Randomized Algorithms for Tracking Distributed Count, Frequencies, and Ranks

We show that randomization can lead to significant improvements for a few fundamental problems in distributed tracking. Our basis is the count-tracking problem, where there are k players, each holding a counter n i that gets incremented over time, and the goal is to track an ε -approximation of thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 81; H. 6; S. 2222 - 2243
Hauptverfasser: Huang, Zengfeng, Yi, Ke, Zhang, Qin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2019
Springer Nature B.V
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We show that randomization can lead to significant improvements for a few fundamental problems in distributed tracking. Our basis is the count-tracking problem, where there are k players, each holding a counter n i that gets incremented over time, and the goal is to track an ε -approximation of their sum n = ∑ i n i continuously at all times, using minimum communication. While the deterministic communication complexity of the problem is Θ ( k / ε · log N ) , where N is the final value of n when the tracking finishes, we show that with randomization, the communication cost can be reduced to Θ ( k / ε · log N ) . Our algorithm is simple and uses only O (1) space at each player, while the lower bound holds even assuming each player has infinite computing power. Then, we extend our techniques to two related distributed tracking problems: frequency-tracking and rank-tracking , and obtain similar improvements over previous deterministic algorithms. Both problems are of central importance in large data monitoring and analysis, and have been extensively studied in the literature.
AbstractList We show that randomization can lead to significant improvements for a few fundamental problems in distributed tracking. Our basis is the count-tracking problem, where there are k players, each holding a counter ni that gets incremented over time, and the goal is to track an ε-approximation of their sum n=∑ini continuously at all times, using minimum communication. While the deterministic communication complexity of the problem is Θ(k/ε·logN), where N is the final value of n when the tracking finishes, we show that with randomization, the communication cost can be reduced to Θ(k/ε·logN). Our algorithm is simple and uses only O(1) space at each player, while the lower bound holds even assuming each player has infinite computing power. Then, we extend our techniques to two related distributed tracking problems: frequency-tracking and rank-tracking, and obtain similar improvements over previous deterministic algorithms. Both problems are of central importance in large data monitoring and analysis, and have been extensively studied in the literature.
We show that randomization can lead to significant improvements for a few fundamental problems in distributed tracking. Our basis is the count-tracking problem, where there are k players, each holding a counter n i that gets incremented over time, and the goal is to track an ε -approximation of their sum n = ∑ i n i continuously at all times, using minimum communication. While the deterministic communication complexity of the problem is Θ ( k / ε · log N ) , where N is the final value of n when the tracking finishes, we show that with randomization, the communication cost can be reduced to Θ ( k / ε · log N ) . Our algorithm is simple and uses only O (1) space at each player, while the lower bound holds even assuming each player has infinite computing power. Then, we extend our techniques to two related distributed tracking problems: frequency-tracking and rank-tracking , and obtain similar improvements over previous deterministic algorithms. Both problems are of central importance in large data monitoring and analysis, and have been extensively studied in the literature.
Author Yi, Ke
Huang, Zengfeng
Zhang, Qin
Author_xml – sequence: 1
  givenname: Zengfeng
  orcidid: 0000-0003-2671-7483
  surname: Huang
  fullname: Huang, Zengfeng
  email: huangzf@fudan.edu.cn
  organization: School of Data Science, Fudan University
– sequence: 2
  givenname: Ke
  surname: Yi
  fullname: Yi, Ke
  organization: The Hong Kong University of Science and Technology
– sequence: 3
  givenname: Qin
  surname: Zhang
  fullname: Zhang, Qin
  organization: Indiana University Bloomington
BookMark eNp9kE1LAzEURYNUsK3-AVcDbhtNMh9JlqVaFQqC1HXITJKafiQ1ySzqrze2guBC3uJt7rnvcUZg4LzTAFxjdIsRoncRoaouIcIMIlSXGB7OwBBXJYGorvAADBGmDFYNphdgFOMaIUwob4Zg8Sqd8jv7qVUx3a58sOl9FwvjQ7EMsttYtyrubUzBtn3KmZnvXZoU86A_eu06q-OkyA1FrtnES3Bu5Dbqq589Bm_zh-XsCS5eHp9n0wXsSswTJC3Vsq0YbwlHpTaV4RXVVLaaKEYUb1SjCWKdNg2rmakJVzVVqjVMK4w6Xo7Bzal3H3x-Iyax9n1w-aQgBFfHaXKKnVJd8DEGbURnk0zWuxSk3QqMxLc7cXInsjtxdCcOGSV_0H2wOxkO_0PlCYo57FY6_H71D_UFJuCEhQ
CitedBy_id crossref_primary_10_1007_s00453_020_00755_x
Cites_doi 10.1145/2481528.2481530
10.1007/s00446-008-0055-3
10.1145/2213556.2213562
10.1016/B978-155860869-6/50038-X
10.1145/378580.378687
10.1145/2213977.2214063
10.1137/1116025
10.1145/1921659.1921667
10.14778/1454159.1454225
10.1145/872757.872764
10.1109/INFCOM.2011.5935005
10.1007/978-3-642-24100-0_27
10.1145/375663.375670
10.1007/978-3-642-02927-1_10
10.1016/0304-3975(80)90061-4
10.1007/s00454-006-1269-4
10.1016/0167-6423(82)90012-0
10.1145/2160158.2160163
10.1145/1989323.1989401
10.1145/1166074.1166084
10.1145/1559795.1559820
10.1109/SFCS.1977.24
10.1145/1066157.1066161
10.1145/1142473.1142507
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Springer Science+Business Media, LLC, part of Springer Nature 2018.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2018.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00453-018-00531-y
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 2243
ExternalDocumentID 10_1007_s00453_018_00531_y
GrantInformation_xml – fundername: Research Grants Council, University Grants Committee (HK)
  grantid: GRF-16200415
– fundername: National Natural Science Foundation of China
  grantid: 61802069
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Research Grants Council, University Grants Committee (HK)
  grantid: GRF-621413; GRF-16211614
– fundername: Shanghai Science and Technology Development Foundation
  grantid: 18YF1401200
  funderid: http://dx.doi.org/10.13039/100012543
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-2b7eab489b2903ef4f947e7abe2d82d96d6e208cef6858f529d57ddbf8ed10c93
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465544600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 16:29:32 EDT 2025
Sat Nov 29 02:20:28 EST 2025
Tue Nov 18 22:35:45 EST 2025
Fri Feb 21 02:43:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Continuous distributed tracking
Distributed streaming
Randomized algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2b7eab489b2903ef4f947e7abe2d82d96d6e208cef6858f529d57ddbf8ed10c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2671-7483
PQID 2214141416
PQPubID 2043795
PageCount 22
ParticipantIDs proquest_journals_2214141416
crossref_citationtrail_10_1007_s00453_018_00531_y
crossref_primary_10_1007_s00453_018_00531_y
springer_journals_10_1007_s00453_018_00531_y
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. In: Proceedings of the International Conference on Very Large Data Bases (2008)
Manjhi, A., Shkapenyuk, V., Dhamdhere, K., Olston, C.: Finding (recently) frequent items in distributed data streams. In: Proceedings of the IEEE International Conference on Data Engineering (2005)
Arackaparambil, C., Brody, J., Chakrabarti, A.: Functional monitoring without monotonicity. In: Proceedings of the International Colloquium on Automata, Languages, and Programming (2009)
Yi, K., Zhang, Q.: Optimal tracking of distributed heavy hitters and quantiles. In: Proceedings of the ACM Symposium on Principles of Database Systems (2009)
Patt-ShamirBShafrirAApproximate distributed top-k queriesDistrib. Comput.200821112210.1007/s00446-008-0055-3
CormodeGMuthukrishnanSYiKZhangQContinuous sampling from distributed streamsJ. ACM201259210291568110.1145/2160158.2160163(Preliminary version in PODS’10)
MetwallyAAgrawalDAbbadiAAn integrated efficient solution for computing frequent and top-k elements in data streamsACM Trans. Database Syst.20063131095113310.1145/1166074.1166084
SuriSTothCZhouYRange counting over multidimensional data streamsDiscrete Comput. Geom.200636633655226755010.1007/s00454-006-1269-4
Agarwal, P.K., Cormode, G., Huang, Z., Phillips, J.M., Wei, Z., Yi, K.: Mergeable summaries. In: Proceedings of the ACM Symposium on Principles of Database Systems (2012)
Tirthapura, S., Woodruff, D.P.: Optimal random sampling from distributed streams revisited. In: Proceedings of the International Symposium on Distributed Computing (2011)
Cormode, G., Garofalakis, M., Muthukrishnan, S., Rastogi, R.: Holistic aggregates in a networked world: distributed tracking of approximate quantiles. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2005)
Woodruff, D.P.: Efficient and Private Distance Approximation in the Communication and Streaming Models. PhD thesis, Massachusetts Institute of Technology (2007)
FellerWAn Introduction to Probability Theory and Its Applications1968New YorkWiley0155.23101
Manku, G., Motwani, R.: Approximate frequency counts over data streams. In: Proceedings of the International Conference on Very Large Data Bases (2002)
Bar-Yossef, Z.: The complexity of massive data set computations. PhD thesis, University of California at Berkeley (2002)
MisraJGriesDFinding repeated elementsSci. Comput. Program.1982214315269546310.1016/0167-6423(82)90012-0
MunroJIPatersonMSSelection and sorting with limited storageTheor. Comput. Sci.19801231532358931210.1016/0304-3975(80)90061-4
CormodeGMuthukrishnanSYiKAlgorithms for distributed functional monitoringACM Trans. Algorithms201172Article 21278643710.1145/1921659.1921667(Preliminary version in SODA’08)
ChanH-LLamTWLeeL-KTingH-FContinuous monitoring of distributed data streams over a time-based sliding windowAlgorithmica2011623–41088111128711391236.68011
Yao, A.C.: Probabilistic computations: towards a unified measure of complexity. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (1977)
CormodeGThe continuous distributed monitoring modelACM SIGMOD Rec.201342151410.1145/2481528.2481530
Babcock, B., Olston, C.: Distributed top-k monitoring. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2003)
Huang, Z., Wang, L., Yi, K., Liu, Y.: Sampling based algorithms for quantile computation in sensor networks. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2011)
Woodruff, D.P., Zhang, Q.: Tight bounds for distributed functional monitoring. In: Proceedings of the ACM Symposium on Theory of Computing (2012)
Huang, Z., Yi, K., Liu, Y., Chen, G.: Optimal sampling algorithms for frequency estimation in distributed data. In: IEEE INFOCOM (2011)
Greenwald, M., Khanna, S.: Space-efficient online computation of quantile summaries. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2001)
Keralapura, R., Cormode, G., Ramamirtham, J.: Communication-efficient distributed monitoring of thresholded counts. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2006)
Gibbons, P.B., Tirthapura, S.: Estimating simple functions on the union of data streams. In: Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (2001)
VapnikVNChervonenkisAYOn the uniform convergence of relative frequencies of events to their probabilitiesTheory Probab. Appl.19711626428010.1137/1116025
B Patt-Shamir (531_CR22) 2008; 21
G Cormode (531_CR10) 2012; 59
A Metwally (531_CR19) 2006; 31
531_CR15
531_CR14
531_CR13
531_CR12
531_CR29
531_CR28
531_CR27
G Cormode (531_CR9) 2011; 7
JI Munro (531_CR21) 1980; 12
VN Vapnik (531_CR25) 1971; 16
S Suri (531_CR23) 2006; 36
G Cormode (531_CR6) 2013; 42
531_CR1
531_CR2
531_CR3
531_CR4
531_CR7
531_CR26
531_CR8
531_CR24
J Misra (531_CR20) 1982; 2
531_CR18
531_CR17
531_CR16
W Feller (531_CR11) 1968
H-L Chan (531_CR5) 2011; 62
References_xml – reference: ChanH-LLamTWLeeL-KTingH-FContinuous monitoring of distributed data streams over a time-based sliding windowAlgorithmica2011623–41088111128711391236.68011
– reference: Cormode, G., Garofalakis, M., Muthukrishnan, S., Rastogi, R.: Holistic aggregates in a networked world: distributed tracking of approximate quantiles. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2005)
– reference: Patt-ShamirBShafrirAApproximate distributed top-k queriesDistrib. Comput.200821112210.1007/s00446-008-0055-3
– reference: Greenwald, M., Khanna, S.: Space-efficient online computation of quantile summaries. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2001)
– reference: SuriSTothCZhouYRange counting over multidimensional data streamsDiscrete Comput. Geom.200636633655226755010.1007/s00454-006-1269-4
– reference: Babcock, B., Olston, C.: Distributed top-k monitoring. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2003)
– reference: MisraJGriesDFinding repeated elementsSci. Comput. Program.1982214315269546310.1016/0167-6423(82)90012-0
– reference: Woodruff, D.P.: Efficient and Private Distance Approximation in the Communication and Streaming Models. PhD thesis, Massachusetts Institute of Technology (2007)
– reference: Manku, G., Motwani, R.: Approximate frequency counts over data streams. In: Proceedings of the International Conference on Very Large Data Bases (2002)
– reference: Manjhi, A., Shkapenyuk, V., Dhamdhere, K., Olston, C.: Finding (recently) frequent items in distributed data streams. In: Proceedings of the IEEE International Conference on Data Engineering (2005)
– reference: MunroJIPatersonMSSelection and sorting with limited storageTheor. Comput. Sci.19801231532358931210.1016/0304-3975(80)90061-4
– reference: Keralapura, R., Cormode, G., Ramamirtham, J.: Communication-efficient distributed monitoring of thresholded counts. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2006)
– reference: Woodruff, D.P., Zhang, Q.: Tight bounds for distributed functional monitoring. In: Proceedings of the ACM Symposium on Theory of Computing (2012)
– reference: Yao, A.C.: Probabilistic computations: towards a unified measure of complexity. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (1977)
– reference: MetwallyAAgrawalDAbbadiAAn integrated efficient solution for computing frequent and top-k elements in data streamsACM Trans. Database Syst.20063131095113310.1145/1166074.1166084
– reference: Agarwal, P.K., Cormode, G., Huang, Z., Phillips, J.M., Wei, Z., Yi, K.: Mergeable summaries. In: Proceedings of the ACM Symposium on Principles of Database Systems (2012)
– reference: CormodeGThe continuous distributed monitoring modelACM SIGMOD Rec.201342151410.1145/2481528.2481530
– reference: Gibbons, P.B., Tirthapura, S.: Estimating simple functions on the union of data streams. In: Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (2001)
– reference: Tirthapura, S., Woodruff, D.P.: Optimal random sampling from distributed streams revisited. In: Proceedings of the International Symposium on Distributed Computing (2011)
– reference: Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. In: Proceedings of the International Conference on Very Large Data Bases (2008)
– reference: CormodeGMuthukrishnanSYiKAlgorithms for distributed functional monitoringACM Trans. Algorithms201172Article 21278643710.1145/1921659.1921667(Preliminary version in SODA’08)
– reference: VapnikVNChervonenkisAYOn the uniform convergence of relative frequencies of events to their probabilitiesTheory Probab. Appl.19711626428010.1137/1116025
– reference: Yi, K., Zhang, Q.: Optimal tracking of distributed heavy hitters and quantiles. In: Proceedings of the ACM Symposium on Principles of Database Systems (2009)
– reference: Arackaparambil, C., Brody, J., Chakrabarti, A.: Functional monitoring without monotonicity. In: Proceedings of the International Colloquium on Automata, Languages, and Programming (2009)
– reference: Bar-Yossef, Z.: The complexity of massive data set computations. PhD thesis, University of California at Berkeley (2002)
– reference: Huang, Z., Wang, L., Yi, K., Liu, Y.: Sampling based algorithms for quantile computation in sensor networks. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2011)
– reference: Huang, Z., Yi, K., Liu, Y., Chen, G.: Optimal sampling algorithms for frequency estimation in distributed data. In: IEEE INFOCOM (2011)
– reference: CormodeGMuthukrishnanSYiKZhangQContinuous sampling from distributed streamsJ. ACM201259210291568110.1145/2160158.2160163(Preliminary version in PODS’10)
– reference: FellerWAn Introduction to Probability Theory and Its Applications1968New YorkWiley0155.23101
– volume: 42
  start-page: 5
  issue: 1
  year: 2013
  ident: 531_CR6
  publication-title: ACM SIGMOD Rec.
  doi: 10.1145/2481528.2481530
– volume: 21
  start-page: 1
  issue: 1
  year: 2008
  ident: 531_CR22
  publication-title: Distrib. Comput.
  doi: 10.1007/s00446-008-0055-3
– ident: 531_CR1
  doi: 10.1145/2213556.2213562
– ident: 531_CR18
  doi: 10.1016/B978-155860869-6/50038-X
– ident: 531_CR12
  doi: 10.1145/378580.378687
– ident: 531_CR27
  doi: 10.1145/2213977.2214063
– volume: 16
  start-page: 264
  year: 1971
  ident: 531_CR25
  publication-title: Theory Probab. Appl.
  doi: 10.1137/1116025
– ident: 531_CR26
– volume: 7
  start-page: Article 21
  issue: 2
  year: 2011
  ident: 531_CR9
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/1921659.1921667
– ident: 531_CR8
  doi: 10.14778/1454159.1454225
– ident: 531_CR3
  doi: 10.1145/872757.872764
– volume: 62
  start-page: 1088
  issue: 3–4
  year: 2011
  ident: 531_CR5
  publication-title: Algorithmica
– ident: 531_CR15
  doi: 10.1109/INFCOM.2011.5935005
– ident: 531_CR24
  doi: 10.1007/978-3-642-24100-0_27
– volume-title: An Introduction to Probability Theory and Its Applications
  year: 1968
  ident: 531_CR11
– ident: 531_CR13
  doi: 10.1145/375663.375670
– ident: 531_CR2
  doi: 10.1007/978-3-642-02927-1_10
– ident: 531_CR17
– volume: 12
  start-page: 315
  year: 1980
  ident: 531_CR21
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(80)90061-4
– volume: 36
  start-page: 633
  year: 2006
  ident: 531_CR23
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-006-1269-4
– ident: 531_CR4
– volume: 2
  start-page: 143
  year: 1982
  ident: 531_CR20
  publication-title: Sci. Comput. Program.
  doi: 10.1016/0167-6423(82)90012-0
– volume: 59
  start-page: 10
  issue: 2
  year: 2012
  ident: 531_CR10
  publication-title: J. ACM
  doi: 10.1145/2160158.2160163
– ident: 531_CR14
  doi: 10.1145/1989323.1989401
– volume: 31
  start-page: 1095
  issue: 3
  year: 2006
  ident: 531_CR19
  publication-title: ACM Trans. Database Syst.
  doi: 10.1145/1166074.1166084
– ident: 531_CR29
  doi: 10.1145/1559795.1559820
– ident: 531_CR28
  doi: 10.1109/SFCS.1977.24
– ident: 531_CR7
  doi: 10.1145/1066157.1066161
– ident: 531_CR16
  doi: 10.1145/1142473.1142507
SSID ssj0012796
Score 2.2297869
Snippet We show that randomization can lead to significant improvements for a few fundamental problems in distributed tracking. Our basis is the count-tracking...
We show that randomization can lead to significant improvements for a few fundamental problems in distributed tracking. Our basis is the count-tracking...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2222
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Communication
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Finishes
Lower bounds
Mathematics of Computing
Randomization
Theory of Computation
Tracking problem
Title Randomized Algorithms for Tracking Distributed Count, Frequencies, and Ranks
URI https://link.springer.com/article/10.1007/s00453-018-00531-y
https://www.proquest.com/docview/2214141416
Volume 81
WOSCitedRecordID wos000465544600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46ffDFecXplDz45gJtlrXJ41CHDzJkXthbaW463DppqzB_vUl6GYoKSh-bHMJJTs-XnssHwGnMsGBcm2sqDwUigklEFfORbbbmxwHvdYl0ZBPhcEjHY3ZTFoVlVbZ7FZJ0X-q62M2iD5v7Q5E7OWixCtaMu6PWHEe3D3XsAIeOlcvyziNiHHRZKvO9jM_uaIkxv4RFnbcZNP-3zi2wWaJL2C-OwzZYUckOaFbMDbA05F1wPYoTOZ9N3pWE_enjPJ3kT7MMGgALjfMS9vc5vLAtdS0blhljK9fzDhykReK1uV13oJEAjZjnbA_cDy7vzq9QyauAhDG4HGEeqpgTyjhmXldpohkJVRhzhSXFkgUyUNijQmnbnF73MJO9UEquqZK-J1h3HzSSeaIOAAw8wrUVYIAEYT6lKjYQQxNfMd7FftACfqXeSJRNxy33xTSq2yU7dUVGXZFTV7RogbN6zkvRcuPX0e1q16LS_LIIY5-4xyygU-3S8vXP0g7_NvwIbBgAxYrUsTZo5OmrOgbr4i2fZOmJO5YfxOfcMw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BX1xfuJ0ah58c4E1y9rkcahj4hwyp-ytNB_V4dZJW4X515uk7YaigtLHXo5wyfV-ae7uB8BpwLBgPNTHVO4JRASTiCrmINNszQlc3mwQackmvF6PDofsNi8KS4ps9-JK0n6p58VuBn2Y3B-K7M5Bs2WwQnTEMol8_buH-d0B9iwrl-GdR0QH6LxU5nsdn8PRAmN-uRa10aZd_t88N8FGji5hK9sOW2BJRdugXDA3wNyRd0C3H0RyOhm9Kwlb48dpPEqfJgnUABbq4CXM73N4YVrqGjYsLWMq19MabMdZ4rU-Xdeg1gC1mudkF9y3LwfnHZTzKiChHS5FmHsq4IQyjlm9oUISMuIpL-AKS4olc6WrcJ0KFZrm9GETM9n0pOQhVdKpC9bYA6VoGql9AN064aFRoIEEYQ6lKtAQIySOYryBHbcCnMK8vsibjhvui7E_b5dszeVrc_nWXP6sAs7mY16ylhu_SleLVfNz90t8jB1iHz2BWrFKi9c_azv4m_gJWOsMbrp-96p3fQjWNZhiWRpZFZTS-FUdgVXxlo6S-Nhu0Q8f998X
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RXxxXnE6NQ--ueCaZW3yOJxDcQzxhm-luelwdtJWYf56k7SdF1QQ6WPTQzg54Xxpzvk-APYjhgXj2hxTeSAQEUwiqpiHLNmaF_m83SLSiU0EgwG9vWXnH7r4XbV7eSWZ9zRYlqY4O3yS-nDa-GaRiK0DoshFEZrMgjliRYPsef3yZnqPgAOn0GU16BExybpom_nexufU9I43v1yRuszTq_5_zstgqUCdsJOHyQqYUfEqqJaKDrDY4GugfxHFcvw4fFUSdkZ342SY3T-m0ABbaJKasL_VYddS7VqVLDPGdrRnDdhL8oJsc-puQGMBGjMP6Tq47h1fHZ2gQm8BCbMRM4R5oCJOKOOYNVtKE81IoIKIKywplsyXvsJNKpS2pPW6jZlsB1JyTZX0moK1NkAlHsdqE0C_Sbi2BgzAIMyjVEUGemjiKcZb2PNrwCtdHYqCjNxqYozCKY2yc1do3BU6d4WTGjiYfvOUU3H8OrpermBYbMs0xNgj7jETaJQr9v76Z2tbfxu-BxbOu72wfzo42waLBmOxvLqsDipZ8qx2wLx4yYZpsuui9Q1sxuf7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Randomized+Algorithms+for+Tracking+Distributed+Count%2C+Frequencies%2C+and+Ranks&rft.jtitle=Algorithmica&rft.au=Huang%2C+Zengfeng&rft.au=Yi%2C+Ke&rft.au=Zhang%2C+Qin&rft.date=2019-06-01&rft.pub=Springer+US&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=81&rft.issue=6&rft.spage=2222&rft.epage=2243&rft_id=info:doi/10.1007%2Fs00453-018-00531-y&rft.externalDocID=10_1007_s00453_018_00531_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon