Fuzzy-based weighting long short-term memory network for demand forecasting

One of the main challenges in short-term electrical load forecasting is extraction of nonlinear relationships and complex dependencies among different time instances of the load time series. To deal with this difficulty, a hybrid forecasting method is proposed in this paper that uses the fuzzy exper...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of supercomputing Ročník 79; číslo 1; s. 435 - 460
Hlavný autor: Imani, Maryam
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.01.2023
Springer Nature B.V
Predmet:
ISSN:0920-8542, 1573-0484
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:One of the main challenges in short-term electrical load forecasting is extraction of nonlinear relationships and complex dependencies among different time instances of the load time series. To deal with this difficulty, a hybrid forecasting method is proposed in this paper that uses the fuzzy expert systems and deep learning methods. In the first step, dependency of previous time instances to the next instance to be load forecasted is achieved through a fuzzy system with 125 rules. Then, the obtained weights are used beside the actual load values as the input of a long short-term memory network for load forecasting. The obtained results on two popular datasets show the superior performance of the proposed method in terms of various evaluation measures.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-022-04659-1