healthcare services. Thanks to machine-machine interaction and real-time solutions, the problems of accessibility and reliability are resolved. In addition, increased patient engagement in decision-making will drive health service compliance. Vital signals like the electrocardiogram (ECG) are some of the most critical biomedical information to process; it is the subject of several studies. The data flow of those signals is enormous, making real-time transmission a tough job, hence the need to compress these vital signals. Designing efficient hardware compression engines is a promising challenge for efficient real-time transmission. This article introduces a new VLSI (Very-Large-Scale Integration) architecture for an ECG compression engine based on the algorithm presented in the same work. The efficiency of our processor was verified using the MIT BIH databases. We have also implemented it using An FPGA, which reaches a frequency of 170 MHz and 65 n TCMS CMOS. The proposed processor uses 1.85 Kgates and consumes 25 nW with a compression ratio of 3.42.
AbstractList The Internet of Things (IoT) in the medical and biomedical field proposes new and efficient hardware for healthcare services. Thanks to machine-machine interaction and real-time solutions, the problems of accessibility and reliability are resolved. In addition, increased patient engagement in decision-making will drive health service compliance. Vital signals like the electrocardiogram (ECG) are some of the most critical biomedical information to process; it is the subject of several studies. The data flow of those signals is enormous, making real-time transmission a tough job, hence the need to compress these vital signals. Designing efficient hardware compression engines is a promising challenge for efficient real-time transmission. This article introduces a new VLSI (Very-Large-Scale Integration) architecture for an ECG compression engine based on the algorithm presented in the same work. The efficiency of our processor was verified using the MIT BIH databases. We have also implemented it using An FPGA, which reaches a frequency of 170 MHz and 65 n TCMS CMOS. The proposed processor uses 1.85 Kgates and consumes 25 nW with a compression ratio of 3.42.
The Internet of Things (IoT) in the medical and biomedical field proposes new and efficient hardware for healthcare services. Thanks to machine-machine interaction and real-time solutions, the problems of accessibility and reliability are resolved. In addition, increased patient engagement in decision-making will drive health service compliance. Vital signals like the electrocardiogram (ECG) are some of the most critical biomedical information to process; it is the subject of several studies. The data flow of those signals is enormous, making real-time transmission a tough job, hence the need to compress these vital signals. Designing efficient hardware compression engines is a promising challenge for efficient real-time transmission. This article introduces a new VLSI (Very-Large-Scale Integration) architecture for an ECG compression engine based on the algorithm presented in the same work. The efficiency of our processor was verified using the MIT BIH databases. We have also implemented it using An FPGA, which reaches a frequency of 170 MHz and 65 n TCMS CMOS. The proposed processor uses 1.85 Kgates and consumes 25 nW with a compression ratio of 3.42.
Author Ez-ziymy, Siham
Hatim, Anas
Hammia, Slama
Author_xml – sequence: 1
  givenname: Siham
  orcidid: 0000-0003-4140-3896
  surname: Ez-ziymy
  fullname: Ez-ziymy, Siham
  email: sihamezziymy@gmail.com
  organization: Laboratory of Energy Engineering, Materials, and Systems, National School of Applied Sciences of Agadir, Ibn Zohr University
– sequence: 2
  givenname: Anas
  surname: Hatim
  fullname: Hatim, Anas
  organization: Technologies, Information, and Multimedia Team, National School of Applied Sciences of Marrakech, Cadi Ayyad University
– sequence: 3
  givenname: Slama
  surname: Hammia
  fullname: Hammia, Slama
  organization: Technologies, Information, and Multimedia Team, National School of Applied Sciences of Marrakech, Cadi Ayyad University
BookMark eNp9kF1LwzAUhoNMcJv-Aa8CXlfz0TbrpYw5BwNBp7chTZM1o21mkjG2X29mBcWLXeUEzvOec54RGHS2UwDcYnSPEWIPHmOUkgQRmuA8pzg5XoAhzhhNGCN48Ke-AiPvNwjhPCPpEOxflWiSYFoFa-GqvXAKCidrE5QMu_ixGooOzqZzKG27dcp7YzsomrV1JtQt1NbBhV3BOuaEGspTgD_4oFofwQqa4OHH8m0BTbttVKu6IEJMuAaXWjRe3fy8Y_D-NFtNn5Ply3wxfVwmkuIiJKTSGWVVRcqyYKykuZIqL6TGumBkohDNpUA4JaJimZa60ERQLEs9YVhGIRkdg7s-d-vs5075wDd257o4kpMijSTNcB67SN8lnfXeKc23zrTCHThG_CSY94J5FMy_BfNjhCb_IGn644ITpjmP0h71cU63Vu53qzPUFyCqk_4
CitedBy_id crossref_primary_10_1007_s00034_024_02673_7
crossref_primary_10_1016_j_rineng_2025_105037
crossref_primary_10_1166_jno_2025_3736
crossref_primary_10_1007_s10791_025_09504_6
crossref_primary_10_1142_S0218126625502871
crossref_primary_10_1016_j_measurement_2025_116691
crossref_primary_10_1007_s10470_024_02269_w
Cites_doi 10.3390/s17102288
10.5405/jmbe.715
10.1109/GCCE.2018.8574652
10.1038/s41598-019-53460-3
10.2139/ssrn.3664586
10.1007/s13755-018-0049-x
10.1016/j.bspc.2019.03.004
10.1109/BioCAS.2012.6418435
10.1587/elex.14.20170524
10.1109/ISNE.2017.7968728
10.1109/CIC.1997.647885
10.1109/ACCESS.2020.2998608
10.1049/el.2015.2202
10.1109/JSEN.2022.3195501
10.1016/j.procs.2016.05.201
10.1007/s00034-019-01198-8
10.1109/ICACCI.2017.8125887
10.1049/el.2012.3505
10.1109/TCSII.2020.2978554
10.1080/03091900701797453
10.1016/j.bspc.2020.101879
10.1088/1742-6596/1964/6/062073
10.1109/TCSI.2018.2867746
10.1109/ICCE-China.2018.8448939
10.4067/S0718-33052012000100002
10.1109/BSN.2016.7516240
10.1109/TVLSI.2016.2638826
10.1016/j.bspc.2015.06.012
10.1109/TBCAS.2016.2591923
10.1016/j.micpro.2019.03.007
10.1109/TBME.2011.2156794
10.1109/TBCAS.2020.2974387
10.1109/LSENS.2022.3157030
10.1109/BioCAS.2012.6418396
10.1587/transient.2017EDL8206
10.1007/s11277-020-07241-1
10.1587/elex.14.20170865
10.1007/s10916-018-0953-2
10.1109/TCSII.2022.3204550
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-16631-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 30961
ExternalDocumentID 10_1007_s11042_023_16631_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SC
7XB
8AL
8FD
8FK
AFFHD
JQ2
L.-
L7M
L~C
L~D
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-2df537dd2bb977b36ece69cf1f9728e036ca0142ad75fcf9f2a31cbf871c04253
IEDL.DBID RSV
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001066762000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-7721
1380-7501
IngestDate Wed Nov 05 09:12:37 EST 2025
Tue Nov 18 21:51:52 EST 2025
Sat Nov 29 06:20:34 EST 2025
Fri Feb 21 02:41:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords ECG Compression
Smart Systems
IT
FPGA
Hardware Architecture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2df537dd2bb977b36ece69cf1f9728e036ca0142ad75fcf9f2a31cbf871c04253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4140-3896
PQID 2941423516
PQPubID 54626
PageCount 25
ParticipantIDs proquest_journals_2941423516
crossref_primary_10_1007_s11042_023_16631_z
crossref_citationtrail_10_1007_s11042_023_16631_z
springer_journals_10_1007_s11042_023_16631_z
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ballesteros DM, Moreno DM, Gaona AE (2012) FPGA compression of ECG signals by using modified convolution scheme of the Discrete Wavelet Transform Volume 20 N° 1. https://doi.org/10.4067/S0718-33052012000100002
Kuppusamy P G, Sureshkumar R, Yuvaraj S A, Dilliraj E, VLSI based lossless ECG compression algorithm implementation for low power devices. J Phys Conf Ser https://doi.org/10.1088/1742-6596/1964/6/062073
CherupallySKYinSKadetotadDSrivastavaGBaeCKimSJSeoJSECG authentication hardware design with low-power signal processing and neural network optimization with low precision and structured compressionIEEE Trans Biomed Circ Syst202014219820810.1109/TBCAS.2020.2974387
Tsai T, Hussain MA (2020) VLSI implementation of lossless ECG compression algorithm for low power devices, in IEEE Trans Circ Syst II: Express Briefs https://doi.org/10.1109/TCSII.2020.2978554
SibasankarPSharmaLNDandapatSMultilead ECG data compression using SVD in multiresolution domainBiomed Signal Process Control201623101810.1016/j.bspc.2015.06.012
Luo, J, Chen, Z, Xiang, X, Meng, J, Shen, H (2017) A dual-mode ECG processor with difference-insensitive QRS detection and lossless compression, IEICE Electronics Express, Vol, No 1–12 https://doi.org/10.1587/elex.14.20170524.
Tseng, YH, Chen, YH, Lu, CW (2017) Adaptive integration of the compressed algorithm of CS and NPC for the ECG signal compressed algorithm in VLSI implementation, Sensors, https://doi.org/10.3390/s17102288
ChowdhuryMHCheungRCCReconfigurable architecture for multi-lead ECG signal compression with high-frequency noise reductionSci Rep20199172332019NatSR...917233C1:CAS:528:DC%2BC1MXit1KrsrfP10.1038/s41598-019-53460-3317542176872821
Lin KJ, Huang HH, Lin YY (2018) An FPGA implementation of lossless ECG compressors based on multi-stage Huffman coding. In IEEE 7th global conference on consumer Electronics (GCCE), pp 132–133. https://doi.org/10.1109/GCCE.2018.8574652
Kumar, A, Kumar, M, Komaragiri, R (2018) Design of a Biorthogonal Wavelet Transform Based R-peak detection and data compression scheme for implantable cardiac pacemaker systems, J Med Syst, https://doi.org/10.1007/s10916-018-0953-2
AhmedSMAl-AjlouniAFAbo-ZahhadMHarbBECG signal compression using combined modified discrete cosine and discrete wavelet transformsJ Med Eng Technol2009331181:STN:280:DC%2BD1M%2FhtlGqtg%3D%3D10.1080/0309190070179745319116848
Chen, WJ, Lu, CC, Jiang, YH, Fang, HW (2017) FPGA design and verification for lossless ECG coding compression, 6th International Symposium on Next Generation Electronics (ISNE), https://doi.org/10.1109/ISNE.2017.7968728
Buxi D, Berset T, Hijdra M et al (2012) Wireless 3-lead ECG system with on-board digital signal processing for ambulatory monitoring, Biomedical Circuits, and Systems Conference. (BioCAS), 2012 IEEE, pp 308–311. https://doi.org/10.1109/BioCAS.2012.6418435
AliAMElnahelWZakariaHMVLSI architecture for optimization transform technique based on compression of ECG signalsInt J Comput Appl20191814809758887
Kalaivani, S, Tharini, C, Saranya, K et al. (2020) Design and implementation of hybrid compression algorithm for personal health care big data applications. Wirel Pers Commun https://doi.org/10.1007/s11277-020-07241-1
Jla M, Li F, Pu Y, Chen Z, A Lossless Electrocardiogram Compression System Based on Dual-Mode Prediction and Error Modeling https://doi.org/10.1109/ACCESS.2020.2998608
TiwariAFalkTHLossless electrocardiogram signal compression: a review of existing methodsBiomed Signal Process Control20195133834610.1016/j.bspc.2019.03.004
Sang Joon L, Jungkuk K, Myoungho L (2011) A Real-Time ECG Data Compression and Transmission Algorithm for an e-Health Device. IEEE Trans Biomed Eng, Vol. 58, No. 9, https://doi.org/10.1109/TBME.2011.2156794
Preethi, KGM, Thivakaran TK, Huang P (2020) FPGA Based Hardware Accelerator for Data Analytics: An Overview, UGC Care Journal, Vol-40-Issue-70-March −2020
Binu PK, Thomas K, Varghese NP (2017) Highly secure and efficient architectural model for IoT based health care systems. In 2017 international conference on advances in computing, communications, and informatics (ICACCI), pp 487–493. https://doi.org/10.1109/ICACCI.2017.8125887
Ieong, CI, Li, M, Law, MK, Mak, PI, Vai, MI, Martins, RP (2016) A 0.45 V 147–375 nW ECG compression processor with wavelet shrinkage and adaptive temporal decimation architectures, IEEE Trans Very Large Scale Integration (VLSI) Syst, https://doi.org/10.1109/TVLSI.2016.2638826
Deepu, CJ, Heng, CH, Lian, Y (2017) A hybrid data compression scheme for power reduction in wireless sensors for IoT, IEEE Trans Biomed Circ Syst, Volume 11, Issue 2. https://doi.org/10.1109/TBCAS.2016.2591923
KerdjidjOAmiraAGhanemKRamzanNKatsigiannisSChouirebFAn FPGA implementation of the matching pursuit algorithm for compressed sensing enabled e-health monitoring platformMicroprocess Microsyst20196713113910.1016/j.micpro.2019.03.007
TsaiT-HTsaiF-LEfficient lossless compression scheme for multi-channel ECG signal processingBiomed Signal Process Control20205910187910.1016/j.bspc.2020.101879
Luo, J, Chen, Z, Xiang, X, Meng, J (2018) A highly adaptive lossless ECG compression ASIC for wireless sensors based on hybrid Gomlomb coding, IEICE Trans Inf Syst, VOL.E101–D, NO.3, https://doi.org/10.1587/transient.2017EDL8206
IbrahimMKHamadAAAbedMOMohammedRARecent directions in ECG-FPGA researchesJ Univ Babylon Eng Sci2019272242251
Chan HL, Chiu YC, Kao YA, Wang CL (2011) VLSI implementation of wavelet-based electrocardiogram compression and decompression. J Med Biol Eng 31(5):331–338
Chen, YH, Tseng, YH, Chu, PH, Juan, Y, Wang, SP (2019) VLSI implementation of a cost-efficient 3-Lead lossless ECG compressor and decompressor, Circ Syst Signal Process, https://doi.org/10.1007/s00034-019-01198-8
Chen Q, Wenqi W, Zheng H, Zhao B, Ma Z, Chen W (2022) Stream-based lossless compression of sensor signals using an integer adaptive predictor. IEEE Trans Circ Syst https://doi.org/10.1109/TCSII.2022.3204550
MartinezJAlmeidaROlmosSA wavelet-based ECG delineator: evaluation on standard databases, biomedical engineeringIEEE Trans2004514570581
Wang LH, Chen TY, Lee SY et al (2012) A wireless ECG acquisition SOC for body sensor network, in BioCAS, 2012 IEEE, pp 156–159. https://doi.org/10.1109/BioCAS.2012.6418396
Lin KJ, Huang HH, Lin YY (2018) An FPGA implementation of lossless ECG compressors based on multi-stage huffman coding, IEEE 7th Global Conference on Consumer Electronics (GCCE). https://doi.org/10.1109/GCCE.2018.8574652
Tsai, TH, Hussain, MA, Hao, PZ, Hao P-Z (2018) VLSI implementation of ECG compression algorithm using Golomb Rice coding, IEEE international conference on consumer Electronics-Taiwan (ICCE-TW), https://doi.org/10.1109/ICCE-China.2018.8448939
ChenSLTuanMCChiTKLinTLVLSI architecture of lossless ECG compression design based on fuzzy decision and optimization method for wearable devicesElectron Lett 3rd September201551181409141110.1049/el.2015.2202
Zigel Y, Cohen A,  Abu-Ful A,  Wagshal A, Katz A (1997) Analysis by synthesis ECG signal compression. In: Proceedings of the Computers in Cardiology, Lund, Sweden, pp 279–282. https://doi.org/10.1109/CIC.1997.647885
Sarma J, Biswas R (2022) A VLSI-based hybrid ECG compression scheme for wearable sensor node, IEEE Sensors Lett ( Volume: 6, Issue: 4, April 2022). https://doi.org/10.1109/LSENS.2022.3157030
Tekeste, T, Saleh, H, Mohammad, B, Ismail, M (2018) Ultra-low power QRS detection and ECG compression architecture for IoT healthcare devices, IEEE Trans Circ Syst, https://doi.org/10.1109/TCSI.2018.2867746
Wang L-H, Zhang Z-H, Tsai W-P, Huang P-C, Abu PAR (2022) Low-Power Multi-Lead Wearable ECG System With Sensor Data Compression. IEEE Sens J (Volume: 22, Issue: 18, 15 September 2022). https://doi.org/10.1109/JSEN.2022.3195501
Jagadeeswari V, Subramaniyaswamy V, Logesh R, Vijayakumar V (2018) A study on medical Internet of Things and Big Data in personalized healthcare system. Jagadeeswari et al Health Inf Sci Syst 6:–14. https://doi.org/10.1007/s13755-018-0049-x
Chen S-L, Wang J-G (2013) VLSI implementation of low-power cost efficient lossless ECG encoder design for wireless healthcare monitoring application, Electronics Letters 17th January 2013 Vol. 49 No. 2. https://doi.org/10.1049/el.2012.3505
SandanalakshmiRAravindhIVLSI ±fuzzy decision controller based ECG encoderProced Comput Sci20168549650210.1016/j.procs.2016.05.201
Ding YS, Zilic Z (2016) ECG compression for mobile sensor platforms. IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), https://doi.org/10.1109/BSN.2016.7516240
Luo, J, Chen, Z, Xiang, X, Meng, J (2017) A lifting wavelet-based lossless and lossy ECG compression processor for wireless sensors, IEICE Electron Express, Vol.14, https://doi.org/10.1587/elex.14.20170865.
P Sibasankar (16631_CR40) 2016; 23
16631_CR22
16631_CR21
O Kerdjidj (16631_CR24) 2019; 67
16631_CR43
16631_CR20
SK Cherupally (16631_CR26) 2020; 14
T-H Tsai (16631_CR27) 2020; 59
16631_CR41
16631_CR37
16631_CR14
16631_CR36
16631_CR13
16631_CR35
16631_CR12
16631_CR34
16631_CR19
16631_CR18
MK Ibrahim (16631_CR8) 2019; 27
A Tiwari (16631_CR9) 2019; 51
16631_CR17
16631_CR39
16631_CR16
16631_CR38
SL Chen (16631_CR32) 2015; 51
MH Chowdhury (16631_CR23) 2019; 9
R Sandanalakshmi (16631_CR15) 2016; 85
16631_CR11
16631_CR33
16631_CR10
16631_CR31
J Martinez (16631_CR4) 2004; 51
16631_CR30
16631_CR29
16631_CR28
16631_CR7
AM Ali (16631_CR25) 2019; 181
SM Ahmed (16631_CR42) 2009; 33
16631_CR6
16631_CR5
16631_CR3
16631_CR2
16631_CR1
References_xml – reference: Binu PK, Thomas K, Varghese NP (2017) Highly secure and efficient architectural model for IoT based health care systems. In 2017 international conference on advances in computing, communications, and informatics (ICACCI), pp 487–493. https://doi.org/10.1109/ICACCI.2017.8125887
– reference: Sarma J, Biswas R (2022) A VLSI-based hybrid ECG compression scheme for wearable sensor node, IEEE Sensors Lett ( Volume: 6, Issue: 4, April 2022). https://doi.org/10.1109/LSENS.2022.3157030
– reference: Luo, J, Chen, Z, Xiang, X, Meng, J (2017) A lifting wavelet-based lossless and lossy ECG compression processor for wireless sensors, IEICE Electron Express, Vol.14, https://doi.org/10.1587/elex.14.20170865.
– reference: Tseng, YH, Chen, YH, Lu, CW (2017) Adaptive integration of the compressed algorithm of CS and NPC for the ECG signal compressed algorithm in VLSI implementation, Sensors, https://doi.org/10.3390/s17102288
– reference: Sang Joon L, Jungkuk K, Myoungho L (2011) A Real-Time ECG Data Compression and Transmission Algorithm for an e-Health Device. IEEE Trans Biomed Eng, Vol. 58, No. 9, https://doi.org/10.1109/TBME.2011.2156794
– reference: Wang LH, Chen TY, Lee SY et al (2012) A wireless ECG acquisition SOC for body sensor network, in BioCAS, 2012 IEEE, pp 156–159. https://doi.org/10.1109/BioCAS.2012.6418396
– reference: Preethi, KGM, Thivakaran TK, Huang P (2020) FPGA Based Hardware Accelerator for Data Analytics: An Overview, UGC Care Journal, Vol-40-Issue-70-March −2020
– reference: Chen S-L, Wang J-G (2013) VLSI implementation of low-power cost efficient lossless ECG encoder design for wireless healthcare monitoring application, Electronics Letters 17th January 2013 Vol. 49 No. 2. https://doi.org/10.1049/el.2012.3505
– reference: Chen, WJ, Lu, CC, Jiang, YH, Fang, HW (2017) FPGA design and verification for lossless ECG coding compression, 6th International Symposium on Next Generation Electronics (ISNE), https://doi.org/10.1109/ISNE.2017.7968728
– reference: AhmedSMAl-AjlouniAFAbo-ZahhadMHarbBECG signal compression using combined modified discrete cosine and discrete wavelet transformsJ Med Eng Technol2009331181:STN:280:DC%2BD1M%2FhtlGqtg%3D%3D10.1080/0309190070179745319116848
– reference: TsaiT-HTsaiF-LEfficient lossless compression scheme for multi-channel ECG signal processingBiomed Signal Process Control20205910187910.1016/j.bspc.2020.101879
– reference: Kumar, A, Kumar, M, Komaragiri, R (2018) Design of a Biorthogonal Wavelet Transform Based R-peak detection and data compression scheme for implantable cardiac pacemaker systems, J Med Syst, https://doi.org/10.1007/s10916-018-0953-2
– reference: Tsai, TH, Hussain, MA, Hao, PZ, Hao P-Z (2018) VLSI implementation of ECG compression algorithm using Golomb Rice coding, IEEE international conference on consumer Electronics-Taiwan (ICCE-TW), https://doi.org/10.1109/ICCE-China.2018.8448939
– reference: TiwariAFalkTHLossless electrocardiogram signal compression: a review of existing methodsBiomed Signal Process Control20195133834610.1016/j.bspc.2019.03.004
– reference: Zigel Y, Cohen A,  Abu-Ful A,  Wagshal A, Katz A (1997) Analysis by synthesis ECG signal compression. In: Proceedings of the Computers in Cardiology, Lund, Sweden, pp 279–282. https://doi.org/10.1109/CIC.1997.647885
– reference: ChowdhuryMHCheungRCCReconfigurable architecture for multi-lead ECG signal compression with high-frequency noise reductionSci Rep20199172332019NatSR...917233C1:CAS:528:DC%2BC1MXit1KrsrfP10.1038/s41598-019-53460-3317542176872821
– reference: Lin KJ, Huang HH, Lin YY (2018) An FPGA implementation of lossless ECG compressors based on multi-stage Huffman coding. In IEEE 7th global conference on consumer Electronics (GCCE), pp 132–133. https://doi.org/10.1109/GCCE.2018.8574652
– reference: ChenSLTuanMCChiTKLinTLVLSI architecture of lossless ECG compression design based on fuzzy decision and optimization method for wearable devicesElectron Lett 3rd September201551181409141110.1049/el.2015.2202
– reference: SibasankarPSharmaLNDandapatSMultilead ECG data compression using SVD in multiresolution domainBiomed Signal Process Control201623101810.1016/j.bspc.2015.06.012
– reference: Kalaivani, S, Tharini, C, Saranya, K et al. (2020) Design and implementation of hybrid compression algorithm for personal health care big data applications. Wirel Pers Commun https://doi.org/10.1007/s11277-020-07241-1
– reference: KerdjidjOAmiraAGhanemKRamzanNKatsigiannisSChouirebFAn FPGA implementation of the matching pursuit algorithm for compressed sensing enabled e-health monitoring platformMicroprocess Microsyst20196713113910.1016/j.micpro.2019.03.007
– reference: Ding YS, Zilic Z (2016) ECG compression for mobile sensor platforms. IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), https://doi.org/10.1109/BSN.2016.7516240
– reference: Deepu, CJ, Heng, CH, Lian, Y (2017) A hybrid data compression scheme for power reduction in wireless sensors for IoT, IEEE Trans Biomed Circ Syst, Volume 11, Issue 2. https://doi.org/10.1109/TBCAS.2016.2591923
– reference: Chen Q, Wenqi W, Zheng H, Zhao B, Ma Z, Chen W (2022) Stream-based lossless compression of sensor signals using an integer adaptive predictor. IEEE Trans Circ Syst https://doi.org/10.1109/TCSII.2022.3204550
– reference: Jagadeeswari V, Subramaniyaswamy V, Logesh R, Vijayakumar V (2018) A study on medical Internet of Things and Big Data in personalized healthcare system. Jagadeeswari et al Health Inf Sci Syst 6:–14. https://doi.org/10.1007/s13755-018-0049-x
– reference: Lin KJ, Huang HH, Lin YY (2018) An FPGA implementation of lossless ECG compressors based on multi-stage huffman coding, IEEE 7th Global Conference on Consumer Electronics (GCCE). https://doi.org/10.1109/GCCE.2018.8574652
– reference: Jla M, Li F, Pu Y, Chen Z, A Lossless Electrocardiogram Compression System Based on Dual-Mode Prediction and Error Modeling https://doi.org/10.1109/ACCESS.2020.2998608
– reference: CherupallySKYinSKadetotadDSrivastavaGBaeCKimSJSeoJSECG authentication hardware design with low-power signal processing and neural network optimization with low precision and structured compressionIEEE Trans Biomed Circ Syst202014219820810.1109/TBCAS.2020.2974387
– reference: Luo, J, Chen, Z, Xiang, X, Meng, J, Shen, H (2017) A dual-mode ECG processor with difference-insensitive QRS detection and lossless compression, IEICE Electronics Express, Vol, No 1–12 https://doi.org/10.1587/elex.14.20170524.
– reference: Ieong, CI, Li, M, Law, MK, Mak, PI, Vai, MI, Martins, RP (2016) A 0.45 V 147–375 nW ECG compression processor with wavelet shrinkage and adaptive temporal decimation architectures, IEEE Trans Very Large Scale Integration (VLSI) Syst, https://doi.org/10.1109/TVLSI.2016.2638826
– reference: MartinezJAlmeidaROlmosSA wavelet-based ECG delineator: evaluation on standard databases, biomedical engineeringIEEE Trans2004514570581
– reference: Ballesteros DM, Moreno DM, Gaona AE (2012) FPGA compression of ECG signals by using modified convolution scheme of the Discrete Wavelet Transform Volume 20 N° 1. https://doi.org/10.4067/S0718-33052012000100002
– reference: Kuppusamy P G, Sureshkumar R, Yuvaraj S A, Dilliraj E, VLSI based lossless ECG compression algorithm implementation for low power devices. J Phys Conf Ser https://doi.org/10.1088/1742-6596/1964/6/062073
– reference: Wang L-H, Zhang Z-H, Tsai W-P, Huang P-C, Abu PAR (2022) Low-Power Multi-Lead Wearable ECG System With Sensor Data Compression. IEEE Sens J (Volume: 22, Issue: 18, 15 September 2022). https://doi.org/10.1109/JSEN.2022.3195501
– reference: SandanalakshmiRAravindhIVLSI ±fuzzy decision controller based ECG encoderProced Comput Sci20168549650210.1016/j.procs.2016.05.201
– reference: Buxi D, Berset T, Hijdra M et al (2012) Wireless 3-lead ECG system with on-board digital signal processing for ambulatory monitoring, Biomedical Circuits, and Systems Conference. (BioCAS), 2012 IEEE, pp 308–311. https://doi.org/10.1109/BioCAS.2012.6418435
– reference: Chen, YH, Tseng, YH, Chu, PH, Juan, Y, Wang, SP (2019) VLSI implementation of a cost-efficient 3-Lead lossless ECG compressor and decompressor, Circ Syst Signal Process, https://doi.org/10.1007/s00034-019-01198-8
– reference: Tsai T, Hussain MA (2020) VLSI implementation of lossless ECG compression algorithm for low power devices, in IEEE Trans Circ Syst II: Express Briefs https://doi.org/10.1109/TCSII.2020.2978554
– reference: Tekeste, T, Saleh, H, Mohammad, B, Ismail, M (2018) Ultra-low power QRS detection and ECG compression architecture for IoT healthcare devices, IEEE Trans Circ Syst, https://doi.org/10.1109/TCSI.2018.2867746
– reference: AliAMElnahelWZakariaHMVLSI architecture for optimization transform technique based on compression of ECG signalsInt J Comput Appl20191814809758887
– reference: IbrahimMKHamadAAAbedMOMohammedRARecent directions in ECG-FPGA researchesJ Univ Babylon Eng Sci2019272242251
– reference: Chan HL, Chiu YC, Kao YA, Wang CL (2011) VLSI implementation of wavelet-based electrocardiogram compression and decompression. J Med Biol Eng 31(5):331–338
– reference: Luo, J, Chen, Z, Xiang, X, Meng, J (2018) A highly adaptive lossless ECG compression ASIC for wireless sensors based on hybrid Gomlomb coding, IEICE Trans Inf Syst, VOL.E101–D, NO.3, https://doi.org/10.1587/transient.2017EDL8206
– ident: 16631_CR17
  doi: 10.3390/s17102288
– ident: 16631_CR33
  doi: 10.5405/jmbe.715
– ident: 16631_CR1
  doi: 10.1109/GCCE.2018.8574652
– volume: 9
  start-page: 17233
  year: 2019
  ident: 16631_CR23
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-53460-3
– ident: 16631_CR7
  doi: 10.2139/ssrn.3664586
– ident: 16631_CR6
  doi: 10.1007/s13755-018-0049-x
– volume: 27
  start-page: 242
  issue: 2
  year: 2019
  ident: 16631_CR8
  publication-title: J Univ Babylon Eng Sci
– volume: 51
  start-page: 346
  issue: 338
  year: 2019
  ident: 16631_CR9
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2019.03.004
– ident: 16631_CR3
  doi: 10.1109/BioCAS.2012.6418435
– ident: 16631_CR14
  doi: 10.1587/elex.14.20170524
– ident: 16631_CR19
  doi: 10.1109/ISNE.2017.7968728
– ident: 16631_CR5
  doi: 10.1109/CIC.1997.647885
– ident: 16631_CR35
  doi: 10.1109/ACCESS.2020.2998608
– volume: 51
  start-page: 1409
  issue: 18
  year: 2015
  ident: 16631_CR32
  publication-title: Electron Lett 3rd September
  doi: 10.1049/el.2015.2202
– ident: 16631_CR37
  doi: 10.1109/JSEN.2022.3195501
– volume: 85
  start-page: 496
  year: 2016
  ident: 16631_CR15
  publication-title: Proced Comput Sci
  doi: 10.1016/j.procs.2016.05.201
– ident: 16631_CR12
  doi: 10.1007/s00034-019-01198-8
– ident: 16631_CR10
  doi: 10.1109/ICACCI.2017.8125887
– volume: 181
  start-page: 0975
  issue: 48
  year: 2019
  ident: 16631_CR25
  publication-title: Int J Comput Appl
– ident: 16631_CR31
  doi: 10.1049/el.2012.3505
– ident: 16631_CR30
  doi: 10.1109/TCSII.2020.2978554
– volume: 33
  start-page: 1
  issue: 1
  year: 2009
  ident: 16631_CR42
  publication-title: J Med Eng Technol
  doi: 10.1080/03091900701797453
– volume: 59
  start-page: 101879
  year: 2020
  ident: 16631_CR27
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.101879
– ident: 16631_CR36
  doi: 10.1088/1742-6596/1964/6/062073
– ident: 16631_CR16
  doi: 10.1109/TCSI.2018.2867746
– ident: 16631_CR20
  doi: 10.1109/ICCE-China.2018.8448939
– ident: 16631_CR43
  doi: 10.4067/S0718-33052012000100002
– ident: 16631_CR28
  doi: 10.1109/GCCE.2018.8574652
– ident: 16631_CR41
  doi: 10.1109/BSN.2016.7516240
– ident: 16631_CR18
  doi: 10.1109/TVLSI.2016.2638826
– volume: 23
  start-page: 10
  year: 2016
  ident: 16631_CR40
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2015.06.012
– ident: 16631_CR22
  doi: 10.1109/TBCAS.2016.2591923
– volume: 51
  start-page: 570
  issue: 4
  year: 2004
  ident: 16631_CR4
  publication-title: IEEE Trans
– volume: 67
  start-page: 131
  year: 2019
  ident: 16631_CR24
  publication-title: Microprocess Microsyst
  doi: 10.1016/j.micpro.2019.03.007
– ident: 16631_CR39
  doi: 10.1109/TBME.2011.2156794
– volume: 14
  start-page: 198
  issue: 2
  year: 2020
  ident: 16631_CR26
  publication-title: IEEE Trans Biomed Circ Syst
  doi: 10.1109/TBCAS.2020.2974387
– ident: 16631_CR38
  doi: 10.1109/LSENS.2022.3157030
– ident: 16631_CR2
  doi: 10.1109/BioCAS.2012.6418396
– ident: 16631_CR13
  doi: 10.1587/transient.2017EDL8206
– ident: 16631_CR29
  doi: 10.1007/s11277-020-07241-1
– ident: 16631_CR11
  doi: 10.1587/elex.14.20170865
– ident: 16631_CR21
  doi: 10.1007/s10916-018-0953-2
– ident: 16631_CR34
  doi: 10.1109/TCSII.2022.3204550
SSID ssj0016524
Score 2.4017804
Snippet The Internet of Things (IoT) in the medical and biomedical field proposes new and efficient hardware for healthcare services. Thanks to machine-machine...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 30937
SubjectTerms Algorithms
Compression ratio
Computer architecture
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Electrocardiography
Hardware
Health services
Internet of Things
Large scale integration
Medical electronics
Microprocessors
Multimedia Information Systems
Real time
Special Purpose and Application-Based Systems
Track 2: Medical Applications of Multimedia
Very large scale integration
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH5iO9ADW1t1WoreoTewiLP7hNAIWiRAFZu4RY4XOhJk6CQtEr-e58RhAAkunBNblt7yPfstH8APnpDDs4FiueSWxUJpJsskYDqPbGxkkGnTjsw_zI6P88tL8ds_uNW-rLL3ia2j1mPl3si3QxFzgv6Epzu3f5ljjXLZVU-hMQvzLrJxJX1HwfAxi5AmntQ2DxghI_dNM13rHHeNKYRYjBPocnb_HJim0eaLBGmLO_vL7z3xCiz5iBN3OxVZhRlTrcFyz-aA3rjX4MOT0YQf4e6EIkjmmOfR9WXdyYnBp0kHHFuUFe4Nf6KrSu-qaSuU11d0hObPDVIwjAfjM-waLdFVmGE3NrqmhRpHTY0Xh6cHOLrpS9idjnyC8_29s-Ev5kkamCLrbViobRJlWodlSaFkGaVGmVQoy63IwtwQQCpJ17BQ6iyxygobyoir0tJFTTmHEX2GuWpcmS-AIV3HZRaX3DVViSQSyg37k4LLMk3LOBgA7yVUKD_B3BFpXBfT2ctOqgVJtWilWtwPYPNxzW03v-PNv9d7URbelutiKscBbPXKMP38-m5f397tGyyGFCF1BW3rMNdM_pnvsKD-N6N6stFq8gOAHfkW
  priority: 102
  providerName: ProQuest
Title Real-time hardware architecture of an ECG compression algorithm for IoT health care systems and its VLSI implementation
URI https://link.springer.com/article/10.1007/s11042-023-16631-z
https://www.proquest.com/docview/2941423516
Volume 83
WOSCitedRecordID wos001066762000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M2O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ_w4YM-iKDEE7jMA2_aZNv97KNcDiHieTkQ0ZdNt9vCJbBnbhdI-Oud7geHRkz0pUmz7aZpZzrTzPx-A7DLQ7rwrKdZorhlgdQ5U1nosTzxbWCUF-empsw_ikej5OxMjltQWNllu3chyfqmXoDduIOSkI1hnMwkZ3fLsErmLnEFGybHp_exgygUQQuP-fO8X03Qwq_8LRRaW5j9tf9b2wt43nqU-L4RgXVYMsUGrHXVGrBV3g149oB68CXcTshDZK6yPDrc1a2aG3wYVMCZRVXgcPABXdZ5ky1boLo8n82n1cUVkrOLh7MTbICU6DLIsKGFLmlijtOqxNOj40OcXnUp6k4GXsGX_eHJ4IC1RRiYJu2smMht6Md5LrKMXMXMj4w2kdSWWxmLxJAB1IqeWULlcWi1lVYon-vM0kNMuwvB34SVYlaY14CCntsqDjLuQFMy9KV2ZH5KcpVFURZ4PeDduaS6ZSh3hTIu0wW3stvnlPY5rfc5vevB2_s5Pxp-jr-O3u6OO211tUyFDGj9fsijHrzrjnfx-fG_vfm34VvwVJBH1CSwbcNKNb82O_BE31TTct6H5fjrtz6s7g1H4wn1PsaM2k_ewLXiM7Xj8Hu_lvSf60b0aA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQcKBQQgQJzgBOs8K7fh6pCpaVRQoQgoN7c9T7aSI1TYkPU_qj-Rmb9aAoSvfXA2fZKXn_zWM983wC84iE5POsplkhuWZAqzWQeekwnvg2M9GJtasn8YTwaJfv76ecVOO-4MK6tsvOJtaPWM-X-kb8TacAp9Ic82jr5wdzUKFdd7UZoNLAYmNMFHdnKzf4H-r6vhdjdGW_vsXaqAFMEt4oJbUM_1lrkOeU-uR8ZZaJUWW7TWCSGPLqSdG4QUsehVTa1Qvpc5ZZOFsoh3Kd1b8DNwE9iZ1eDmF1ULaKwHaKbeIwiMW9JOg1VjzsiDEVIxinIc3b2ZyBcZrd_FWTrOLe79r_t0H2412bU-L4xgQewYop1WOumVWDrvNbh7iXpxYew-EIZMqsmU4OOd7aQc4OXiyo4sygL3Nn-iK7rvukWLlAeH9IrV0dTpGQf-7MxNkRSdB102Mhil_SgxklV4vfh1z5Opl2LvrOBR_DtWjbjMawWs8I8ARRxksg4yLkjjaWhnyonZihTLvMoygOvB7xDRKZahXY3KOQ4W2pLOxRlhKKsRlF21oM3F8-cNPokV9690UEna31VmS1x04O3HfiWl_-92tOrV3sJt_fGn4bZsD8aPIM7grLBpnlvA1ar-U_zHG6pX9WknL-orQjh4LpB-RsFLFdo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAcWiggQgvMAU6wqnf9PlQItQ1EjaIICqq4uOt9QKTGKbEhoj-tv45ZP5qCRG89cLa9ktffzsPzfTMAL3hIBs96iiWSWxakSjOZhx7TiW8DI71Ym7pl_jAejZKjo3S8AuedFsbRKjubWBtqPVPuH_m2SANOrj_k0bZtaRHjvf6b0-_MTZByldZunEYDkQPza0HpW7kz2KNv_VKI_v7h7nvWThhgiqBXMaFt6MdaizynOCj3I6NMlCrLbRqLxJB1V5JyCCF1HFplUyukz1VuKctQDu0-rXsDbsaUYzo64Tj8clHBiMJ2oG7iMfLKvBXsNLI97kQx5C0ZJ4fP2dmfTnEZ6f5VnK19Xn_9f96te7DWRtr4tjka92HFFBuw3k2xwNaobcDdSy0ZH8DiA0XOrJpMDTo92kLODV4utuDMoixwf_cdOjZ-wyIuUJ58pVeuvk2RkgAczA6xEZiiY9Zh0y67pAc1TqoSPw8_DnAy7aj77mw8hE_XshmPYLWYFeYxoIiTRMZBzp2YLA39VLkmhzLlMo-iPPB6wDt0ZKrt3O4GiJxky57TDlEZISqrEZWd9eDVxTOnTd-SK-_e6mCUtTaszJYY6sHrDojLy_9e7cnVqz2H24TFbDgYHWzCHUFBYsPp24LVav7DPIVb6mc1KefP6gOFcHzdmPwNjX5gjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+hardware+architecture+of+an+ECG+compression+algorithm+for+IoT+health+care+systems+and+its+VLSI+implementation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Ez-ziymy%2C+Siham&rft.au=Hatim%2C+Anas&rft.au=Hammia%2C+Slama&rft.date=2024-03-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=10&rft.spage=30937&rft.epage=30961&rft_id=info:doi/10.1007%2Fs11042-023-16631-z&rft.externalDocID=10_1007_s11042_023_16631_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon