Fuzzy-based weighting long short-term memory network for demand forecasting

One of the main challenges in short-term electrical load forecasting is extraction of nonlinear relationships and complex dependencies among different time instances of the load time series. To deal with this difficulty, a hybrid forecasting method is proposed in this paper that uses the fuzzy exper...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of supercomputing Ročník 79; číslo 1; s. 435 - 460
Hlavný autor: Imani, Maryam
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.01.2023
Springer Nature B.V
Predmet:
ISSN:0920-8542, 1573-0484
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract One of the main challenges in short-term electrical load forecasting is extraction of nonlinear relationships and complex dependencies among different time instances of the load time series. To deal with this difficulty, a hybrid forecasting method is proposed in this paper that uses the fuzzy expert systems and deep learning methods. In the first step, dependency of previous time instances to the next instance to be load forecasted is achieved through a fuzzy system with 125 rules. Then, the obtained weights are used beside the actual load values as the input of a long short-term memory network for load forecasting. The obtained results on two popular datasets show the superior performance of the proposed method in terms of various evaluation measures.
AbstractList One of the main challenges in short-term electrical load forecasting is extraction of nonlinear relationships and complex dependencies among different time instances of the load time series. To deal with this difficulty, a hybrid forecasting method is proposed in this paper that uses the fuzzy expert systems and deep learning methods. In the first step, dependency of previous time instances to the next instance to be load forecasted is achieved through a fuzzy system with 125 rules. Then, the obtained weights are used beside the actual load values as the input of a long short-term memory network for load forecasting. The obtained results on two popular datasets show the superior performance of the proposed method in terms of various evaluation measures.
Author Imani, Maryam
Author_xml – sequence: 1
  givenname: Maryam
  orcidid: 0000-0002-1924-9776
  surname: Imani
  fullname: Imani, Maryam
  email: maryam.imani@modares.ac.ir
  organization: Faculty of Electrical and Computer Engineering, Tarbiat Modares University
BookMark eNp9kEtLAzEUhYMo2Fb_gKsB19E8m3QpxapYcKPrkMkk7dROUpOU0v56U0cQXHRzH3C-ew9nCM598BaAG4zuMELiPmFMiICIEIjYmE8gPgMDzAUtq2TnYIAmBEHJGbkEw5RWCCFGBR2A19n2cNjDWifbVDvbLpa59YtqHUpJyxAzzDZ2VWe7EPeVt3kX4mflQqwa22nfHEdrdDpSV-DC6XWy1799BD5mj-_TZzh_e3qZPsyhoXiSIdHSIFpzySUzlBpHOZPWYSkwQ66mmIpGGiYcIw4ZrIWokdTEGobrsSmuR-C2v7uJ4WtrU1arsI2-vFSU8DGXlHFSVLJXmRhSitYp02ad2-Bz1O1aYaSO0ak-OlWiUz_RKVxQ8g_dxLbTcX8aoj2UitgvbPxzdYL6BgJgguQ
CitedBy_id crossref_primary_10_1016_j_epsr_2024_110534
crossref_primary_10_1007_s44444_025_00012_y
crossref_primary_10_1007_s11227_023_05193_4
Cites_doi 10.1016/j.knosys.2019.03.012
10.1016/j.egyr.2021.12.067
10.1007/s11227-021-03686-8
10.17775/CSEEJPES.2016.00080
10.1016/j.energy.2018.10.032
10.1109/TSG.2018.2844307
10.1016/j.energy.2017.08.113
10.1109/TSTE.2015.2480245
10.1109/TSG.2017.2686012
10.1016/S0378-7796(03)00150-0
10.1109/TEVC.2016.2586049
10.1007/s11227-021-04195-4
10.1016/j.ijepes.2021.107517
10.1016/j.energy.2020.117514
10.1080/15325008.2019.1689451
10.1109/TPWRS.2015.2438322
10.1049/ip-gtd:19981998
10.1016/j.eswa.2009.08.019
10.1016/j.energy.2021.120682
10.1007/s42452-020-2988-5
10.1109/TPWRS.2008.2004734
10.1109/TIE.2018.2795555
10.1109/TIE.2015.2424399
10.1109/TSG.2016.2628061
10.1080/15325008.2020.1793832
10.7763/IJFCC.2013.V2.165
10.1016/j.eswa.2021.114844
10.1109/IDAP.2017.8090344
10.1109/PRIA.2019.8785972
10.1109/IranianCEE.2019.8786456
10.1109/ISTEL.2018.8661071
10.1080/23311916.2015.1025578
10.1109/NEWCAS.2017.8010191
10.1109/PEOCO.2012.6230860
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11227-022-04659-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
EISSN 1573-0484
EndPage 460
ExternalDocumentID 10_1007_s11227_022_04659_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-2a8c03b58584c33cf3548ef187140fb3137d8c47f42f0c1a77b08a2ec41b6c373
IEDL.DBID M7S
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000823406200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Tue Nov 04 14:54:23 EST 2025
Sat Nov 29 04:27:43 EST 2025
Tue Nov 18 22:25:36 EST 2025
Fri Feb 21 02:46:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fuzzy logic
LSTM
Load forecasting
Weather conditions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2a8c03b58584c33cf3548ef187140fb3137d8c47f42f0c1a77b08a2ec41b6c373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1924-9776
PQID 3256583452
PQPubID 2043774
PageCount 26
ParticipantIDs proquest_journals_3256583452
crossref_citationtrail_10_1007_s11227_022_04659_1
crossref_primary_10_1007_s11227_022_04659_1
springer_journals_10_1007_s11227_022_04659_1
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Yu, Mirowski, Ho (CR14) 2017; 8
Zang, Xu, Cheng, Ding, Liu, Wei, Sun (CR28) 2021; 229
Keshvari, Imani, Parsa Moghaddam (CR8) 2022; 78
Senjyu, Higa, Uezato (CR38) 1998; 145
Qin, Zhang, Fan, Hu, Huang, Lu, Liu (CR30) 2022; 135
Li, Yang, Guo (CR1) 2020; 48
CR18
CR39
Chen, Chen, Wang, He, Hu, He (CR19) 2019; 10
CR15
CR36
CR35
CR34
CR11
Niu, Wang, Wu (CR9) 2010; 37
Al-Hamadi, Soliman (CR6) 2004; 68
Li, Wang, Goel (CR25) 2016; 31
Mughees, Mohsin, Mughees, Mughees (CR29) 2021; 175
Wang, Song, Li (CR7) 2018; 165
CR5
Dudek (CR24) 2017; 21
CR27
Jiang, Zhang, Muljadi, Zhang, Gao (CR12) 2018; 9
Bin Othman, Mohamed, Hussain (CR37) 2008; 23
Černe, Dovžan, Škrjanc (CR23) 2018; 65
Hu, Zhang, Yu, Xie (CR13) 2016; 7
Tavassoli-Hojati, Ghaderi, Iranmanesh, Hilber, Shayesteh (CR33) 2020; 199
CR40
Cecati, Kolbusz, Różycki, Siano, Wilamowski (CR16) 2015; 62
Müller, Gaio, Carreno (CR32) 2020; 2
Gul, Urfa, Paul (CR2) 2021; 77
Moral-Carcedo, Pérez-García (CR3) 2017; 140
Fekri, Patel, Grolinger, Sharma (CR20) 2021; 282
Makonin, Ellert, Bajic, Popowich (CR41) 2016; 3
Anandhi, ManickaChezian (CR10) 2013; 2
Wang, Luo, Ding, Fu, Wei (CR17) 2019; 175
Liu, Shen, Wu, Li, Zhuang, Wang (CR26) 2018; 4
Xu, Gong, Huang, Liu (CR22) 2019; 47
Bashir, Haoyong, Tahir, Liqiang (CR31) 2022; 8
Zhang, Li, Cao, Tang, Li, Wu (CR4) 2012
Shi, Xu, Li (CR21) 2018; 9
4659_CR5
4659_CR27
Z Tavassoli-Hojati (4659_CR33) 2020; 199
J Moral-Carcedo (4659_CR3) 2017; 140
MR Müller (4659_CR32) 2020; 2
Q Wang (4659_CR7) 2018; 165
R Keshvari (4659_CR8) 2022; 78
4659_CR40
MM Bin Othman (4659_CR37) 2008; 23
D Niu (4659_CR9) 2010; 37
C Yu (4659_CR14) 2017; 8
H Shi (4659_CR21) 2018; 9
Z Zhang (4659_CR4) 2012
H Jiang (4659_CR12) 2018; 9
Q Liu (4659_CR26) 2018; 4
4659_CR39
4659_CR18
4659_CR15
C Cecati (4659_CR16) 2015; 62
T Bashir (4659_CR31) 2022; 8
4659_CR35
4659_CR36
4659_CR11
X Xu (4659_CR22) 2019; 47
4659_CR34
Y Li (4659_CR1) 2020; 48
MJ Gul (4659_CR2) 2021; 77
N Mughees (4659_CR29) 2021; 175
S Makonin (4659_CR41) 2016; 3
K Chen (4659_CR19) 2019; 10
Q Hu (4659_CR13) 2016; 7
J Qin (4659_CR30) 2022; 135
G Dudek (4659_CR24) 2017; 21
S Li (4659_CR25) 2016; 31
Y Wang (4659_CR17) 2019; 175
H Zang (4659_CR28) 2021; 229
MN Fekri (4659_CR20) 2021; 282
G Černe (4659_CR23) 2018; 65
HM Al-Hamadi (4659_CR6) 2004; 68
T Senjyu (4659_CR38) 1998; 145
V Anandhi (4659_CR10) 2013; 2
References_xml – volume: 175
  start-page: 62
  year: 2019
  end-page: 71
  ident: CR17
  article-title: Detection based visual tracking with convolutional neural network
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.03.012
– volume: 8
  start-page: 1678
  year: 2022
  end-page: 1686
  ident: CR31
  article-title: Short term electricity load forecasting using hybrid prophet-LSTM model optimized by BPNN
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2021.12.067
– ident: CR18
– volume: 77
  start-page: 10942
  year: 2021
  end-page: 10958
  ident: CR2
  article-title: Mid-term electricity load prediction using CNN and Bi-LSTM
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-03686-8
– volume: 4
  start-page: 226
  issue: 2
  year: 2018
  end-page: 237
  ident: CR26
  article-title: A hybrid FCW-EMD and KF-BA-SVM based model for short-term load forecasting
  publication-title: CSEE J Power Energy Syst
  doi: 10.17775/CSEEJPES.2016.00080
– volume: 165
  start-page: 1320
  issue: 2
  year: 2018
  end-page: 1331
  ident: CR7
  article-title: A novel hybridization of nonlinear grey model and linear ARIMA residual correction for forecasting U.S. shale oil production
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.032
– start-page: 1
  year: 2012
  end-page: 5
  ident: CR4
  publication-title: Credibility assessment of short-term load forecast in power system
– volume: 10
  start-page: 3943
  issue: 4
  year: 2019
  end-page: 3952
  ident: CR19
  article-title: Short-term load forecasting with deep residual networks
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2844307
– ident: CR39
– volume: 140
  start-page: 682
  issue: 1
  year: 2017
  end-page: 695
  ident: CR3
  article-title: Integrating long-term economic scenarios into peak load forecasting: an application to Spain
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.113
– volume: 7
  start-page: 241
  issue: 1
  year: 2016
  end-page: 249
  ident: CR13
  article-title: Short-term wind speed or power forecasting with heteroscedastic support vector regression
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2015.2480245
– volume: 3
  start-page: 1
  issue: 160037
  year: 2016
  end-page: 12
  ident: CR41
  article-title: Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014
  publication-title: Sci Data
– ident: CR35
– ident: CR40
– ident: CR27
– volume: 9
  start-page: 5271
  issue: 5
  year: 2018
  end-page: 5280
  ident: CR21
  article-title: Deep learning for household load forecasting—a novel pooling deep RNN
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2686012
– volume: 68
  start-page: 47
  issue: 1
  year: 2004
  end-page: 59
  ident: CR6
  article-title: Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model
  publication-title: Electric Power Syst Res
  doi: 10.1016/S0378-7796(03)00150-0
– volume: 21
  start-page: 116
  issue: 1
  year: 2017
  end-page: 130
  ident: CR24
  article-title: Artificial immune system with local feature selection for short-term load forecasting
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2016.2586049
– volume: 78
  start-page: 7908
  year: 2022
  end-page: 7935
  ident: CR8
  article-title: A clustering-based short-term load forecasting using independent component analysis and multi-scale decomposition transform
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04195-4
– volume: 135
  start-page: 107517
  year: 2022
  ident: CR30
  article-title: Multi-task short-term reactive and active load forecasting method based on attention-LSTM model
  publication-title: Int J Electric Power Energy Syst
  doi: 10.1016/j.ijepes.2021.107517
– volume: 199
  start-page: 117514
  year: 2020
  ident: CR33
  article-title: A self-partitioning local neuro fuzzy model for short-term load forecasting in smart grids
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117514
– ident: CR15
– volume: 8
  start-page: 738
  issue: 2
  year: 2017
  end-page: 748
  ident: CR14
  article-title: A sparse coding approach to household electricity demand forecasting in smart grids
  publication-title: IEEE Trans Smart Grid
– volume: 47
  start-page: 1574
  issue: 16–17
  year: 2019
  end-page: 1583
  ident: CR22
  article-title: High-precision power load forecasting using real-time temperature information and deep learning method
  publication-title: Electric Power Comp Syst
  doi: 10.1080/15325008.2019.1689451
– volume: 31
  start-page: 1788
  issue: 3
  year: 2016
  end-page: 1798
  ident: CR25
  article-title: A novel wavelet-based ensemble method for short-term load forecasting with hybrid neural networks and feature selection
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2438322
– volume: 145
  start-page: 375
  issue: 4
  year: 1998
  end-page: 380
  ident: CR38
  article-title: Future load curve shaping based on similarity using fuzzy logic approach
  publication-title: IEE Proc Gen Trans Distrib
  doi: 10.1049/ip-gtd:19981998
– volume: 37
  start-page: 2531
  issue: 3
  year: 2010
  end-page: 2539
  ident: CR9
  article-title: Power load forecasting using support vector machine and ant colony optimization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.08.019
– ident: CR11
– volume: 229
  start-page: 120682
  year: 2021
  ident: CR28
  article-title: Residential load forecasting based on LSTM fusing self-attention mechanism with pooling
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120682
– volume: 2
  start-page: 1218
  year: 2020
  ident: CR32
  article-title: Electrical load forecasting in disaggregated levels using fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-020-2988-5
– volume: 23
  start-page: 1689
  issue: 4
  year: 2008
  end-page: 1700
  ident: CR37
  article-title: Determination of transmission reliability margin using parametric bootstrap technique
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2008.2004734
– volume: 65
  start-page: 7406
  issue: 9
  year: 2018
  end-page: 7415
  ident: CR23
  article-title: Short-term load forecasting by separating daily profiles and using a single fuzzy model across the entire domain
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2795555
– volume: 62
  start-page: 6519
  issue: 10
  year: 2015
  end-page: 6529
  ident: CR16
  article-title: A Novel RBF training algorithm for short-term electric load forecasting and comparative studies
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2015.2424399
– volume: 9
  start-page: 3341
  issue: 4
  year: 2018
  end-page: 3350
  ident: CR12
  article-title: A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2628061
– ident: CR34
– volume: 48
  start-page: 603
  issue: 6–7
  year: 2020
  end-page: 614
  ident: CR1
  article-title: Spark-based parallel OS-ELM algorithm application for short-term load forecasting for massive user data
  publication-title: Electric Power Comp Syst
  doi: 10.1080/15325008.2020.1793832
– ident: CR36
– ident: CR5
– volume: 282
  start-page: 116117
  issue: 3
  year: 2021
  ident: CR20
  article-title: Deep learning for load forecasting with smart meter data: online adaptive recurrent neural network
  publication-title: Appl Energy
– volume: 2
  start-page: 266
  issue: 3
  year: 2013
  end-page: 269
  ident: CR10
  article-title: Support vector regression to forecast the demand and supply of pulpwood
  publication-title: Int J Future Comput Commun
  doi: 10.7763/IJFCC.2013.V2.165
– volume: 175
  start-page: 114844
  year: 2021
  ident: CR29
  article-title: Deep sequence to sequence Bi-LSTM neural networks for day-ahead peak load forecasting
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114844
– volume: 2
  start-page: 266
  issue: 3
  year: 2013
  ident: 4659_CR10
  publication-title: Int J Future Comput Commun
  doi: 10.7763/IJFCC.2013.V2.165
– volume: 8
  start-page: 738
  issue: 2
  year: 2017
  ident: 4659_CR14
  publication-title: IEEE Trans Smart Grid
– ident: 4659_CR15
  doi: 10.1109/IDAP.2017.8090344
– volume: 229
  start-page: 120682
  year: 2021
  ident: 4659_CR28
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120682
– volume: 3
  start-page: 1
  issue: 160037
  year: 2016
  ident: 4659_CR41
  publication-title: Sci Data
– volume: 175
  start-page: 62
  year: 2019
  ident: 4659_CR17
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.03.012
– volume: 65
  start-page: 7406
  issue: 9
  year: 2018
  ident: 4659_CR23
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2795555
– volume: 31
  start-page: 1788
  issue: 3
  year: 2016
  ident: 4659_CR25
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2438322
– volume: 9
  start-page: 3341
  issue: 4
  year: 2018
  ident: 4659_CR12
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2628061
– ident: 4659_CR27
  doi: 10.1109/PRIA.2019.8785972
– volume: 282
  start-page: 116117
  issue: 3
  year: 2021
  ident: 4659_CR20
  publication-title: Appl Energy
– volume: 9
  start-page: 5271
  issue: 5
  year: 2018
  ident: 4659_CR21
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2686012
– ident: 4659_CR18
  doi: 10.1109/IranianCEE.2019.8786456
– volume: 145
  start-page: 375
  issue: 4
  year: 1998
  ident: 4659_CR38
  publication-title: IEE Proc Gen Trans Distrib
  doi: 10.1049/ip-gtd:19981998
– ident: 4659_CR39
– volume: 140
  start-page: 682
  issue: 1
  year: 2017
  ident: 4659_CR3
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.113
– volume: 62
  start-page: 6519
  issue: 10
  year: 2015
  ident: 4659_CR16
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2015.2424399
– volume: 7
  start-page: 241
  issue: 1
  year: 2016
  ident: 4659_CR13
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2015.2480245
– ident: 4659_CR5
  doi: 10.1109/ISTEL.2018.8661071
– volume: 37
  start-page: 2531
  issue: 3
  year: 2010
  ident: 4659_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.08.019
– volume: 21
  start-page: 116
  issue: 1
  year: 2017
  ident: 4659_CR24
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2016.2586049
– ident: 4659_CR34
– volume: 165
  start-page: 1320
  issue: 2
  year: 2018
  ident: 4659_CR7
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.032
– volume: 199
  start-page: 117514
  year: 2020
  ident: 4659_CR33
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117514
– volume: 23
  start-page: 1689
  issue: 4
  year: 2008
  ident: 4659_CR37
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2008.2004734
– start-page: 1
  volume-title: Credibility assessment of short-term load forecast in power system
  year: 2012
  ident: 4659_CR4
– ident: 4659_CR35
  doi: 10.1080/23311916.2015.1025578
– volume: 68
  start-page: 47
  issue: 1
  year: 2004
  ident: 4659_CR6
  publication-title: Electric Power Syst Res
  doi: 10.1016/S0378-7796(03)00150-0
– volume: 77
  start-page: 10942
  year: 2021
  ident: 4659_CR2
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-03686-8
– volume: 2
  start-page: 1218
  year: 2020
  ident: 4659_CR32
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-020-2988-5
– ident: 4659_CR40
– volume: 48
  start-page: 603
  issue: 6–7
  year: 2020
  ident: 4659_CR1
  publication-title: Electric Power Comp Syst
  doi: 10.1080/15325008.2020.1793832
– volume: 78
  start-page: 7908
  year: 2022
  ident: 4659_CR8
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04195-4
– ident: 4659_CR11
  doi: 10.1109/NEWCAS.2017.8010191
– volume: 8
  start-page: 1678
  year: 2022
  ident: 4659_CR31
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2021.12.067
– volume: 135
  start-page: 107517
  year: 2022
  ident: 4659_CR30
  publication-title: Int J Electric Power Energy Syst
  doi: 10.1016/j.ijepes.2021.107517
– volume: 10
  start-page: 3943
  issue: 4
  year: 2019
  ident: 4659_CR19
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2844307
– volume: 4
  start-page: 226
  issue: 2
  year: 2018
  ident: 4659_CR26
  publication-title: CSEE J Power Energy Syst
  doi: 10.17775/CSEEJPES.2016.00080
– volume: 175
  start-page: 114844
  year: 2021
  ident: 4659_CR29
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114844
– volume: 47
  start-page: 1574
  issue: 16–17
  year: 2019
  ident: 4659_CR22
  publication-title: Electric Power Comp Syst
  doi: 10.1080/15325008.2019.1689451
– ident: 4659_CR36
  doi: 10.1109/PEOCO.2012.6230860
SSID ssj0004373
Score 2.3153932
Snippet One of the main challenges in short-term electrical load forecasting is extraction of nonlinear relationships and complex dependencies among different time...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 435
SubjectTerms Artificial intelligence
Compilers
Computer Science
Deep learning
Electrical loads
Expert systems
Forecasting
Genetic algorithms
Interpreters
Mathematics
Methods
Neural networks
Power
Processor Architectures
Programming Languages
Time series
Wavelet transforms
SummonAdditionalLinks – databaseName: Springer Journals New Starts & Take-Overs Collection
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SPXixPrFaJQdvGugm2SZ7FLEIShEfpbclmwcK7Va6rdL-eif7cFFU0MuysEk2TB7zTSbzDUIn0iQwbWWXAFRlhCslSJJ40k9upAm5SsKcUmhwI_p9ORxGt2VQWFbddq9ckvlOXQe7BZRCI2A8gU0XRgRsnlVQd9InbLi7H9TRkKzwK0dgGMmQ0zJU5vs2PqujGmN-cYvm2qbX_F8_N9FGiS7xeTEdttCKTbdRs8rcgMuFvIOue_PlckG8CjP4LT8dhV_g0QQe2RMgcuJ3bDz213AXOC2uimPAt9jYsUqNf7VaZb7WLnrsXT5cXJEyrQLRsN5mhCqpOywBO0FyzZh2DKwW6wLpuftcwgImjNRcOE5dRwdKiKQjFbWaB0lXg3D3UCOdpHYfYWFV5FQUGe5p3ClV2iMkY5xm0gnBWiiopBvrknPcp74YxTVbspdWDNKKc2nFQQudftR5KRg3fi3drgYtLldfFjPAcaFkPKQtdFYNUv3559YO_lb8EK377PPFiUwbNWbTuT1Ca_p19pxNj_NZ-Q73rtoG
  priority: 102
  providerName: Springer Nature
Title Fuzzy-based weighting long short-term memory network for demand forecasting
URI https://link.springer.com/article/10.1007/s11227-022-04659-1
https://www.proquest.com/docview/3256583452
Volume 79
WOSCitedRecordID wos000823406200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH_iYwc4jI2B6CiVD9w2a_VHsHNCbGo1CagqPiq0S-TYiUCCFEgBwV_Pc-I0YtK47GJFim1Zfrbf9-8B7GqX4rHVexRFVUGlMYqmqQf9lE67SJo0qiCFJkdqNNIXF_E4GNzKEFbZvInVQ-2m1tvIfwjkzZEWMuL7t3fUV43y3tVQQmMRlj1KAqtC907bvEhRe5hjVJF0JHlImqlT5xjnuCRUxVBDjGLK3jKmVtr8y0Fa8Z3h2v-u-BN8DBInOaiPyGdYyIp1WGuqOZBwuddh9XiO4Fp-gcPhw8vLM_VMzpGnyn6KyyPXU2zKS5TZqX_TyY0P1H0mRR1MTlACJg7nKJz_zKwp_agNOB8Ozn79pqHwArV4I2eUG237IkVNQksrhM0F6jVZzrRH98tTwYRy2kqVS573LTNKpX1teGYlS_csbvomLBXTItsCojIT5yaOnfRA75wb62Uo53IrdK6U6ABrdj2xAZXcF8e4Tlo8ZU-pBCmVVJRKWAe-zcfc1pgc7_buNuRJwv0sk5Y2HfjeELj9_e_Zvr4_2zas-Hr0tY2mC0uz-4dsBz7Yx9lVed-D5Z-D0fikB4uHivaqs4rtOPqD7cnp5BWCQO0t
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS-wwFD74AnXh6yqOzyx0pcFpkpp0ISLqoMw4uNCLu940aVHQjtpRGX-Uv9GTPiwK150LN6XQNtDkyznfSXK-A7ChbISwVbsUqSqnQmtJo8iJfgqrrC905OeSQn87sttVV1fB-RC8Vbkw7lhlZRNzQ217xq2R73D0zb7iwmf79w_UVY1yu6tVCY0CFu148IIhW7Z3eoTju8lY6_ji8ISWVQWoQbj1KdPKNHmENFkJw7lJOJL2OPGUk65LIu5xaZURMhEsaRpPSxk1lWaxEV60a7jk2O4wjAqupJtXbUnrPExe7GgHGJIpX7AySadI1fMYwy7A0A8jUj-g3mdHWLPbLxuyuZ9rTf-2HpqBqZJRk4NiCszCUJzOwXRVrYKUxmsOJs8-FGqzP9BuPb2-Dqhz4pa85OvD2B3ktoeX7BpjEup8FrlzB5EHJC0OyxNk-MRiG6l1t7HRmftqHi5_5AcXYCTtpfEiEBnrINFBYIUTsmdMG8cRrU0MV4mUvAFeNcqhKVXXXfGP27DWi3bICBEZYY6M0GvA1sc394XmyLdvr1RwCEv7k4U1FhqwXQGqfvz_1pa-b20dxk8uzjph57TbXoYJhoyvWI9agZH-41O8CmPmuX-TPa7lM4PAv58G2jtnA0PT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA2iIr44P3E6NQ--aXBN0iV9FLUoyhiow7eSJg0KWzfWqeiv96YfVkUF8aUUmqTlJmnOSe49F6F9aWIYtrJDAKoywpUSJI6d6Cc30vhcxX4uKdS_Et2uvLsLeh-i-HNv9-pIsohpcCpN6fRobOxRHfjmUQoNApECfucHBPjPHHeO9I6vX_fryEhWnDEHQJKkz2kZNvN9G5-XphpvfjkizVeesPH_b15GSyXqxMfFMFlBM0m6ihpVRgdcTvA1dBk-vr6-ELe0Gfyc75rC6_BgBJfsHpA6cX9yPHTuuS84LVzIMeBebJKhSo27TbTKXK11dBue3ZyckzLdAtEwD6eEKqnbLAb-ILlmTFsGbCaxnnSafjZmHhNGai4sp7atPSVE3JaKJpp7cUeDoTfQbDpKk02ERaICq4LAcCfvTqnSDjkZYzWTVgjWRF5l6UiXWuQuJcYgqlWUnbUisFaUWyvymujgvc64UOL4tXSr6sConJVZxADf-ZJxnzbRYdVh9eOfW9v6W_E9tNA7DaOri-7lNlp0CeqLTZsWmp1OHpMdNK-fpg_ZZDcfrG9wzuXO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy-based+weighting+long+short-term+memory+network+for+demand+forecasting&rft.jtitle=The+Journal+of+supercomputing&rft.au=Imani%2C+Maryam&rft.date=2023-01-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=79&rft.issue=1&rft.spage=435&rft.epage=460&rft_id=info:doi/10.1007%2Fs11227-022-04659-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_022_04659_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon