Optimal AI Model for Accurate Classification of Squeezing in Underground Structures
Assessing ground conditions with regard to the potential for squeezing and the behavior of geological structures is a crucial aspect of designing underground structures. Tunnel construction in conditions where squeezing occurs can be a challenging and time-consuming process. Recognizing and evaluati...
Uloženo v:
| Vydáno v: | Geotechnical and geological engineering Ročník 43; číslo 2; s. 65 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.02.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0960-3182, 1573-1529 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Assessing ground conditions with regard to the potential for squeezing and the behavior of geological structures is a crucial aspect of designing underground structures. Tunnel construction in conditions where squeezing occurs can be a challenging and time-consuming process. Recognizing and evaluating the potential for squeezing is essential in determining the appropriate excavation method and support system, particularly in weak rock formations. This study introduces an innovative application of multiple artificial intelligence (AI) methods, comparing their effectiveness in accurately classifying tunnel squeezing based on real-world data. Unlike previous works that focused on empirical or single-model approaches, this research systematically evaluates and optimizes six AI-based classifiers (Decision Trees (DT), K-nearest Neighbors (KNN), Neural Networks (NN), Naive Bayes (NB), Support Vector Machines (SVM), and Ensemble Classification (EC)) using a dataset of 114 tunnel cases. The results reveal that the DT model outperforms other classifiers with an accuracy rate of approximately 0.98. This finding is significant because it presents a reliable AI-driven method for classifying tunnel squeezing, offering engineers and designers a robust tool for mitigating risks in tunnel construction. |
|---|---|
| AbstractList | Assessing ground conditions with regard to the potential for squeezing and the behavior of geological structures is a crucial aspect of designing underground structures. Tunnel construction in conditions where squeezing occurs can be a challenging and time-consuming process. Recognizing and evaluating the potential for squeezing is essential in determining the appropriate excavation method and support system, particularly in weak rock formations. This study introduces an innovative application of multiple artificial intelligence (AI) methods, comparing their effectiveness in accurately classifying tunnel squeezing based on real-world data. Unlike previous works that focused on empirical or single-model approaches, this research systematically evaluates and optimizes six AI-based classifiers (Decision Trees (DT), K-nearest Neighbors (KNN), Neural Networks (NN), Naive Bayes (NB), Support Vector Machines (SVM), and Ensemble Classification (EC)) using a dataset of 114 tunnel cases. The results reveal that the DT model outperforms other classifiers with an accuracy rate of approximately 0.98. This finding is significant because it presents a reliable AI-driven method for classifying tunnel squeezing, offering engineers and designers a robust tool for mitigating risks in tunnel construction. |
| ArticleNumber | 65 |
| Author | Fattahi, Hadi Mohtarami, Ehsan |
| Author_xml | – sequence: 1 givenname: Hadi surname: Fattahi fullname: Fattahi, Hadi organization: Faculty of Earth Sciences Engineering, Arak University of Technology – sequence: 2 givenname: Ehsan orcidid: 0009-0000-6336-3528 surname: Mohtarami fullname: Mohtarami, Ehsan email: e.mohtarami@arakut.ac.ir organization: Faculty of Earth Sciences Engineering, Arak University of Technology |
| BookMark | eNp9kEtPAyEQgImpiW31D3gi8bw6QHe3HJvGR5OaHmrPhGWhoVmhAnvQXy92TUw89MQwmW8e3wSNnHcaoVsC9wSgfogEaqgKoLMCWE4U_AKNSVmzgpSUj9AYeAUFI3N6hSYxHgCAVkDGaLs5JvsuO7xY4Vff6g4bH_BCqT7IpPGykzFaY5VM1jvsDd5-9Fp_WbfH1uGda3XYB9-7Fm9T6FXqg47X6NLILuqb33eKdk-Pb8uXYr15Xi0X60IxwlNBVdkwKltdmtYYBrPSmBwrxQwrG0NqaInk8xxSY9RMt02jqCSMA6ub_GFTdDf0PQaft4pJHHwfXB4pGCmBc0arMlfRoUoFH2PQRhxDvjh8CgLiR54Y5IksT5zkCZ6h-T9I2XRykIK03XmUDWjMc9xeh7-tzlDfuJmHXA |
| CitedBy_id | crossref_primary_10_1155_adce_7026847 crossref_primary_10_1007_s10706_025_03259_z |
| Cites_doi | 10.1007/s10706-021-01970-1 10.1016/j.tust.2006.06.005 10.1016/j.deepre.2024.100008 10.1061/(ASCE)CP.1943-5487.0000553 10.1080/01621459.2022.2126782 10.1007/BF01032652 10.3390/s21020463 10.1007/s00366-016-0433-6 10.1016/j.enggeo.2015.06.017 10.1155/2018/4543984 10.1016/j.ejso.2014.01.014 10.3389/feart.2022.857463 10.1007/s10064-020-01747-5 10.1007/s10706-016-0056-0 10.3390/su12176735 10.1016/j.enggeo.2011.05.006 10.1007/s00603-020-02138-8 10.1007/s10706-022-02178-7 10.1016/j.cageo.2011.09.011 10.1080/01621459.2023.2197686 10.1007/s12517-023-11237-z 10.1038/323533a0 10.1016/j.cemconcomp.2021.104103 10.1016/j.enggeo.2013.04.005 10.1007/s11831-022-09774-z 10.1016/j.ijrmms.2006.04.013 10.1016/j.engappai.2020.104015 10.1016/j.tust.2020.103697 10.1016/j.ijrmms.2017.10.010 10.22044/jme.2022.12092.2206 10.1007/s12665-018-7421-7 10.1016/j.undsp.2022.11.001 10.1007/s10706-018-0705-6 10.1016/j.jmsy.2013.05.006 10.1016/j.heliyon.2024.e26515 10.1038/s41598-024-72998-5 10.1144/qjegh2019-108 10.1007/s11053-021-09929-y 10.22044/jme.2016.824 10.1007/s40515-024-00434-2 10.1016/j.enggeo.2010.09.009 10.1007/s10706-023-02665-5 10.36487/ACG_rep/1304_05_Hadjigeorgiou 10.1007/s10706-022-02154-1 10.1016/j.eswa.2023.121118 10.1016/j.jrmge.2020.05.010 10.1016/0886-7798(92)90114-W 10.1007/s00603-018-1673-0 10.1007/s10706-020-01213-9 10.1007/s10706-016-0139-y 10.1061/(ASCE)1090-0241(2001)127:9(726) 10.1007/s00366-021-01418-3 10.1007/BF01023620 10.1680/dapoue.35652.0028 10.1007/s11440-022-01450-7 10.1007/s10706-018-0714-5 10.1016/0013-7952(94)00002-J 10.1007/s10706-017-0238-4 10.1016/j.patcog.2017.03.025 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Feb 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Feb 2025 |
| DBID | AAYXX CITATION 7TN 7UA C1K F1W H96 L.G |
| DOI | 10.1007/s10706-024-03007-9 |
| DatabaseName | CrossRef Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1529 |
| ExternalDocumentID | 10_1007_s10706_024_03007_9 |
| GroupedDBID | -Y2 .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67M 67Z 6NX 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LK5 LLZTM M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P0- P19 PCBAR PF0 PHGZM PHGZT PQGLB PT4 PT5 PTHSS QOK QOS R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 ZMTXR ~02 ~A9 ~EX AAYXX AFFHD CITATION 7TN 7UA C1K F1W H96 L.G |
| ID | FETCH-LOGICAL-c319t-2c5b32ade5fdff3045ffe5fcc3f35bf170d1a985bf2ffc4edbbc2a139037bdbb3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001390050300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-3182 |
| IngestDate | Fri Nov 14 03:52:17 EST 2025 Tue Nov 18 20:15:38 EST 2025 Sat Nov 29 08:08:46 EST 2025 Mon Jul 21 06:09:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Underground structures Squeezing phenomenon Classification models Artificial intelligence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-2c5b32ade5fdff3045ffe5fcc3f35bf170d1a985bf2ffc4edbbc2a139037bdbb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0000-6336-3528 |
| PQID | 3150993265 |
| PQPubID | 2043601 |
| ParticipantIDs | proquest_journals_3150993265 crossref_primary_10_1007_s10706_024_03007_9 crossref_citationtrail_10_1007_s10706_024_03007_9 springer_journals_10_1007_s10706_024_03007_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20250200 2025-02-00 20250201 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 2 year: 2025 text: 20250200 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Geotechnical and geological engineering |
| PublicationTitleAbbrev | Geotech Geol Eng |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | AM Noori (3007_CR37) 2020; 38 M Singh (3007_CR45) 2007; 22 M Akbarzadeh (3007_CR3) 2022; 40 Z Huang (3007_CR29) 2022; 40 F Azizi (3007_CR6) 2019; 37 X Feng (3007_CR21) 2015; 195 J Zhou (3007_CR55) 2021; 30 DE Rumelhart (3007_CR40) 1986; 323 TF Tvedskov (3007_CR49) 2014; 40 3007_CR66 R Mikaeil (3007_CR36) 2022; 13 3007_CR67 3007_CR64 RD Dwivedi (3007_CR13) 2019; 52 3007_CR65 RK Goel (3007_CR24) 1995; 39 Y Sun (3007_CR48) 2018; 2018 J Zhang (3007_CR52) 2020; 79 G Guido (3007_CR25) 2020 C Shao (3007_CR42) 2013; 32 3007_CR62 E Hoek (3007_CR27) 2000; 32 J Zhou (3007_CR54) 2016; 30 3007_CR63 3007_CR60 A Subasi (3007_CR47) 2020 3007_CR61 AI Lawal (3007_CR34) 2021; 13 Y Chen (3007_CR10) 2020; 53 Y Song (3007_CR46) 2012; 42 M Panet (3007_CR38) 1996; 29 ZA Al-Sadoon (3007_CR4) 2024; 42 SM Fatemi Aghda (3007_CR16) 2016; 34 H Fathipour-Azar (3007_CR17) 2022; 29 H Fattahi (3007_CR19) 2017; 35 Y-K Yeon (3007_CR51) 2010; 116 X Huang (3007_CR28) 2022 X Wang (3007_CR50) 2021; 109 3007_CR59 S Sharma (3007_CR43) 2021 J Zhou (3007_CR56) 2021; 97 B Singh (3007_CR44) 1992; 7 S Bates (3007_CR8) 2024; 119 J Zhou (3007_CR57) 2022; 38 N Cortés (3007_CR11) 2024; 10 E Ghasemi (3007_CR22) 2019; 37 H Farhadian (3007_CR15) 2020; 53 Ö Aydan (3007_CR5) 1993; 26 E Ghasemi (3007_CR23) 2024 Y Bo (3007_CR9) 2023; 10 J Zhang (3007_CR53) 2021; 121 H Fattahi (3007_CR18) 2016 X-T Feng (3007_CR20) 2024; 1 JM Klusowski (3007_CR33) 2024; 119 D Majumder (3007_CR35) 2017; 100 A Jain (3007_CR30) 2022; 40 HS Fard (3007_CR14) 2024; 14 J Zhou (3007_CR58) 2022; 17 G Jiang (3007_CR31) 2017; 69 N Babanouri (3007_CR7) 2018; 77 RD Dwivedi (3007_CR12) 2013; 161 A Abd Elwahab (3007_CR1) 2023; 16 E Hoek (3007_CR26) 2001; 127 R Ajalloeian (3007_CR2) 2017; 35 R Jimenez (3007_CR32) 2011; 121 KK Panthi (3007_CR39) 2007; 44 S Shaffiee Haghshenas (3007_CR41) 2023; 234 |
| References_xml | – volume: 40 start-page: 1387 year: 2022 ident: 3007_CR29 publication-title: Geotech Geol Eng doi: 10.1007/s10706-021-01970-1 – volume: 22 start-page: 343 year: 2007 ident: 3007_CR45 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2006.06.005 – volume: 1 year: 2024 ident: 3007_CR20 publication-title: Deep Resources Engineering doi: 10.1016/j.deepre.2024.100008 – volume: 30 start-page: 04016003 year: 2016 ident: 3007_CR54 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000553 – volume: 119 start-page: 525 year: 2024 ident: 3007_CR33 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2022.2126782 – volume: 29 start-page: 155 year: 1996 ident: 3007_CR38 publication-title: Rock Mech Rock Eng doi: 10.1007/BF01032652 – year: 2021 ident: 3007_CR43 publication-title: Sensors doi: 10.3390/s21020463 – year: 2016 ident: 3007_CR18 publication-title: Eng Comput doi: 10.1007/s00366-016-0433-6 – volume: 195 start-page: 214 year: 2015 ident: 3007_CR21 publication-title: Eng Geol doi: 10.1016/j.enggeo.2015.06.017 – volume: 2018 start-page: 4543984 year: 2018 ident: 3007_CR48 publication-title: Advances in Civil Engineering doi: 10.1155/2018/4543984 – volume: 40 start-page: 435 year: 2014 ident: 3007_CR49 publication-title: European Journal of Surgical Oncology (EJSO) doi: 10.1016/j.ejso.2014.01.014 – year: 2022 ident: 3007_CR28 publication-title: Front Earth Sci doi: 10.3389/feart.2022.857463 – volume: 79 start-page: 3245 year: 2020 ident: 3007_CR52 publication-title: Bull Eng Geol Env doi: 10.1007/s10064-020-01747-5 – volume: 34 start-page: 1487 year: 2016 ident: 3007_CR16 publication-title: Geotech Geol Eng doi: 10.1007/s10706-016-0056-0 – year: 2020 ident: 3007_CR25 publication-title: Sustainability doi: 10.3390/su12176735 – volume: 121 start-page: 101 year: 2011 ident: 3007_CR32 publication-title: Eng Geol doi: 10.1016/j.enggeo.2011.05.006 – volume: 53 start-page: 3521 year: 2020 ident: 3007_CR10 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-020-02138-8 – volume: 40 start-page: 4685 year: 2022 ident: 3007_CR3 publication-title: Geotech Geol Eng doi: 10.1007/s10706-022-02178-7 – volume: 42 start-page: 189 year: 2012 ident: 3007_CR46 publication-title: Comput Geosci doi: 10.1016/j.cageo.2011.09.011 – ident: 3007_CR62 – volume: 119 start-page: 1434 year: 2024 ident: 3007_CR8 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2023.2197686 – volume: 16 start-page: 133 year: 2023 ident: 3007_CR1 publication-title: Arab J Geosci doi: 10.1007/s12517-023-11237-z – ident: 3007_CR66 – ident: 3007_CR59 – volume: 323 start-page: 533 year: 1986 ident: 3007_CR40 publication-title: Nature doi: 10.1038/323533a0 – volume: 121 year: 2021 ident: 3007_CR53 publication-title: Cement Concr Compos doi: 10.1016/j.cemconcomp.2021.104103 – volume: 161 start-page: 55 year: 2013 ident: 3007_CR12 publication-title: Eng Geol doi: 10.1016/j.enggeo.2013.04.005 – volume: 29 start-page: 5493 year: 2022 ident: 3007_CR17 publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-022-09774-z – volume: 44 start-page: 67 year: 2007 ident: 3007_CR39 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2006.04.013 – volume: 97 year: 2021 ident: 3007_CR56 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.104015 – volume: 109 year: 2021 ident: 3007_CR50 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2020.103697 – volume: 32 start-page: 45 year: 2000 ident: 3007_CR27 publication-title: Tunnels and Tunnelling International – volume: 100 start-page: 278 year: 2017 ident: 3007_CR35 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2017.10.010 – volume: 13 start-page: 693 year: 2022 ident: 3007_CR36 publication-title: Journal of Mining and Environment doi: 10.22044/jme.2022.12092.2206 – volume: 77 start-page: 243 year: 2018 ident: 3007_CR7 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-018-7421-7 – volume: 10 start-page: 91 year: 2023 ident: 3007_CR9 publication-title: Underground Space doi: 10.1016/j.undsp.2022.11.001 – volume: 37 start-page: 1523 year: 2019 ident: 3007_CR22 publication-title: Geotech Geol Eng doi: 10.1007/s10706-018-0705-6 – ident: 3007_CR65 – volume: 32 start-page: 550 year: 2013 ident: 3007_CR42 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2013.05.006 – volume: 10 year: 2024 ident: 3007_CR11 publication-title: Chile Heliyon doi: 10.1016/j.heliyon.2024.e26515 – volume: 14 start-page: 22885 year: 2024 ident: 3007_CR14 publication-title: Sci Rep doi: 10.1038/s41598-024-72998-5 – volume: 53 start-page: 655 year: 2020 ident: 3007_CR15 publication-title: Q J Eng GeolHydrogeol doi: 10.1144/qjegh2019-108 – volume: 30 start-page: 4753 year: 2021 ident: 3007_CR55 publication-title: Nat Resour Res doi: 10.1007/s11053-021-09929-y – ident: 3007_CR60 doi: 10.22044/jme.2016.824 – year: 2024 ident: 3007_CR23 publication-title: Transportation Infrastructure Geotechnology doi: 10.1007/s40515-024-00434-2 – volume: 116 start-page: 274 year: 2010 ident: 3007_CR51 publication-title: Eng Geol doi: 10.1016/j.enggeo.2010.09.009 – volume: 42 start-page: 2127 year: 2024 ident: 3007_CR4 publication-title: Geotech Geol Eng doi: 10.1007/s10706-023-02665-5 – ident: 3007_CR61 doi: 10.36487/ACG_rep/1304_05_Hadjigeorgiou – volume: 40 start-page: 4231 year: 2022 ident: 3007_CR30 publication-title: Geotech Geol Eng doi: 10.1007/s10706-022-02154-1 – volume: 234 year: 2023 ident: 3007_CR41 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.121118 – volume: 13 start-page: 248 year: 2021 ident: 3007_CR34 publication-title: Journal of Rock Mechanics and Geotechnical Engineering doi: 10.1016/j.jrmge.2020.05.010 – volume: 7 start-page: 59 year: 1992 ident: 3007_CR44 publication-title: Tunn Undergr Space Technol doi: 10.1016/0886-7798(92)90114-W – volume: 52 start-page: 1165 year: 2019 ident: 3007_CR13 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-018-1673-0 – volume: 38 start-page: 3125 year: 2020 ident: 3007_CR37 publication-title: Geotech Geol Eng doi: 10.1007/s10706-020-01213-9 – ident: 3007_CR64 – volume: 35 start-page: 747 year: 2017 ident: 3007_CR2 publication-title: Geotech Geol Eng doi: 10.1007/s10706-016-0139-y – volume: 127 start-page: 726 year: 2001 ident: 3007_CR26 publication-title: Journal of Geotechnical and Geoenvironmental Engineering doi: 10.1061/(ASCE)1090-0241(2001)127:9(726) – volume: 38 start-page: 4197 year: 2022 ident: 3007_CR57 publication-title: Engineering with Computers doi: 10.1007/s00366-021-01418-3 – volume: 26 start-page: 137 year: 1993 ident: 3007_CR5 publication-title: Rock Mech Rock Eng doi: 10.1007/BF01023620 – ident: 3007_CR63 doi: 10.1680/dapoue.35652.0028 – volume: 17 start-page: 1343 year: 2022 ident: 3007_CR58 publication-title: Acta Geotech doi: 10.1007/s11440-022-01450-7 – volume: 37 start-page: 1671 year: 2019 ident: 3007_CR6 publication-title: Geotech Geol Eng doi: 10.1007/s10706-018-0714-5 – volume-title: Practical machine learning for data analysis using python year: 2020 ident: 3007_CR47 – volume: 39 start-page: 31 year: 1995 ident: 3007_CR24 publication-title: Eng Geol doi: 10.1016/0013-7952(94)00002-J – volume: 35 start-page: 2205 year: 2017 ident: 3007_CR19 publication-title: Geotech Geol Eng doi: 10.1007/s10706-017-0238-4 – volume: 69 start-page: 94 year: 2017 ident: 3007_CR31 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.03.025 – ident: 3007_CR67 |
| SSID | ssj0002601 |
| Score | 2.373579 |
| Snippet | Assessing ground conditions with regard to the potential for squeezing and the behavior of geological structures is a crucial aspect of designing underground... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 65 |
| SubjectTerms | Artificial intelligence Civil Engineering Classification Compressing Construction Decision trees Earth and Environmental Science Earth Sciences Evaluation Excavation Geological structures Geotechnical Engineering & Applied Earth Sciences Hydrogeology Neural networks Original Paper Risk reduction Support systems Support vector machines Terrestrial Pollution Tunnel construction Tunnels Underground construction Underground structures Waste Management/Waste Technology Weak rock |
| Title | Optimal AI Model for Accurate Classification of Squeezing in Underground Structures |
| URI | https://link.springer.com/article/10.1007/s10706-024-03007-9 https://www.proquest.com/docview/3150993265 |
| Volume | 43 |
| WOSCitedRecordID | wos001390050300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-1529 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002601 issn: 0960-3182 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50-qAP_hanU_LgmwbapF2axyEOBZniVPZWmjSBwezEbT7413vJ2m2KCvqW0CSUS-5yx-W-D-DUZqERoWI0jC2jkUw42kGtaBRloRJWBEnkC4VvRKeT9HryriwKG1Wv3auUpLfUC8VuwkW_LKJ4MANB5TKs4HWXOHW87z7N7K8DyfIIe01fG8zKUpnv1_h8Hc19zC9pUX_btDf_959bsFF6l6Q1PQ7bsGSKHVhfwBzche4tGolnN-iaOCK0AUG3lbS0njjQCOJJMt3zIb9jZGhJ18W67ziX9AviaZJcJUiRk66Hnp1gvL4Hj-3Lh4srWjIrUI0qN6ZMx4qzLDexza11yVJrsa01tzxWNhRBHmYywSazVkcmV0qzDJ3FgAuFHb4PtWJYmAMgOmZJYHIWmKajM2NSRznDpTLJc4OxUR3CSsCpLmHHHfvFIJ0DJjuBpSiw1AsslXU4m815mYJu_Dq6Ue1bWirgKOXo6Ernm8Z1OK_2af7559UO_zb8CNaYYwT277gbUEPJm2NY1W_j_uj1xB_MD4co3Ik |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqDv8Xp1Dz4poU2TZf2cYhjwznFTdlbaNMEBrMTt_ngX-8la7cpKuhbQpNQ7pLLHbn7PoBzHXuKewl1vEBTh0Whj3ZQJg5jsZdwzd2Q2ULhFm-3w14vus-LwkZFtnvxJGkt9UKxGzfRL2UObkyXO9EyrDC8sUwi30PnaWZ_DUiWRdir2tpgmpfKfL_G5-to7mN-eRa1t01963__uQ2buXdJatPtsANLKtuFjQXMwT3o3KGReDaDmsQQoQ0Iuq2kJuXEgEYQS5Jp0oesxshQk46Jdd9xLulnxNIkmUqQLCUdCz07wXh9Hx7r192rhpMzKzgSj9zYoTJIfBqnKtCp1uaxVGtsS-lrP0i0x93Ui6MQm1RryVSaJJLG6Cy6Pk-w4x9AKRtm6hCIDGjoqpS6qmrozGgkWUpxqTjyU4WxURm8QsBC5rDjhv1iIOaAyUZgAgUmrMBEVIaL2ZyXKejGr6Mrhd5EfgBHwkdHNzK-aVCGy0JP888_r3b0t-FnsNbo3rZEq9m-OYZ1atiBbU53BUqoBXUCq_Jt3B-9ntpN-gHmed9t |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah5802Kbpkv7ONThcMxBVfZW2lxgMLvhNh_89eZk3UVRQXxLaBLKObmcQ_J9H8C5Tj3FvYw6XqCpw6LQN_ugyBzGUi_jmrshs0DhJm-1wk4nai-g-O1r9-mV5ATTgCxN-ehqIPXVAvCNYyZMmWMmqcudaBlWGIoGYb4eP8_2YiTMsmx7VYsTpgVs5vsxPh9N83jzyxWpPXnqW___523YLKJOUptMkx1YUvkubCxwEe5B_GA2jxds1CAokNYjJpwlNSHGSCZBrHgmPiuyniR9TWLMgd9NX9LNiZVPQoRILklsKWnHJo_fh6f67eP1nVMoLjjCLMWRQ0WQ-TSVKtBSa7xE1dqUhfC1H2Ta46700ig0Raq1YEpmmaCpCSJdn2em4h9AKe_n6hCICGjoKkldVUWZMxoJJqkZKo18qUzOVAZvauxEFHTkqIrRS-ZEymiwxBgssQZLojJczPoMJmQcv7auTH2YFAtzmPgmAI4wZg3KcDn12fzzz6Md_a35Gay1b-pJs9G6P4Z1iqLB9ql3BUrGCeoEVsXbqDt8PbXz9QM43uhR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+AI+Model+for+Accurate+Classification+of+Squeezing+in+Underground+Structures&rft.jtitle=Geotechnical+and+geological+engineering&rft.au=Fattahi%2C+Hadi&rft.au=Mohtarami%2C+Ehsan&rft.date=2025-02-01&rft.pub=Springer+International+Publishing&rft.issn=0960-3182&rft.eissn=1573-1529&rft.volume=43&rft.issue=2&rft_id=info:doi/10.1007%2Fs10706-024-03007-9&rft.externalDocID=10_1007_s10706_024_03007_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3182&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3182&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3182&client=summon |