Applications of artificial intelligence for disaster management
Natural hazards have the potential to cause catastrophic damage and significant socioeconomic loss. The actual damage and loss observed in the recent decades has shown an increasing trend. As a result, disaster managers need to take a growing responsibility to proactively protect their communities b...
Uložené v:
| Vydané v: | Natural hazards (Dordrecht) Ročník 103; číslo 3; s. 2631 - 2689 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.09.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0921-030X, 1573-0840 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Natural hazards have the potential to cause catastrophic damage and significant socioeconomic loss. The actual damage and loss observed in the recent decades has shown an increasing trend. As a result, disaster managers need to take a growing responsibility to proactively protect their communities by developing efficient management strategies. A number of research studies apply artificial intelligence (AI) techniques to process disaster-related data for supporting informed disaster management. This study provides an overview of current applications of AI in disaster management during its four phases: mitigation, preparedness, response, and recovery. It presents example applications of different AI techniques and their benefits for supporting disaster management at different phases, as well as some practical AI-based decision support tools. We find that the majority of AI applications focus on the disaster response phase. This study also identifies challenges to inspire the professional community to advance AI techniques for addressing them in future research. |
|---|---|
| AbstractList | Natural hazards have the potential to cause catastrophic damage and significant socioeconomic loss. The actual damage and loss observed in the recent decades has shown an increasing trend. As a result, disaster managers need to take a growing responsibility to proactively protect their communities by developing efficient management strategies. A number of research studies apply artificial intelligence (AI) techniques to process disaster-related data for supporting informed disaster management. This study provides an overview of current applications of AI in disaster management during its four phases: mitigation, preparedness, response, and recovery. It presents example applications of different AI techniques and their benefits for supporting disaster management at different phases, as well as some practical AI-based decision support tools. We find that the majority of AI applications focus on the disaster response phase. This study also identifies challenges to inspire the professional community to advance AI techniques for addressing them in future research. |
| Author | Sun, Wenjuan Bocchini, Paolo Davison, Brian D. |
| Author_xml | – sequence: 1 givenname: Wenjuan orcidid: 0000-0003-0546-2389 surname: Sun fullname: Sun, Wenjuan email: wes316@lehigh.edu organization: Department of Civil and Environmental Engineering, Lehigh University – sequence: 2 givenname: Paolo orcidid: 0000-0002-5685-2283 surname: Bocchini fullname: Bocchini, Paolo organization: Department of Civil and Environmental Engineering, Lehigh University – sequence: 3 givenname: Brian D. orcidid: 0000-0002-9326-3648 surname: Davison fullname: Davison, Brian D. organization: Department of Computer Science and Engineering, Lehigh University |
| BookMark | eNp9kE1LAzEQhoMo2Fb_gKcFz9HJJM0mJynFLyh4UfAWYjZbUrbZmqQH_71rVxA89DSX93ln5pmS09hHT8gVgxsGUN9mxkBqCggUBENB-QmZsHnNKSgBp2QCGhkFDu_nZJrzBoAxiXpC7ha7XRecLaGPuerbyqYS2uCC7aoQi--6sPbR-artU9WEbHPxqdraaNd-62O5IGet7bK__J0z8vZw_7p8oquXx-flYkUdZ7pQrAU2jWYe6holzhstUKuGowalufyolULfaJQWFTippYW5ap0USijFGOMzcj327lL_ufe5mE2_T3FYaVBwpQDlUDQjaky51OecfGtcKIffSrKhMwzMjy4z6jKDLnPQZfiA4j90l8LWpq_jEB-hPITj2qe_q45Q316ffNU |
| CitedBy_id | crossref_primary_10_1007_s42001_024_00330_2 crossref_primary_10_7232_JKIIE_2022_48_6_626 crossref_primary_10_1016_j_ijdrr_2024_104975 crossref_primary_10_1007_s43621_024_00500_2 crossref_primary_10_1016_j_marpolbul_2024_117446 crossref_primary_10_1038_s44304_025_00104_4 crossref_primary_10_1109_ACCESS_2025_3574451 crossref_primary_10_3390_su13168952 crossref_primary_10_3390_rs14174279 crossref_primary_10_3390_ijgi10030119 crossref_primary_10_1109_JPROC_2022_3223186 crossref_primary_10_1016_j_ijdrr_2024_104619 crossref_primary_10_1017_dmp_2025_63 crossref_primary_10_1016_j_heliyon_2024_e33116 crossref_primary_10_1017_S1816383122000261 crossref_primary_10_1007_s12040_024_02281_8 crossref_primary_10_1017_dmp_2023_3 crossref_primary_10_1109_MIS_2022_3220061 crossref_primary_10_1080_02681102_2025_2502418 crossref_primary_10_3390_bioengineering11040337 crossref_primary_10_1177_11786302231217808 crossref_primary_10_3390_su142013519 crossref_primary_10_1145_3555163 crossref_primary_10_1002_aisy_202500436 crossref_primary_10_3390_geosciences13120384 crossref_primary_10_1007_s00521_023_09218_0 crossref_primary_10_3390_buildings11090411 crossref_primary_10_1007_s11227_023_05795_y crossref_primary_10_1016_j_ijdrr_2024_104287 crossref_primary_10_1061_JPSEA2_PSENG_1830 crossref_primary_10_4018_JGIM_296725 crossref_primary_10_33131_24222208_402 crossref_primary_10_1111_poms_14018 crossref_primary_10_3390_su132212560 crossref_primary_10_1061__ASCE_NH_1527_6996_0000535 crossref_primary_10_1016_j_cej_2020_128070 crossref_primary_10_1007_s11069_021_05190_x crossref_primary_10_3390_s23031699 crossref_primary_10_1109_TGRS_2023_3264811 crossref_primary_10_1002_ieam_4892 crossref_primary_10_1016_j_pdisas_2023_100300 crossref_primary_10_1080_21681015_2024_2426639 crossref_primary_10_1016_j_grets_2025_100202 crossref_primary_10_3390_su162310730 crossref_primary_10_1016_j_eswa_2023_122010 crossref_primary_10_1080_17538947_2024_2403619 crossref_primary_10_3389_fbuil_2022_811460 crossref_primary_10_3390_s23063065 crossref_primary_10_3390_buildings12010080 crossref_primary_10_1139_dsa_2023_0079 crossref_primary_10_4102_jamba_v16i1_1706 crossref_primary_10_1109_ACCESS_2025_3539346 crossref_primary_10_1007_s11356_024_32606_5 crossref_primary_10_1155_2022_2878257 crossref_primary_10_1155_2022_8715028 crossref_primary_10_1016_j_ijdrr_2025_105441 crossref_primary_10_1016_j_ijdrr_2025_105562 crossref_primary_10_3390_app14177823 crossref_primary_10_3390_smartcities4020042 crossref_primary_10_1109_TASE_2022_3213820 crossref_primary_10_1080_24751839_2025_2509452 crossref_primary_10_3390_w12102788 crossref_primary_10_1007_s43681_023_00309_1 crossref_primary_10_1097_MD_0000000000040777 crossref_primary_10_3390_su12208548 crossref_primary_10_1016_j_pdisas_2024_100392 crossref_primary_10_1111_risa_14038 crossref_primary_10_1371_journal_pone_0301255 crossref_primary_10_1016_j_ijdrr_2024_104743 crossref_primary_10_1038_s43017_023_00409_w crossref_primary_10_3390_buildings15132289 crossref_primary_10_1142_S0219877025500087 crossref_primary_10_1007_s11227_024_06188_5 crossref_primary_10_3233_IDT_240041 crossref_primary_10_1016_j_ijdrr_2025_105690 crossref_primary_10_1016_j_ijpe_2022_108642 crossref_primary_10_3389_feart_2021_659296 crossref_primary_10_1088_2634_4505_ac7251 crossref_primary_10_1007_s11042_023_16711_0 crossref_primary_10_1016_j_ress_2023_109358 crossref_primary_10_1007_s11269_021_02782_x crossref_primary_10_1016_j_isprsjprs_2025_06_028 crossref_primary_10_2478_picbe_2024_0237 crossref_primary_10_3390_app132111866 crossref_primary_10_1007_s10669_022_09855_1 crossref_primary_10_1109_TEM_2022_3222235 crossref_primary_10_1007_s10489_025_06259_x crossref_primary_10_1109_EMR_2023_3288432 crossref_primary_10_1007_s10479_023_05247_z crossref_primary_10_1016_j_ijdrr_2024_104536 crossref_primary_10_1007_s42979_021_00971_4 crossref_primary_10_1016_j_enggeo_2022_106837 crossref_primary_10_1145_3690829 crossref_primary_10_3390_jsan12030041 crossref_primary_10_3390_su151310543 crossref_primary_10_3390_systems13090803 crossref_primary_10_1016_j_ijdrr_2023_104094 crossref_primary_10_3390_wevj16060310 crossref_primary_10_3390_bdcc7030157 crossref_primary_10_3390_smartcities7060147 crossref_primary_10_1007_s42524_025_5019_9 crossref_primary_10_1080_00207543_2022_2127961 crossref_primary_10_1016_j_pdisas_2023_100292 crossref_primary_10_3390_s21144942 crossref_primary_10_4102_jamba_v17i1_1776 crossref_primary_10_1186_s43065_023_00072_x crossref_primary_10_1109_ACCESS_2025_3594091 crossref_primary_10_1109_ACCESS_2025_3573207 crossref_primary_10_1126_scirobotics_adj2767 crossref_primary_10_3390_w14050823 crossref_primary_10_1016_j_landusepol_2024_107459 crossref_primary_10_3390_buildings13051143 crossref_primary_10_1016_j_foreco_2023_121274 crossref_primary_10_1007_s00146_025_02573_7 crossref_primary_10_1007_s13753_023_00528_4 crossref_primary_10_1016_j_ijdrr_2025_105639 crossref_primary_10_1038_s41746_025_01859_w crossref_primary_10_1016_j_engappai_2024_108855 crossref_primary_10_1080_10429247_2024_2345526 crossref_primary_10_1007_s11356_025_36566_2 crossref_primary_10_1016_j_ijdrr_2022_103276 crossref_primary_10_1007_s12652_023_04594_w crossref_primary_10_1007_s11356_022_21475_5 crossref_primary_10_1016_j_iot_2024_101273 crossref_primary_10_3390_rs15164112 crossref_primary_10_1007_s42979_024_02788_3 crossref_primary_10_1016_j_comcom_2025_108216 crossref_primary_10_1016_j_ijdrr_2024_104809 crossref_primary_10_11616_asbi_1218853 crossref_primary_10_3390_knowledge5030021 crossref_primary_10_1007_s10676_024_09750_0 crossref_primary_10_1016_j_ecolind_2024_112554 crossref_primary_10_1016_j_treng_2025_100385 crossref_primary_10_1007_s41060_023_00393_w crossref_primary_10_1016_j_techsoc_2025_103057 crossref_primary_10_3390_su152416760 crossref_primary_10_3390_w17152269 crossref_primary_10_1111_1468_5973_12436 crossref_primary_10_3390_make4020020 crossref_primary_10_3390_app12105106 crossref_primary_10_1007_s10115_023_01969_5 crossref_primary_10_2196_51785 crossref_primary_10_3390_f15010201 crossref_primary_10_1061_JENMDT_EMENG_6992 crossref_primary_10_1080_1553118X_2024_2435494 crossref_primary_10_3390_ijerph191811183 crossref_primary_10_3390_su15020964 crossref_primary_10_1016_j_spc_2024_12_012 crossref_primary_10_1016_j_techfore_2022_121662 crossref_primary_10_1080_10106049_2022_2087006 crossref_primary_10_3390_rs13214302 crossref_primary_10_1007_s11269_023_03725_4 crossref_primary_10_1007_s13753_024_00541_1 crossref_primary_10_1016_j_nhres_2025_09_005 crossref_primary_10_1016_j_geomat_2024_100026 crossref_primary_10_1016_j_ijdrr_2023_104123 crossref_primary_10_1016_j_ijdrr_2024_104785 crossref_primary_10_1109_JRFID_2023_3279329 crossref_primary_10_3390_su13147925 crossref_primary_10_1080_01446193_2024_2419413 crossref_primary_10_1007_s00146_025_02423_6 crossref_primary_10_1016_j_ijdrr_2023_104120 crossref_primary_10_1108_IJM_03_2021_0178 crossref_primary_10_1109_MITP_2024_3421944 crossref_primary_10_3390_ijerph18062918 crossref_primary_10_1016_j_tele_2021_101729 crossref_primary_10_3390_su151512036 crossref_primary_10_1080_13669877_2025_2485034 crossref_primary_10_1186_s13690_025_01712_2 crossref_primary_10_1080_15228835_2025_2470150 crossref_primary_10_3390_ijerph20054542 |
| Cites_doi | 10.23919/OCEANS.2009.5422201 10.1016/j.neucom.2019.08.021 10.1016/j.inffus.2019.12.012 10.1016/j.robot.2014.03.003 10.1016/j.ssci.2019.01.007 10.1016/j.engstruct.2014.05.016 10.1111/jori.12106 10.1109/ICASSP.2013.6638947 10.1109/IAS.2009.313 10.1016/j.apgeog.2016.01.005 10.1109/VAST.2011.6102456 10.1007/s11269-019-02342-4 10.1061/(ASCE)UP.1943-5444.0000404 10.1007/s11783-014-0632-6 10.1016/j.cageo.2015.04.007 10.1007/s10479-011-1052-7 10.1080/01431161003727671 10.1145/2567948.2577034 10.1016/j.jpsychires.2014.08.017 10.1109/TPAMI.2013.29 10.1016/j.ijdrr.2019.101251 10.1016/j.probengmech.2013.09.003 10.1080/17538947.2020.1729879 10.1007/978-3-030-32029-4_18 10.1186/s40677-016-0060-y 10.1007/s11063-017-9778-0 10.1061/(ASCE)IS.1943-555X.0000229 10.1016/j.neucom.2019.06.099 10.1016/j.aei.2019.100974 10.17077/48vt-m4t2 10.1111/j.1467-7717.2008.01054.x 10.1016/j.tele.2019.101326 10.1016/j.ress.2011.10.011 10.1111/risa.12131 10.1177/1088868310367640 10.1145/2911451.2911460 10.23919/ChiCC.2017.8027884 10.1016/j.jhydrol.2019.123929 10.1016/j.engstruct.2018.01.053 10.1109/TPAMI.2002.1114856 10.1080/17538947.2018.1523956 10.1016/j.firesaf.2019.04.008 10.1109/SmartGridComm.2018.8587476 10.1177/1475921717717311 10.1016/j.jhydrol.2015.10.038 10.1016/j.measurement.2019.05.067 10.1186/s40677-017-0073-1 10.1111/mice.12122 10.1109/STARTUP.2016.7583959 10.1177/1077546316674544 10.1109/ICCCE.2018.8539253 10.1016/j.jhydrol.2013.05.038 10.1109/IROS.2016.7759215 10.1111/mice.12493 10.1016/S0957-4174(99)00061-5 10.1587/transfun.E96.A.649 10.1016/j.cageo.2017.11.019 10.1109/IEMBS.2009.5332498 10.1142/S0219455417500730 10.1109/TITS.2010.2050200 10.1016/j.tre.2017.07.001 10.1109/COASE.2018.8560473 10.1109/TEM.2018.2794146 10.1145/3047273.3047379 10.1016/j.eswa.2007.08.008 10.1016/j.geomorph.2020.107125 10.3390/ijgi8070297 10.1109/IRI.2018.00071 10.1260/1369-4332.16.1.207 10.1109/ICT-DM.2016.7857214 10.1016/j.scitotenv.2019.135161 10.1007/978-3-319-32034-2_13 10.1109/GHTC.2014.6970316 10.1175/2007WAF2006027.1 10.1007/s13762-013-0281-5 10.1145/3150226 10.1080/17538947.2018.1545878 10.14358/PERS.80.12.1161 10.1177/1550147719856492 10.1109/THS.2010.5655061 10.1109/ICCCNT45670.2019.8944493 10.1371/journal.pone.0017680 10.1029/2010JB007476 10.3923/itj.2011.648.655 10.1067/mem.2001.118999 10.1109/ITSC.2019.8917180 10.1109/TBDATA.2019.2941887 10.1007/s11069-017-2951-y 10.1017/S0033291713000561 10.1016/j.engstruct.2018.11.081 10.1109/THS.2018.8574145 10.1111/j.1553-2712.2007.00032.x 10.1016/S0925-7535(00)00021-7 10.1016/j.isprsjprs.2017.03.001 10.1016/j.aap.2017.06.003 10.1016/j.eswa.2006.12.019 10.1109/IROS40897.2019.8967633 10.1016/j.jweia.2007.04.002 10.1007/s10287-013-0174-6 10.1007/978-981-10-0300-4_7 10.3390/rs70303372 10.1080/15732479.2017.1330891 10.1016/j.tre.2006.04.004 10.1109/MIS.2013.126 10.1109/IJCNN.2018.8489600 10.1007/s00254-007-0649-2 10.1016/j.geomorph.2009.02.026 10.1002/j.1681-4835.2010.tb00300.x 10.1007/s12403-014-0119-5 10.1109/CarpathianCC.2017.7970400 10.1016/j.dss.2019.113234 10.1186/1475-2875-8-287 10.1109/TITS.2010.2040276 10.1109/MIS.2012.6 10.1193/1.3636416 10.12989/sss.2010.6.4.405 10.1007/978-3-319-98446-9_19 10.1109/LGRS.2017.2772349 10.1080/17477891.2012.761593 10.1002/eqe.2991 10.3390/ijerph110808475 10.1016/j.isprsjprs.2015.09.011 10.1109/INCOS.2010.24 10.1109/GHTC.2015.7343981 10.1111/j.1559-1816.1999.tb00132.x 10.1109/GCWkshps45667.2019.9024648 10.2166/wcc.2019.321 10.1109/RIISS.2014.7009173 10.1109/ICACCP.2019.8882877 10.1080/17538947.2019.1574316 10.1139/cjfr-2014-0347 10.1145/2983323.2983355 10.1016/j.ymssp.2016.06.007 10.1108/DPM-12-2012-0148 10.1098/rsta.2011.0244 10.1193/1.4000019 10.1061/(ASCE)CP.1943-5487.0000770 10.1061/(ASCE)CP.1943-5487.0000680 10.23919/EUSIPCO.2019.8903067 10.1109/PERCOMW.2017.7917529 10.1111/mice.12359 10.1109/CERMA.2009.17 10.1080/00207543.2018.1509392 10.3390/su11020516 10.1109/CDC.2016.7799189 10.1016/j.cageo.2013.04.006 10.1007/s10668-018-0086-2 10.1109/ICCE.2017.7889305 10.1145/276305.276312 10.20965/jdr.2018.p0928 10.1016/S1464-2859(14)70322-0 10.1177/1369433218789191 10.1007/978-3-030-03828-1_6 10.1193/1.2798241 10.3390/ijgi8010029 10.1186/s12888-015-0399-8 10.5055/jem.2016.0302 10.1016/j.future.2013.12.018 10.1504/IJSSC.2017.10008038 10.1145/1342327.1342340 10.1109/CCGrid49817.2020.00-15 10.1364/JOCN.7.000B81 10.1109/ICCES45898.2019.9002400 10.1016/j.jhydrol.2017.01.057 10.1126/sciadv.1500779 10.24963/ijcai.2018/78 10.1080/13682199.2019.1600254 10.1016/j.tre.2011.11.003 10.1109/TASL.2011.2134090 10.1016/j.ijrmms.2008.12.003 10.1109/ACCESS.2019.2902558 10.1109/SSRR.2014.7017679 10.1016/j.ijinfomgt.2019.03.004 10.1109/ICASSP.2009.4959870 10.1109/TSMC.2020.2967936 10.1007/s00254-007-0887-3 10.1109/IWCMC.2019.8766625 10.1007/s11069-017-3081-2 10.1007/978-3-030-19562-5_18 10.1111/mice.12346 10.1007/s10694-009-0106-8 10.1061/(ASCE)CP.1943-5487.0000333 10.1016/j.chb.2015.04.020 10.1145/2020408.2020457 10.1109/ICAwST.2019.8923362 10.5194/gmd-8-1955-2015 10.1145/3371158.3371168 10.1109/TSG.2020.2967430 10.1007/s12205-017-1329-8 10.1371/journal.pmed.1001083 10.1038/s41586-018-0438-y 10.2166/nh.2012.032 10.1089/big.2014.0064 10.1145/3065386 10.1109/RAST.2017.8003001 10.1007/s11069-016-2579-3 10.3390/rs11202427 10.1145/2396761.2398732 10.5194/nhess-18-383-2018 10.1007/s10518-016-9894-7 10.1016/j.ipm.2016.09.002 10.3390/ijerph14101267 10.1007/s11069-013-0617-y 10.3390/rs9020100 10.1016/j.coldregions.2017.09.013 10.1016/j.ijdrr.2019.101212 10.1016/j.asoc.2017.02.028 10.3390/geosciences8050165 10.1061/(asce)be.1943-5592.0000201 10.1007/s11069-017-2959-3 10.1002/stc.401 10.1016/j.agee.2003.08.003 10.1109/MIS.2019.2918245 10.1016/j.eswa.2017.12.037 10.1016/j.apgeog.2017.12.017 10.1111/mice.12425 10.1016/j.coldregions.2011.08.011 10.1016/j.pce.2016.04.003 10.5194/nhess-15-2725-2015 10.1007/s12665-016-6374-y 10.1016/j.watres.2009.09.036 10.1109/EEEIC-2.2013.6737884 10.1117/1.OE.51.7.070901 10.1016/j.enggeo.2018.08.010 10.1016/j.image.2019.02.002 10.1080/1369118X.2012.678878 10.1109/ICMA.2009.5246026 10.3390/ijgi8120578 10.1016/j.jhydrol.2017.06.020 10.1155/2018/7258156 10.1145/2480362.2480511 10.1007/978-1-4614-5885-2_11 10.1109/TPAMI.2011.108 10.1109/IGARSS.2017.8127747 10.1186/s13673-019-0187-4 10.1007/s11069-016-2414-x 10.6028/NIST.IR.8231 10.1175/WAF-D-17-0006.1 10.1007/s10064-018-1256-z 10.3390/app7080846 10.1109/ASONAM.2018.8508695 10.1177/0309133313515293 10.1002/eqe.623 10.1109/TGRS.2006.882264 10.1016/j.enggeo.2017.05.009 10.3990/2.369 10.1016/j.ress.2017.08.018 10.1016/j.ijdrr.2016.12.011 10.1016/j.procs.2016.07.144 10.5194/isprs-archives-XLII-4-W18-955-2019 10.1061/9780784482445.063 10.1016/j.strusafe.2017.12.001 10.1080/13683500.2019.1711029 10.1109/GHTC.2018.8601911 10.5194/nhess-13-53-2013 10.1080/23789689.2016.1179529 10.1142/S1469026813500120 10.1016/j.eswa.2017.08.030 10.1145/2020408.2020485 10.1007/s11069-012-0359-2 10.1371/journal.pone.0150989 10.1016/j.cag.2013.10.008 10.1007/s12524-017-0660-3 10.1016/j.ymssp.2008.01.004 10.1109/TEVC.2013.2281396 10.3390/app8112173 10.1080/15230406.2017.1370391 10.1504/IJEM.2013.059879 10.1162/0034653053970339 10.1016/j.future.2018.07.048 10.1016/j.jhydrol.2019.05.066 10.1016/j.jhydrol.2018.11.060 10.1109/BigData.2017.8258464 10.5194/nhess-9-1149-2009 10.1061/(ASCE)IS.1943-555X.0000246 10.1111/j.1540-5915.2011.00319.x 10.1016/j.tre.2009.07.005 10.1016/j.ijinfomgt.2018.09.005 10.1007/s11069-016-2425-7 10.1109/DSAA.2017.11 10.1007/s10479-020-03514-x 10.1016/j.neunet.2019.03.005 10.1109/BigData47090.2019.9006385 10.1007/s11069-018-3413-x 10.1016/j.jhydrol.2014.06.013 10.1257/pol.20140296 10.1080/15732470601185638 10.1007/s00366-019-00798-x 10.1177/1550147718801703 10.1109/ICSSA.2018.8535606 10.1126/sciadv.1700578 10.1111/mice.12064 10.1145/3297280.3297481 10.1002/dac.2716 10.1145/2806416.2806651 10.1007/s11069-014-1565-x 10.1109/5289.863909 10.1016/j.trd.2019.03.002 10.1088/1755-1315/426/1/012156 10.1061/(ASCE)CP.1943-5487.0000334 10.1088/1755-1315/169/1/012056 10.1109/ACCESS.2019.2940822 10.1007/978-3-319-14011-7_12 10.1016/j.soildyn.2017.05.013 10.1109/ACCESS.2019.2946659 10.1037/0735-7028.36.3.246 10.1109/CIG.2008.5035649 10.1016/j.scs.2019.101768 10.1007/s10796-014-9515-4 10.1007/s11069-014-1508-6 10.1061/(ASCE)CP.1943-5487.0000483 10.1613/jair.5098 10.1785/0220160188 10.1002/cpe.4910 10.1109/TIFS.2016.2607701 10.5772/54379 10.1109/CCNC.2018.8319233 10.1007/s13675-015-0058-3 10.1007/s00500-019-03878-8 10.5194/nhess-2017-74 10.14358/PERS.77.9.943 10.1109/ICCCE.2016.72 10.1609/aaai.v33i01.3301702 10.1016/j.neucom.2017.04.083 10.1145/3057280 10.1109/ICCSP.2015.7322851 10.1007/s13753-013-0018-6 10.1016/j.ijdrr.2020.101645 10.1016/j.envsoft.2004.03.006 10.1016/j.engstruct.2016.03.038 10.1061/9780784415894.ch4 10.1007/s10846-010-9514-8 10.1609/aaai.v29i1.9237 10.1016/j.ijdrr.2017.01.004 10.1109/GCWkshps45667.2019.9024679 10.1109/BigMM.2017.30 10.1016/j.iatssr.2016.06.001 10.1007/s11069-018-3325-9 10.1038/s41598-019-45748-1 10.1080/00207543.2016.1174344 10.1016/j.ress.2014.12.007 10.7551/mitpress/9407.001.0001 10.1109/MRA.2009.932521 10.1109/IROS.2014.6942626 10.1016/j.procs.2019.09.291 10.3390/rs8100868 10.1061/(ASCE)ME.1943-5479.0000024 10.1109/IS3C.2018.00067 10.1109/TPWRS.2018.2860904 10.1016/j.geomorph.2009.09.025 10.1109/SmartTechCon.2017.8358367 10.1002/eqe.988 10.1007/s11069-015-1908-2 10.1145/3110025.3110164 10.1145/2740908.2741722 10.1002/tee.22806 10.1088/1757-899X/712/1/012032 10.1007/s11069-018-3264-5 10.1007/s10846-018-0891-8 10.21437/Interspeech.2016-354 10.1016/j.ress.2007.03.038 10.1109/ELEKTRO.2018.8398359 10.1007/s10551-009-0067-3 10.1061/(ASCE)NH.1527-6996.0000193 10.3390/s19071746 10.1007/s13753-016-0087-4 10.1016/j.ecolmodel.2006.04.017 10.4028/www.scientific.net/AMM.147.266 10.1016/j.ijinfomgt.2019.102049 10.1109/ICT-DM.2015.7402056 10.1109/WCNC.2017.7925654 10.1007/s11069-008-9222-x 10.1080/17538947.2019.1645894 10.1016/j.compenvurbsys.2011.01.003 10.1177/1550147718784482 10.1016/j.jhydrol.2015.04.017 10.1038/nature.2013.14186 10.1016/j.ijsrc.2016.02.002 10.3390/s18093017 10.1016/j.future.2020.01.005 10.1016/j.gsf.2017.10.008 10.1109/100.388296 10.1016/j.firesaf.2015.11.015 10.1145/3161603 10.1002/sam.10128 10.1007/978-981-13-0992-2_5 10.1201/9781315207681-171 10.1371/journal.pone.0214367 10.1007/978-981-13-0992-2_3 10.1109/ICPPW.2014.52 10.1080/13658816.2019.1673397 10.1007/s10584-011-0331-2 10.1061/(ASCE)IS.1943-555X.0000569 10.4108/icst.collaboratecom.2012.250525 10.1016/j.geoforum.2014.01.006 10.1177/1369433219861728 10.1016/j.jhydrol.2010.02.028 10.1016/j.apgeog.2019.05.001 10.1016/j.strusafe.2018.12.004 10.1016/j.catena.2016.09.007 10.1016/j.eswa.2009.11.039 10.1193/121812EQS350M 10.4401/ag-5324 10.1016/j.scitotenv.2018.01.124 10.1080/17538941003759255 10.1016/j.engstruct.2011.07.005 10.1016/j.autcon.2010.12.005 10.1007/s00254-007-0788-5 10.1559/152304010790588043 10.1002/rhc3.12047 10.1109/LRA.2018.2792701 10.1111/deci.12103 10.1080/1206212X.2019.1706812 10.1016/j.geomorph.2006.10.035 10.1145/1964858.1964869 10.1051/shsconf/20184400068 10.1145/3095713.3095726 10.1007/s12665-015-4047-x 10.1504/IJWBC.2011.041206 10.1016/j.eswa.2008.08.074 10.1016/j.jocs.2019.02.002 10.1080/01431161.2012.705443 10.1016/j.strusafe.2019.04.003 10.1109/TKDE.2012.29 10.1111/risa.12829 10.1109/ICT-DM.2018.8636373 10.1145/3110025.3110109 10.1016/j.pmcj.2019.04.009 10.14716/ijtech.v10i7.3709 10.1145/3005745.3005750 10.1007/s11069-015-1799-2 10.1016/j.ocecoaman.2015.06.026 10.1007/s12652-014-0227-x 10.5194/nhess-18-65-2018 10.3390/w7041437 10.1109/GHTC.2013.6713678 10.1016/j.procs.2017.11.187 10.5194/nhess-18-3253-2018 10.1016/j.engstruct.2019.109785 10.1080/15732479.2014.995676 10.1109/ICIAICT.2019.8784782 10.1016/j.measurement.2017.05.032 10.1126/scirobotics.aay7120 10.1145/2600428.2609550 10.1109/ICDE.2015.7113322 10.1109/COMST.2016.2540004 10.3141/2459-13 10.1007/978-3-319-51929-6_2 10.1145/2623330.2623628 10.1080/01446190600953805 10.1016/j.eswa.2019.01.042 10.1111/mice.12141 10.1193/1.1585998 10.1007/978-981-13-0992-2_8 10.1371/journal.pone.0047203 10.1016/S1001-6279(10)60033-9 10.1016/j.ijdrr.2015.09.002 10.1016/j.jpsychires.2017.09.010 10.1109/LRA.2015.2509024 10.1016/j.knosys.2016.06.017 10.1109/ICDCS.2019.00123 10.1109/ITSC.2018.8569443 10.1016/j.eswa.2008.03.012 10.1126/sciadv.1501055 10.1145/2641190.2641198 10.1145/2970819 10.1007/s11633-010-0560-2 10.1007/s10115-016-1014-0 10.1145/3194452.3194475 10.1061/(ASCE)UP.1943-5444.0000349 10.1007/s00477-018-1530-4 10.1109/TDSC.2017.2751478 10.1016/j.pdisas.2019.100033 10.1007/s11069-017-2755-0 10.4031/MTSJ.45.3.1 10.1109/MIS.2016.27 10.1016/j.trc.2015.03.014 10.1109/TGRS.2017.2707528 10.1007/s12665-009-0381-1 10.1016/j.agrformet.2017.02.011 10.1109/MIS.2018.043741317 10.1016/j.jseaes.2012.12.014 10.1016/j.iot.2019.100076 10.1007/s11814-015-0042-x 10.1109/TCSS.2019.2914179 10.1080/01431161.2015.1117684 10.1038/nature06958 10.1007/s12517-012-0610-x 10.1016/j.isprsjprs.2009.03.002 10.1016/j.scs.2020.102115 10.1007/s10586-018-1783-1 10.1193/1.2098937 10.1109/THMS.2013.2281762 10.1007/978-3-030-38040-3_87 10.1029/2018GL077870 10.1007/978-1-4939-2602-2_9 10.1007/s12083-015-0386-3 10.1016/j.trc.2014.04.013 10.1109/ICIEA.2019.8833977 10.1109/CCECE.2011.6030716 10.3130/jaabe.17.307 10.1109/IGARSS.2018.8517946 10.1016/j.trc.2014.04.003 10.1080/09709274.2014.11906743 10.1016/j.cageo.2013.04.018 10.1109/WCNC.2019.8885893 10.1260/1369-4332.17.3.303 10.1016/j.knosys.2011.01.014 10.1007/s10551-012-1589-7 10.1007/s11069-016-2477-8 10.3390/rs11101174 10.1109/ICTS.2016.7910295 10.1109/ISDEA.2010.404 10.1049/iet-stg.2018.0043 10.1007/s11069-018-3427-4 10.1145/2623330.2623358 10.1177/1475921714522847 10.1145/3163080.3163113 10.1145/2187980.2188190 10.3115/v1/P14-2009 10.1109/SPAWC.2018.8445768 10.1016/j.ress.2019.106721 10.1002/isaf.326 10.1109/TGRS.2012.2236683 10.1002/rob.20207 10.1080/23789689.2016.1255000 10.1007/s10708-014-9597-z 10.12989/sem.2015.54.2.221 10.5194/nhess-2019-420 10.1109/ICNSC.2007.372797 10.1016/j.asej.2015.11.005 10.1007/978-3-319-15702-3_20 10.1061/AJRUA6.0000831 10.1061/(ASCE)CP.1943-5487.0000456 10.1109/ICINFA.2006.374152 10.1007/s10479-018-3037-2 10.1080/17538947.2019.1633425 10.1109/BigMM.2017.31 10.1007/s13753-018-0189-2 10.1109/ACCESS.2019.2904457 10.1016/j.jom.2012.08.003 10.1145/2996357 10.1109/TVT.2019.2922849 10.1111/mice.12263 10.1002/rob.21502 10.1007/978-981-10-3773-3_55 10.1007/s11069-017-3122-x 10.1371/currents.dis.d073fbece328e4c39087bc086d694b5c 10.1109/MGRS.2016.2540798 10.1016/j.crm.2019.100193 10.1080/01944360903294556 10.1109/SIS.2007.367956 10.1007/s11069-013-0566-5 10.1080/17538947.2018.1535000 10.1111/j.1468-5973.2007.00522.x 10.1007/s11069-017-2934-z 10.1016/j.geomorph.2011.12.040 10.1007/s12665-009-0394-9 10.1109/MCC.2014.71 10.1080/23789689.2018.1448663 10.1109/TETC.2017.2699169 10.1109/SSRR.2018.8468643 10.1061/(ASCE)IS.1943-555X.0000353 10.1016/j.pdisas.2019.100030 10.1108/TG-09-2019-0088 10.1111/1468-5973.12194 10.1007/s11069-018-3256-5 10.1016/j.ijdrr.2015.04.004 10.1785/0120140256 10.1016/j.enggeo.2011.09.006 10.1109/TPWRS.2016.2631895 10.1109/ICC.2019.8761575 10.3846/16484142.2011.584959 10.1016/j.autcon.2016.03.015 10.1109/JSAC.2018.2864373 |
| ContentType | Journal Article |
| Copyright | Springer Nature B.V. 2020 Springer Nature B.V. 2020. |
| Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: Springer Nature B.V. 2020. |
| DBID | AAYXX CITATION 3V. 7ST 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M2P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI |
| DOI | 10.1007/s11069-020-04124-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1573-0840 |
| EndPage | 2689 |
| ExternalDocumentID | 10_1007_s11069_020_04124_3 |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CMMI-1541177 funderid: http://dx.doi.org/10.13039/501100008982 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67M 67Z 6KP 6NX 78A 7XC 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDH EIOEI EIS EJD EPAXT ESBYG FEDTE FERAY FFXSO FIGPU FIL FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V L8X LAK LK5 LLZTM M2P M4Y M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ZY4 ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB 7ST 7TG 7UA 7XB 8FD 8FK C1K F1W FR3 H96 KL. KR7 L.G PKEHL PQEST PQUKI Q9U SOI |
| ID | FETCH-LOGICAL-c319t-2742dd91e0772625d94298d32908936b7882ed926a280c696a058fc6484881113 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 215 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545205200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0921-030X |
| IngestDate | Wed Nov 05 08:09:55 EST 2025 Sat Nov 29 04:00:08 EST 2025 Tue Nov 18 22:43:48 EST 2025 Fri Feb 21 02:32:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Artificial intelligence Disaster management Disaster resilience |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-2742dd91e0772625d94298d32908936b7882ed926a280c696a058fc6484881113 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5685-2283 0000-0003-0546-2389 0000-0002-9326-3648 |
| PQID | 2438802689 |
| PQPubID | 54179 |
| PageCount | 59 |
| ParticipantIDs | proquest_journals_2438802689 crossref_citationtrail_10_1007_s11069_020_04124_3 crossref_primary_10_1007_s11069_020_04124_3 springer_journals_10_1007_s11069_020_04124_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20200900 2020-09-00 20200901 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 9 year: 2020 text: 20200900 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Natural hazards (Dordrecht) |
| PublicationTitleAbbrev | Nat Hazards |
| PublicationYear | 2020 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | BenítezMCRamírezJSeguraJCIbáñezJMAlmendrosJGarcía-YeguasACortésGContinuous HMM-based seismic-event classification at Deception Island, AntarcticaIEEE Trans Geosci Remote Sens200745138146 Imran M, Castillo C, Lucas J, Meier P, Vieweg S (2014) AIDR: artificial intelligence for disaster response. In: Proceedings of the 23rd international conference on world wide web. ACM, pp 159–162 TunusluogluMCGokceogluCNefesliogluHASonmezHExtraction of potential debris source areas by logistic regression technique: a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey)Environ Geol200754922 Morito T, Sugiyama O, Kojima R, Nakadai K (2016) Partially shared deep neural network in sound source separation and identification using a UAV-embedded microphone array. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1299–1304. https://doi.org/10.1109/IROS.2016.7759215 Yamaguchi K, Shirota Y (2019) Pattern classification of disasters impact on companies stock prices. In: The 10th international conference on awareness science and technology (iCAST). IEEE. https://doi.org/10.1109/ICAwST.2019.8923362 ChengLZhangJIs tourism development a catalyst of economic recovery following natural disaster? An analysis of economic resilience and spatial variabilityCurr Issues Tour202010.1080/13683500.2019.1711029 ChouJSThedjaJPPMetaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problemsAutom Construct2016686580 MaliszewskiPJLarsonEKPerringsCEnvironmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, ArizonaReliab Eng Syst Saf201299161171 KochCPaalSGRashidiAZhuZKönigMBrilakisIAchievements and challenges in machine vision-based inspection of large concrete structuresAdv Struct Eng201617303318 ZubiagaALiakataMProcterRHoiGWSTolmiePAnalysing how people orient to and spread rumours in social media by looking at conversational threadsPLoS One201611129 Galatzer-LevyIRKarstoftKIStatnikovAQuantitative forecasting of PTSD from early trauma responses: a machine learning applicationJ Psychiatr Res2014596876 LiTXieNZengCZhouWZhengLJiangYYangYHaHYXueWHuangYChenSCNavlakhaJIyengarSSData-driven techniques in disaster information managementACM Comput Surv201750145 NoymaneeJNikitinNOKalyuzhnayaAVUrban pluvial flood forecasting using open data with machine learning techniques in Pattani BasinProc Comput Sci2017119288297 Stojadinovic Z, Kovacevic M, Marinkovic D, Stojadinovic B (2017) Data-driven housing damage and repair cost prediction framework based on the 2010 Kraljevo earthquake data. In: Proceedings of the 16th world conference on earthquake engineering (16WCEE), p 4987 Yang Y, Lu W, Domack J, Li T, Chen SC, Luis S, Navlakha JK (2012) MADIS: a multimedia-aided disaster information integration system for emergency management. In: Proceedings of the 8th international conference on collaborative computing: networking, applications and worksharing (CollaborateCom). IEEE. https://doi.org/10.4108/icst.collaboratecom.2012.250525 KhadrMForecasting of meteorological drought using Hidden Markov Model (case study: the upper Blue Nile river basin, Ethiopia)Ain Shams Eng J201674756 GermanSJeonJSZhuZBearmanCBrilakisIDesRochesRLowesLMachine vision-enhanced postearthquake inspectionJ Comput Civ Eng201327622634 JonesSSThomasAEvansRSWelchSJHaugPJSnowGLForecasting daily patient volumes in the emergency departmentAcad Emerg Med200815159170 Moustapha AI, Selmic RR (2007) Wireless sensor network modeling using modified recurrent neural networks: application to fault detection. In: 2007 IEEE international conference on networking, sensing and control. IEEE, pp 313–318. https://doi.org/10.1109/ICNSC.2007.372797 TrugmanDTShearerPMGrowClust: A hierarchical clustering algorithm for relative earthquake relocation, with application to the Spanish Springs and Sheldon, Nevada, earthquake sequencesSeismol Res Lett201788379391 Hong L, Yin D, Guo J, Davison BD (2011) Tracking trends: incorporating term volume into temporal topic models. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp 484–492 KellermannPSchröterKThiekenAHHaubrockSNKreibichHThe object-specific flood damage database HOWAS21Nat Hazards Earth Syst Sci202010.5194/nhess-2019-420 ChenWYanXZhaoZHongHBuiDTPradhanBSpatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naïve Bayes and RBFNetwork models for the Long County area (China)Bull Eng Geol Environ201978247266 WangKShiXGohAPXQianSA machine learning based study on pedestrian movement dynamics under emergency evacuationFire Saf J2019106163176 MuhammadKAhmadJBaikSWEarly fire detection using convolutional neural networks during surveillance for effective disaster managementNeurocomputing20182883042 WangZNChenJChenWCArulrajahAHorpibulsukSInvestigation into the tempo-spatial distribution of recent fire hazards in ChinaNat Hazards20189218891907 AfandizadehSJahangiriAKalantariNDetermination of the optimal network configuration for emergency evacuation by simulated annealing algorithmNat Hazards20136913151335 Zhao Z, Wu Y (2016) Attention-based convolutional neural networks for sentence classification. In: The 17th annual conference of the international speech communication association, pp 705–709 BromleyEEisenmanDPMaganaAWilliamsMKimBMcCrearyMChandraAWellsKBHow do communities use a participatory public health approach to build resilience? The Los Angeles county community disaster resilience projectInt J Environ Res Public Health20171410126710.3390/ijerph14101267 Adeel A, Gogate M, Farooq S, Ieracitano C, Dashtipour K, Larijani H, Hussain A (2018) A survey on the role of wireless sensor networks and IoT in disaster management. In: Geological disaster monitoring based on sensor networks. Springer, pp 57–66 Sun H, Tian X, Li Z, Chen E, Wang W (2017) Remotely sensed monitoring forest changes-a case study in the Jinhe town of Inner Mongolia. In: 2017 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE. https://doi.org/10.1109/IGARSS.2017.8127747 FEMA (2019) Federal insurance and mitigation administration national flood insurance program (FIMA NFIP) redacted claims dataset. https://www.fema.gov/media-library/assets/documents/180374 Tian H, Chen SC (2017b) A video-aided semantic analytics system for disaster information integration. In: The 3rd IEEE international conference on multimedia big data. IEEE, pp 242–243. https://doi.org/10.1109/BigMM.2017.31 Hochgraf C, Nygate J, Bazdresch M, Indelicato M, Johnson WP, Espinos R (2018) Providing first responders with real-time status of cellular networks during a disaster. In: The 2018 IEEE international symposium on technologies for homeland security (HST). IEEE. https://doi.org/10.1109/THS.2018.8574145 HolgadoPVollagráVAVázquesLReal-time multistep attack prediction based on hidden Markov modelsIEEE Trans Dependable Secure Comput201717134147 HuangZZhouJSongLLuYZhangYFlood disaster loss comprehensive evaluation model based on optimization support vector machineExpert Syst Appl20103738103814 Nolasco-JavierDKumarLDeriving the rainfall threshold for shallow landslide early warning during tropical cyclones: a case study in northern PhilippinesNat Hazards201890921941 Suriya M, Sumithra MG (2019) Enhancing cooperative spectrum sensing in flying cell towers for disaster management using convolutional neural networks. In: Proceedings of the EAI international conference on big data innovation for sustainable cognitive computing, pp 181–190 USGS (2016a) ShakeCast. https://earthquake.usgs.gov/research/software/shakecast.php GhaffarianSKerleNPasolliEArsanjaniJJPost-disaster building database updating using automated deep learning: an integration of pre-disaster OpenStreetMap and multi-temporal satellite dataRemote Sens2019112427 Parra J, Fuentes O, Anthony EY, Kreinovich V (2016) Use of machine learning to analyze and—hopefully—predict volcano activity. Technical Report UTEP-CS-16-80a, University of Texas at El Paso. http://digitalcommons.utep.edu/cs_techrep/1053 Zhang G, Li B, Li Z, Wang C, Zhang H, Shang H, Hu W, Zhang T (2014) Development of robotic spreader for earthquake rescue. In: Proceedings of the 2014 IEEE international symposium on safety, security, and rescue robotics. IEEE. https://doi.org/10.1109/SSRR.2014.7017679 EidMSEl-adawayIHIntegrating the social vulnerability of host communities and the objective functions of associated stakeholders during disaster recovery processes using agent-based modelingJ Comput Civ Eng20173104017030 CortezBCarreraBKimYJJungJYAn architecture for emergency event prediction using LSTM recurrent neural networksExpert Syst Appl201897315324 ConnerAJShaoYCampbellJBDetection of urban damage using remote sensing and machine learning algorithms: revisiting the 2010 Haiti earthquakeRemote Sens20168868 Socher R, Lin CC, Manning C, Ng AY (2011) Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the international conference on machine learning. Omnipress, pp 129–136 DevaultJERobotic system for underwater inspection of bridge piersIEEE Instrum Measur Magaz200033237 SalmaneHKhoudourLRuicheckYA video-analysis-based railway-road safety system for detecting hazard situations at level crossingsIEEE Trans Intell Transp Syst201516596609 ReschBUsländerFHavasCCombining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessmentJ Artif Intell Res201845362376 Huang W, Wang Y, Yi X (2017) Deep Q-learning to preserve connectivity in multi-robot systems. In: Proceedings of the 9th international conference on signal processing systems (ICSPS2017). ACM, pp 45–50 GuoJWuJGuoJJiangZA damage identification approach for offshore jacket platforms using partial modal results and artificial neural networksAppl Sci201882173 Romlay MRM, Rashid MM, Toha SF (2016) Development of particle swarm optimizatio S Seydi (4124_CR483) 2019; 42 VDC Heß (4124_CR203) 2017 J Yang (4124_CR608) 2011; 147 WT Lin (4124_CR314) 2008; 47 C Melchiorre (4124_CR355) 2008; 94 S Zahran (4124_CR633) 2008; 32 MS Eid (4124_CR139) 2017; 143 UH Atasever (4124_CR28) 2017; 26 VK Neppalli (4124_CR387) 2017; 21 S Su (4124_CR513) 2015; 116 S Li (4124_CR302) 2018; 283 SE Chang (4124_CR86) 2018; 91 S Pezanowski (4124_CR419) 2018; 45 S Yu (4124_CR629) 2014; 137 S Sachdeva (4124_CR467) 2018; 92 Z Wang (4124_CR586) 2019; 108 R Eskandarpour (4124_CR145) 2017; 32 Y Lin (4124_CR315) 2017; 37 LMK Sriram (4124_CR507) 2019; 7 K Noda (4124_CR397) 2014; 62 BW Robertson (4124_CR454) 2019; 2 JH Ruan (4124_CR461) 2016; 54 RR Murphy (4124_CR378) 2007; 25 Y Shibuya (4124_CR492) 2019; 34 L Zou (4124_CR667) 2019; 12 Y Bai (4124_CR38) 2018; 15 M Khadr (4124_CR251) 2016; 7 M Ladds (4124_CR284) 2017; 21 I Mitsopoulos (4124_CR364) 2017; 88 O Günay (4124_CR188) 2010; 46 H Mao (4124_CR346) 2019; 12 A Vetrivel (4124_CR563) 2018; 140 Y Qiang (4124_CR431) 2020; 57 NJ Liang (4124_CR309) 2001; 38 AM Wahab (4124_CR566) 2018; 169 AB Arrieta (4124_CR24) 2020; 58 KI Karstoft (4124_CR249) 2015; 15 CM Yeum (4124_CR617) 2015; 30 A McGovern (4124_CR353) 2011; 4 JG Victores (4124_CR564) 2011; 20 J Guo (4124_CR190) 2018; 8 T Ghosh (4124_CR173) 2018; 33 S German (4124_CR169) 2013; 27 H Liu (4124_CR319) 2008; 93 GF Gomes (4124_CR178) 2019; 181 R Zhang (4124_CR644) 2010; 91 J Lee (4124_CR291) 2016; 12 N Xu (4124_CR600) 2007; 36 Q Zhao (4124_CR650) 2019; 31 Y Zhang (4124_CR647) 2018; 72 JK Riad (4124_CR452) 2006; 29 L Yu (4124_CR625) 2016; 16 D Reynard (4124_CR450) 2019; 77 KM Simmons (4124_CR497) 2008; 23 RB Duffey (4124_CR131) 2019; 10 V Yadollahnejad (4124_CR603) 2017; 143 F Cavalieri (4124_CR78) 2014; 29 S Yang (4124_CR611) 2019; 579 C Koch (4124_CR270) 2016; 17 SG Kong (4124_CR274) 2016; 79 B Takahashi (4124_CR525) 2015; 50 Y Luo (4124_CR331) 2013; 42 BT Pham (4124_CR420) 2017; 149 X Song (4124_CR506) 2017; 35 C Yuan (4124_CR631) 2015; 45 B Resch (4124_CR449) 2018; 45 R Greifeneder (4124_CR186) 2011; 15 S Ettinger (4124_CR147) 2016; 541 ZM Yaseen (4124_CR616) 2015; 530 M Jamali (4124_CR235) 2019; 44 T Yabe (4124_CR602) 2019; 32 L Nguyen (4124_CR392) 2019 L Wang (4124_CR579) 2019; 122 J Wang (4124_CR574) 2018; 18 P Bocchini (4124_CR64) 2012; 17 M Hashemipour (4124_CR199) 2017; 32 SD Ramchurn (4124_CR439) 2016; 57 J Noymanee (4124_CR400) 2017; 119 MR Rasouli (4124_CR441) 2018; 57 X Song (4124_CR505) 2016; 8 PR Bagde (4124_CR33) 2016; 7 Y Zhang (4124_CR645) 2019; 78 Q Kong (4124_CR273) 2016; 2 Q Wu (4124_CR595) 2008; 54 J Chae (4124_CR83) 2014; 38 Q Feng (4124_CR153) 2019; 7 S Zheng (4124_CR656) 2019; 7 M Karamouz (4124_CR248) 2014; 6 G Ireland (4124_CR230) 2015; 7 J Wang (4124_CR571) 2010; 11 JM Kim (4124_CR262) 2015; 76 B Cortez (4124_CR109) 2018; 97 Y Liu (4124_CR323) 2016; 91 4124_CR7 H Aghamohammadi (4124_CR10) 2013; 10 Z Yao (4124_CR615) 2019; 366 M Basu (4124_CR49) 2019; 6 M Aljehani (4124_CR19) 2018; 14 Z Muda (4124_CR375) 2011; 10 H Shi (4124_CR491) 2015; 32 4124_CR2 MAU Khan (4124_CR253) 2012; 12 4124_CR1 K Crawford (4124_CR110) 2015; 80 RT Eguchi (4124_CR135) 1998; 14 4124_CR4 M Rakgase (4124_CR437) 2014; 47 J Fohringer (4124_CR156) 2015; 15 S Hasan (4124_CR198) 2014; 44 4124_CR5 YR Lin (4124_CR316) 2015 C Ma (4124_CR332) 2015; 7 Y Liu (4124_CR324) 2013; 10 H Zhang (4124_CR639) 2016; 84 AJ Rosellini (4124_CR458) 2018; 96 R Suganya (4124_CR515) 2018; 22 C Yuan (4124_CR630) 2019 M Bejiga (4124_CR53) 2017; 9 JN Goetz (4124_CR177) 2015; 81 R Chen (4124_CR92) 2008; 51 A Jaech (4124_CR233) 2019; 34 K Mori (4124_CR369) 2013; E96–A D Gunning (4124_CR189) 2019; 4 W Li (4124_CR307) 2019 J Hackl (4124_CR194) 2018; 33 JB Sheu (4124_CR488) 2010; 46 L Cheng (4124_CR101) 2020 I Zidi (4124_CR664) 2019; 159 YJ Zheng (4124_CR657) 2013; 18 F Laylavi (4124_CR290) 2017; 53 4124_CR52 Q Li (4124_CR301) 2016; 107 J Alfaiate (4124_CR17) 2007; 348–349 SM Hosseini-Moghari (4124_CR212) 2015; 74 PA Chen (4124_CR90) 2013; 497 IM Cavalcante (4124_CR77) 2019; 49 SF Pilkington (4124_CR422) 2016; 1 4124_CR520 4124_CR641 T Li (4124_CR306) 2019; 14 4124_CR402 4124_CR523 4124_CR643 MC Tunusluoglu (4124_CR548) 2007; 54 4124_CR529 4124_CR409 4124_CR59 4124_CR403 4124_CR527 4124_CR648 4124_CR405 4124_CR526 L Uunk (4124_CR555) 2010; 57 JP Wang (4124_CR576) 2013; 58 4124_CR62 D Mitsova (4124_CR366) 2019; 11 Y Yang (4124_CR614) 2019; 196 W Chen (4124_CR96) 2018; 626 SE Middleton (4124_CR360) 2014; 29 H Saito (4124_CR471) 2009; 109 4124_CR510 4124_CR511 W Sun (4124_CR519) 2020; 5 DW Kim (4124_CR260) 2017; 89 J Reilly (4124_CR446) 2013; 10 T Shelton (4124_CR486) 2014; 52 K Muhammad (4124_CR376) 2018; 288 H Zhang (4124_CR638) 2016; 83 A Zubiaga (4124_CR669) 2018; 51 4124_CR69 4124_CR516 4124_CR637 H Sharma (4124_CR484) 2020 4124_CR636 4124_CR76 4124_CR75 4124_CR72 4124_CR73 4124_CR71 RR Murphy (4124_CR379) 2009; 16 S Ghaffarian (4124_CR170) 2019; 11 P Kellermann (4124_CR250) 2020 TC Hutchinson (4124_CR224) 2005; 21 4124_CR543 B Wang (4124_CR568) 2020 MS Eid (4124_CR138) 2017; 31 4124_CR542 4124_CR303 L Mabon (4124_CR334) 2016; 7 4124_CR424 4124_CR660 IR Galatzer-Levy (4124_CR159) 2014; 59 4124_CR540 H Moskowitz (4124_CR371) 2011; 42 4124_CR429 M Ren (4124_CR447) 2010; 25 4124_CR547 NSN Lam (4124_CR286) 2016; 17 KC Hung (4124_CR223) 2016; 68 J Holguín-Veras (4124_CR208) 2012; 30 V Grasic (4124_CR184) 2018; 14 X Liang (4124_CR310) 2018; 34 D Lattanzi (4124_CR287) 2017; 23 JS Bevington (4124_CR60) 2015 S Naito (4124_CR385) 2018; 13 4124_CR411 P Peduzzi (4124_CR414) 2009; 9 4124_CR532 4124_CR653 DF D’Amico (4124_CR116) 2019; 25 DI Dogaru (4124_CR127) 2019; 21 4124_CR410 4124_CR534 4124_CR412 4124_CR654 A Strauss (4124_CR512) 2009; 5 4124_CR651 4124_CR418 A Shirzadi (4124_CR493) 2017; 76 I Yilmaz (4124_CR618) 2010; 61 4124_CR536 4124_CR535 4124_CR538 Q Wang (4124_CR582) 2020; 8 P Holgado (4124_CR207) 2017; 17 4124_CR537 4124_CR658 A Hernandez-Suarez (4124_CR202) 2019; 19 4124_CR609 K Chung (4124_CR107) 2016; 9 A Moradi (4124_CR368) 2019; 15 S Bellaire (4124_CR54) 2017; 144 I Dutta (4124_CR133) 2017; 90 N Xu (4124_CR601) 2019; 51 J Ghosh (4124_CR171) 2013; 34 N Chaudhuri (4124_CR88) 2020; 130 S Sharma (4124_CR485) 2015; 22 SE McCaslin (4124_CR350) 2005; 36 Y Zhao (4124_CR652) 2020; 359 S Chen (4124_CR94) 2020; 47 MY Cheng (4124_CR102) 2014; 30 JP Bagrow (4124_CR35) 2011; 6 4124_CR607 A Curtis (4124_CR114) 2010; 37 W Orabi (4124_CR404) 2010; 26 L Wang (4124_CR578) 2013; 57 4124_CR604 PJ Maliszewski (4124_CR340) 2012; 99 P Hoeppe (4124_CR206) 2016; 11 S Kameshwar (4124_CR244) 2014; 78 M Memarzadeh (4124_CR356) 2019; 80 GE Dahl (4124_CR115) 2012; 20 M Dou (4124_CR130) 2014; 37 FI Sadiq (4124_CR470) 2018; 77 J Sánchez-García (4124_CR475) 2019; 90 R Kovordányi (4124_CR276) 2009; 64 JA Pual (4124_CR428) 2012; 196 AT Zagorecki (4124_CR632) 2013; 9 T Balz (4124_CR41) 2010; 31 FS Hosseini (4124_CR211) 2019; 711 Y Kim (4124_CR268) 2018; 33 YJ Cha (4124_CR82) 2015; 30 S da Silva (4124_CR495) 2008; 22 C Zhou (4124_CR659) 2018; 112 SH Khan (4124_CR254) 2017; 55 C Wan (4124_CR567) 2010; 17 AB Smith (4124_CR500) 2013; 67 JH Wang (4124_CR575) 2019; 33 F Ofli (4124_CR401) 2016; 4 E Bromley (4124_CR67) 2017; 14 H Eicken (4124_CR137) 2011; 45 A Karamlou (4124_CR246) 2016; 117 SS Jones (4124_CR241) 2008; 15 MH Rafiei (4124_CR434) 2017; 100 L Zhao (4124_CR649) 2012; 70 A Giusti (4124_CR176) 2015; 1 ZN Wang (4124_CR587) 2018; 92 F Khoshnoudian (4124_CR256) 2017; 17 JB Sheu (4124_CR487) 2007; 43 4124_CR501 R Arridha (4124_CR23) 2017; 7 MF Goodchild (4124_CR182) 2010; 3 4124_CR621 D Bunker (4124_CR68) 2015; 17 PS Crawford (4124_CR111) 2018 4124_CR509 4124_CR503 4124_CR624 Y Zhang (4124_CR646) 2009; 76 YL Zhou (4124_CR662) 2018; 24 4124_CR502 4124_CR504 Y Sun (4124_CR521) 2016; 115 A Lucieer (4124_CR330) 2014; 38 J Wang (4124_CR573) 2016; 18 S Valkaniotis (4124_CR556) 2018; 245 MC Gonzalez (4124_CR181) 2009; 453 VQ Nguyen (4124_CR393) 2019 C Rudin (4124_CR462) 2012; 34 SV Ukkusuri (4124_CR550) 2014; 2459 S Chen (4124_CR93) 2009; 36 C Axel (4124_CR30) 2017; 4 B Tomaszewski (4124_CR541) 2011; 35 DT Trugman (4124_CR546) 2017; 88 LC Chang (4124_CR85) 2010; 385 S Afandizadeh (4124_CR8) 2013; 69 4124_CR619 MM Torok (4124_CR544) 2014; 28 A Zubiaga (4124_CR668) 2016; 11 4124_CR613 O Badmus (4124_CR32) 2020 Y Xiao (4124_CR596) 2018; 94 C Kousky (4124_CR275) 2015; 84 A Barabadi (4124_CR44) 2018; 169 A Krizhevsky (4124_CR277) 2017; 60 4124_CR370 JF Rosser (4124_CR459) 2017; 87 D Hu (4124_CR215) 2019; 42 X Huang (4124_CR219) 2019 Z Liu (4124_CR325) 2018; 22 4124_CR125 4124_CR124 4124_CR245 JE Devault (4124_CR122) 2000; 3 4124_CR126 C Gomez (4124_CR179) 2016; 3 4124_CR247 N Jayaram (4124_CR236) 2010; 39 4124_CR242 TB Trafalis (4124_CR545) 2014; 11 D Nolasco-Javier (4124_CR398) 2018; 90 SA Bagloee (4124_CR34) 2019; 124 Z Wang (4124_CR585) 2018; 93 4124_CR128 U Maulik (4124_CR349) 2002; 24 D Reed (4124_CR445) 2008; 96 N Casagli (4124_CR74) 2017; 4 S Kuang (4124_CR279) 2017; 7 4124_CR482 4124_CR481 4124_CR477 SM Mousavi (4124_CR372) 2019; 9 4124_CR479 4124_CR357 4124_CR478 4124_CR599 4124_CR352 4124_CR594 TC Hou (4124_CR214) 2017; 108 J Li (4124_CR299) 2010; 42 4124_CR351 4124_CR112 G Datt (4124_CR117) 2015; 4 4124_CR474 SN Mahmoudi (4124_CR338) 2016; 14 M Huang (4124_CR217) 2019; 22 F Fiedrich (4124_CR155) 2000; 35 4124_CR239 TH Lin (4124_CR313) 2015; 76 4124_CR119 Y Gao (4124_CR163) 2006; 15 H Li (4124_CR297) 2014; 45 L Zheng (4124_CR655) 2013; 43 Y Peng (4124_CR416) 2019; 365 4124_CR391 4124_CR152 4124_CR394 B Pradhan (4124_CR427) 2009; 9 E Wlwood (4124_CR592) 2015; 1 4124_CR151 4124_CR272 T Yang (4124_CR612) 2019; 8 4124_CR390 H Salmane (4124_CR473) 2015; 16 4124_CR389 YL Zhou (4124_CR661) 2017; 16 4124_CR146 4124_CR267 4124_CR388 4124_CR148 4124_CR143 SH Moon (4124_CR367) 2018; 568 4124_CR144 K Ahmad (4124_CR12) 2019; 74 S Basu (4124_CR50) 2019; 66 AS Pillai (4124_CR423) 2019 M Yu (4124_CR626) 2018; 8 EM Ali (4124_CR18) 2019; 119 X Guo (4124_CR192) 2009; 36 AD Malawani (4124_CR339) 2020 K Kochersberger (4124_CR271) 2014; 31 J Yin (4124_CR620) 2012; 27 A Ansari (4124_CR22) 2015; 105 J Xiong (4124_CR597) 2019; 8 S Kim (4124_CR266) 2016; 31 S Mangalathu (4124_CR343) 2018; 162 4124_CR382 MC Benítez (4124_CR56) 2007; 45 JM Kim (4124_CR263) 2016; 84 M Bakhshipour (4124_CR39) 2017; 57 4124_CR136 4124_CR257 4124_CR377 4124_CR498 K Liu (4124_CR320) 2016; 31 4124_CR132 |
| References_xml | – reference: Ngiam J, Khosla A, Kim M, Nam J, Nam H, Ng AY (2011) Multimodal deep learning. In: Proceedings of the 28th international conference on machine learning. ACM, pp 689–696 – reference: YuSKimSWOhCWAnHKimJMQuantitative assessment of disaster resilience: an empirical study on the importance of post-disaster recovery costsReliab Eng Syst Saf2014137617 – reference: TatemAJQiuYSmithDLSabotOAliASMoonenBThe use of mobile phone data for the estimation of the travel patterns and imported Plasmodium falciparum rates among Zanzibar residentsMalar J20098287 – reference: DouJYamagishiHPourghasemiHRYunusAPSongXXuYZhuZAn integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, JapanNat Hazards20157817491776 – reference: ChouJSThedjaJPPMetaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problemsAutom Construct2016686580 – reference: QiangYHuangQXuJObserving community resilience from space: using nighttime lights to model economic disturbance and recovery pattern in natural disasterSustain Cities Soc202057102115 – reference: Abdullahi SI, Habaebi MH, Malik NA (2018) Flood disaster warning system on the go. In: Proceedings of the 2018 7th international conference on computer and communication engineering (ICCCE). IEEE, pp 258–263. https://doi.org/10.1109/ICCCE.2018.8539253 – reference: MurphyRRStoverSRescue robots for mudslides: a descriptive study of the 2005 La Conchita mudslide responseJ Field Robot200725316 – reference: Sadhu V, Salles-Loustau G, Pompili D, Zonouz S, Sritapan V (2017) Argus: smartphone-enabled human cooperation for disaster situational awareness via MARL. In: Proceedings of the 2017 IEEE international conference on pervasive computing and communications demonstrations. IEEE. https://doi.org/10.1109/PERCOMW.2017.7917529 – reference: Lin SY, Chao KM, Lo CC, Godwin N (2013) Distributed dynamic data driven prediction based on reinforcement learning approach. In: Proceedings of the 28th annual ACM symposium on applied computing. ACM, pp 779–784 – reference: ZubiagaAAkerABontchevaKLiakataMProcterRDetection and resolution of rumours in social media: a surveyACM Comput Surv20185132 – reference: Dekanová M, Duchoň F, Dekan M, Kyzek F, Biskupič M (2018) Avalanche forecasting using neural network. In: Proceedings of the 2018 ELEKTRO. IEEE. https://doi.org/10.1109/ELEKTRO.2018.8398359 – reference: SuSPiJWanCLiHXiaoRLiBCategorizing social vulnerability patterns in Chinese coastal citiesOcean Coast Manag201511618 – reference: van AardtJAMcKeownDFaulringJRaqueñoNCasterlineMRenschlerCEguchiRMessingerDKrzaczekRCavilliaSAntalovichJJrPhilipsNBartlettBSalvaggioCOntiverosEGillSGeospatial disaster response during the Haiti Earthquake: a case study spanning airborne deployment, data collection, transfer, processing, and disseminationPhotogramm Eng Remote Sens20119943952 – reference: BakhshipourMGhadiMJNamdariFSwarm robotics search and rescue: a novel artificial intelligence-inspired optimization approachAppl Soft Comput201757708726 – reference: WanCMitaAEarly warning of hazard for pipelines by acoustic recognition using principal component analysis and one-class support vector machinesSmart Struct Syst201017405421 – reference: MaulikUBandyopadhyaySPerformance evaluation of some clustering algorithms and validity indicesIEEE Trans Pattern Anal Mach Intell20022416501654 – reference: PhamBTBuiDTPrakashIDholakiaMBHybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GISCATENA20171495263 – reference: Bayerlein H, Kerret PD, Gesbert D (2018) Trajectory optimization for autonomous flying base station via reinforcement learning. In: Proceedings of the 2018 IEEE 19th international workshop on signal processing advances in wireless communications (SPAWC). IEEE. https://doi.org/10.1109/SPAWC.2018.8445768 – reference: AghamohammadiHMesgariMSMansourianAMolaeiDSeismic human loss estimation for an earthquake disaster using neural networkInt J Environ Sci Technol201310931939 – reference: Ashktorab Z, Brown C, Nandi M, Culotta A (2014) Tweedr: mining Twitter to inform disaster response. In: Proceedings of the 11th international conference on information systems for crisis response and management (ISCRAM2014). ISCRAM, pp 354–358. http://idl.iscram.org/files/ashktorab/2014/275_Ashktorab_etal2014.pdf – reference: Yang J, Chesbrough H, Hurmelinna-Laukkanen P (2019a) The rise, fall, and resurrection of IBM Watson Health. Technical Report, Haas School of Business, University of California. http://jultika.oulu.fi/files/nbnfi-fe2020050424858.pdf – reference: RamchurnSDHuynhTDWuFIkunoYFlannJMoreauLFischerJEJiangWRoddenTSimpsonEReeceSRobertsSJenningsNRA disaster response system based on human-agent collectivesJ Artif Intell Res20165766170810.1613/jair.5098 – reference: YadollahnejadVBozorgi-AmiriAJabalameliMAllocation and vehicle routing for evacuation operations: a model and a simulated annealing heuristicJ Urban Plan Dev201714304017018 – reference: Zhao Y, Zheng Z, Zhang X, Liu Y (2017) Q-learning algorithm based UAV path learning and obstacle avoidance approach. In: Proceedings of the 36th Chinese control conference. https://doi.org/10.23919/ChiCC.2017.8027884 – reference: KongSGJinDLiSKimHFast fire flame detection in surveillance video using logistic regression and temporal smoothingFire Saf J2016793743 – reference: ZobelCWQuantitatively representing nonlinear disaster recoveryDecis Sci20144510531082 – reference: ChenYNiuZBaiJWangYSeismic vulnerability assessment of water supply network in Tianjin, ChinaFront Environ Sci Eng20148767775 – reference: CrawfordPSAl-ZarradMAGraettingerAJHainenAMBackEPowellLRapid disaster data dissemination and vulnerability assessment through synthesis of a web-based extreme event viewer and deep learningAdv Civ Eng201810.1155/2018/7258156 – reference: EttingerSMounaudLMagillCYao-LafourcadeAFThouretJCManvilleVNegulescuCZuccaroGGregorioDDNardoneSUchuchoqueJALArguedasAMacedoLLlerenaNMBuilding vulnerability to hydro-geomorphic hazards: Estimating damage probability from qualitative vulnerability assessment using logistic regressionJ Hydrol2016541563581 – reference: KryvasheyeuYChenHObradovichNMoroEHentenryckPVFowlerJCebrianMRapid assessment of disaster damage using social media activitySci Adv201623e150077910.1126/sciadv.1500779 – reference: DuffeyRBPower restoration prediction following extreme events and disastersInt J Disaster Risk Sci201910134148 – reference: Joo S, Ogawa Y, Sekimoto Y (2019) Decision-making system for road-recovery considering human mobility by applying deep Q-network. In: The 2019 IEEE international conference on big data. IEEE. https://doi.org/10.1109/BigData47090.2019.9006385 – reference: SalmaneHKhoudourLRuicheckYA video-analysis-based railway-road safety system for detecting hazard situations at level crossingsIEEE Trans Intell Transp Syst201516596609 – reference: Song X, Zhang Q, Sekimoto Y, Shibasaki R (2014) Prediction of human emergency behavior and their mobility following large-scale disaster. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 5–14 – reference: ArridhaRSukaridhotoSPramadihantoDFunabikiNClassification extension based on IoT-big data analytic for smart environment monitoring and analytic in real-time systemInt J Space Based Situat Comput20177829310.1504/IJSSC.2017.10008038 – reference: Hosseini-MoghariSMAraghinejadSMonthly and seasonal drought forecasting using statistical neural networksEnviron Earth Sci201574397412 – reference: RobinsonSMurphyHBiesAStructured to partner: school district collaboration with nonprofit organizations in disaster responseRisk Hazards Crisis201451779510.1002/rhc3.12047 – reference: WanikDWAnagnostouENHartmanBMFredianiMEBAstithaMStorm outage modeling for an electric distribution network in Northeastern USANat Hazards20157913591384 – reference: BoydDCrawfordKCritical questions for big dataJ Inf Commun Soc201215662679 – reference: WangZWuJChengLLiuKWeiYRegional flood risk assessment via coupled fuzzy c-means clustering methods: an empirical analysis from China’s Huaihe River BasinNat Hazards201893803822 – reference: ChenWYanXZhaoZHongHBuiDTPradhanBSpatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naïve Bayes and RBFNetwork models for the Long County area (China)Bull Eng Geol Environ201978247266 – reference: HosseiniFSChoubinBMosaviANabipourNShamshirbandSDarabiHHaghighihATFlash-flood hazard assessment using ensembles and bayesian-based machine learning models: application of the simulated annealing feature selection methodSci Total Environ201971113516110.1016/j.scitotenv.2019.135161 – reference: LiSTeoKLPost-disaster multi-period road network repair: work scheduling and relief logistics optimizationAnn Oper Res201828313451385 – reference: Kamilaris A, Boldú FXP (2017) Disaster monitoring using unmanned aerial vehicles and deep learning. In: Disaster management for resilience and public safety workshop – reference: IzadiMMohammadzadeAHaghighattalabAA new neuro-fuzzy approach for post-earthquake road damage assessment using GA and SVM classification from Quickbird satellite imagesJ Indian Soc Remote Sens201745965977 – reference: BocchiniPFrangopolDMOptimal resilience- and cost-based postdisaster intervention prioritization for bridges along a highway segmentJ Bridge Eng20121711712910.1061/(asce)be.1943-5592.0000201 – reference: BagloeeSAJohanssonKHAsadiMA hybrid machine-learning and optimization method for contraflow design in post-disaster cases and traffic management scenariosExpert Syst Appl20191246781 – reference: Rizk Y, Jomaa H, Award M, Castillo C (2019) A computationally efficient multi-modal classification approach of disaster-related Twitter images. In: The 34th ACM/SIGAPP symposium on applied computing (SAC ’19). ACM. https://doi.org/10.1145/3297280.3297481 – reference: HolgadoPVollagráVAVázquesLReal-time multistep attack prediction based on hidden Markov modelsIEEE Trans Dependable Secure Comput201717134147 – reference: MarjanovićMKovačevićMBajatBVoženílekVLandslide susceptibility assessment using SVM machine learning algorithmEng Geol2011123225234 – reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale visual recognition. https://arxiv.org/abs/1409.1556 – reference: FiedrichFGehbauerFRickersUOptimized resource allocation for emergency response after earthquake disastersSaf Sci2000354157 – reference: PilkingtonSFMahmoudHNUsing artificial neural networks to forecast economic impact of multi-hazard hurricane-based eventsSustain Resil Infrastruct201616383 – reference: Verma S, Vieweg S, Corvey WJ, Palen L, Martin JH, PAlmer M, Anderson KM (2011) Natural language processing to the rescue? extracting “situational awareness” tweets during mass emergency. In: Proceedings of the fifth international conference on weblogs and social media (ICWSM2011). AAAI, pp 385–392. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2834 – reference: MurphyRRSteimleEHallMLindemuthMTrejoDHurlebausSMedina-CetinaZSlocumDRobotics-assisted bridge inspectionJ Intell Robot Syst2011647795 – reference: ZubiagaALiakataMProcterRHoiGWSTolmiePAnalysing how people orient to and spread rumours in social media by looking at conversational threadsPLoS One201611129 – reference: KimYGhorpadeAZhaoFPereiraFCZegrasPCBen-AkivaMActivity recognition for a smartphone and web-based human mobility sensing systemIEEE Intell Syst201833523 – reference: AsimKMMartínez-ÁlvarezFBasitAIqbalTEarthquake magnitude prediction in Hindukush region using machine learning techniquesNat Hazards201785471486 – reference: BalzTLiaoMBuilding-damage detection using post-seismic high-resolution SAR satellite dataInt J Remote Sens20103133693391 – reference: Li T, Zhou W, Zeng C, Wang Q, Zhou Q, Wang D, Xue J, Huang Y, Wang W, Zhang M, Luis S, Chen SC, Rishe N (2016b) DI-DAP: an efficient disaster information delivery and analysis platform in disaster management. In: Proceedings of the 25th ACM international on conference on information and knowledge management, pp 1593–1602 – reference: USGS (2016b) ShakeMap. https://earthquake.usgs.gov/data/shakemap/ – reference: The PRAISys Team (2018) Probabilistic resilience assessment of interdependent systems (PRAISys). http://praisys.org – reference: ChengLZhangJIs tourism development a catalyst of economic recovery following natural disaster? An analysis of economic resilience and spatial variabilityCurr Issues Tour202010.1080/13683500.2019.1711029 – reference: GengBTraffic prediction and transmission scheduling of artificial intelligence-driven cognitive wireless networksInt J Comput Appl201910.1080/1206212X.2019.1706812 – reference: LiTZengCZhouWXueWHuangYLiuZZhouQXiaBWangQWangWZhuXFIU-Miner (a fast, integrated, and user-friendly system for data mining) and its applicationsKnowl Inf Syst201752411443 – reference: Zhao Z, Wu Y (2016) Attention-based convolutional neural networks for sentence classification. In: The 17th annual conference of the international speech communication association, pp 705–709 – reference: EllenbergABrancoLKrickABartoliIKontsosAUse of unmanned aerial vehicle for quantitative infrastructure evaluationJ Infrastruct Syst20152104014054 – reference: ZengYYanYWengSSunYTianWYuHFuzzy clustering of time-series model to damage identification of structuresAdv Struct Eng201822868881 – reference: BhavarajuSKTBeyneyCNicholsonCQuantitative analysis of social media sensitivity to natural disastersInt J Disaster Risk Reduct201939101251 – reference: ChangTCChienYHThe application of genetic algorithm in debris flows predictionEnviron Geol200753339347 – reference: HaraokaTOjimaTMurataCHayasakaSFactors influencing collaborative activities between non-professional disaster volunteers and victims of earthquake disastersPLoS One20127e47203 – reference: McConnon A (2018) AI helps cities predict natural disasters. https://www.wsj.com/articles/ai-helps-cities-predict-natural-disasters-1530065100 – reference: AndoHAmbeYIshiiAKonyoMTadakumaKMaruyamaSTadokoroSAerial hose type robot by water jet for fire fightingIEEE Robot Autom2018311281135 – reference: MuhammadKAhmadJBaikSWEarly fire detection using convolutional neural networks during surveillance for effective disaster managementNeurocomputing20182883042 – reference: SheltonTPoorthuisAGrahamMZookMMapping the data shadows of Hurricane Sandy: uncovering the sociospatial dimensions of ‘big data’Geoforum201452167179 – reference: YaseenZMEl-shafieAJaafarOAfanHASaylaKNArtificial intelligence based models for stream-flow forecasting: 2000–2015J Hydrol2015530829844 – reference: Cauffman SA, Dillard MK, Helgeson JF (2018) Implementation of the NIST community resilience planning guide for buildings and infrastructure systems. Technical Report NISTIR 8231, National Institute of Standards and Technology. https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8231.pdf – reference: Gemici MC, Savena A (2014) Learning haptic representation for manipulating deformable food objects. In: Proceedings of the 2014 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 638–645. https://doi.org/10.1109/IROS.2014.6942626 – reference: SheykhmousaMKerleNKufferMGhaffarianSPost-disaster recovery assessment with machine learning-derived land cover and land use informationRemote Sens2019111174 – reference: ZhengLShenCTangLZengCLiTLuisSChenSCData mining meets the needs of disaster information managementIEEE Trans Hum Mach Syst201343451464 – reference: Abdalla R, Esmall M (2018) Artificial intelligence and WebGIS for disaster and emergency management. In: WebGIS for disaster management and emergency response. Springer, pp 57–62 – reference: ChaYJBuyukozturkOStructural damage detection using modal strain energy and hybrid multi-objective optimizationComput Aided Civ Infrastruct Eng201530347358 – reference: Vetrivel A, Kerle N, Gerke M, Nex G, Vosselman G (2016) Towards automated satellite image segmentation and classification for assessing disaster damage using data-specific features with incremental learning. In: Kerle N, Gerke M, Lefevre S (eds) Proceedings of the GEOBIA2016: solutions and synergies, Enschede: University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), pp 1–5. https://doi.org/10.3990/2.369 – reference: KimJMWoodPKParkYJSonKEstimating the Texas Windstorm Insurance Association claim payout of commercial buildings from Hurricane IkeNat Hazards201684405424 – reference: LeśniakAIsakowZSpace–time clustering of seismic events and hazard assessment in the Zabrze-Bielszowice coal mine, PolandInt J Rock Mech Min Sci200946918928 – reference: MeruaneVHeylenWStructural damage assessment with antiresonances versus mode shapes using parallel genetic algorithmsStruct Control Health Monit201118825839 – reference: Xu JX, Lu W, Li Z, Khaitan P, Zaytseva V (2019a) Building damage detection in satellite imagery using convolutional neural networks. In: Proceedings of the 33rd conference on neural information processing systems (NeurIPS 2019). arXiv:1910.06444 – reference: GeoPlatform (2016) Geoplatform.gov. https://www.Disasters.GeoPlatform.gov/ – reference: HeßVDCWeigh(t)ing the dimensions of social vulnerability based on a regression analysis of disaster damagesNat Hazards Earth Syst Sci201710.5194/nhess-2017-74 – reference: ZagoreckiATJohnsonDERistvejJData mining and machine learning in the context of disaster and crisis managementInt J Emerg Manag20139351365 – reference: LucieerAde JongSMTurnerDMapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photographyProg Phys Geogr Earth Environ20143897116 – reference: LiHCarageaDCarageaCHerndonNDisaster response aided by tweet classification with a domain adaptation approachJ Contingencies Crisis Manag2018261627 – reference: CrawfordKFinnMThe limits of crisis data: analytical and ethical challenges of using social and mobile data to understand disastersGeoJournal201580491502 – reference: HashemipourMStubanSMFDeverJRA community-based disaster coordination framework for effective disaster preparedness and responseAust J Emerg Manag2017324146 – reference: LiTWangQXieZDisaster response knowledge and its social determinants: a cross-sectional study in Beijing, ChinaPLoS One201914e0214367 – reference: SuZJiangJLiangCZhangGPath selection in disaster response management based on Q-learningInt J Autom Comput20118100106 – reference: MaXTaoZWangYYuHWangYLong short-term memory neural network for traffic speed prediction using remote microwave sensor dataTransp Res Part C201554187197 – reference: Pau J, Baker J, Houston N (2017) Artificial intelligence in Asia: preparedness and resilience. https://www.asiabusinesscouncil.org/docs/AI_briefing.pdf – reference: WahabAMLudinANMFlood vulnerability assessment using artificial neural networks in Muar Region, Johor MalaysiaIOP Conf Ser Earth Environ Sci2018169012056 – reference: Zhang G, Li B, Li Z, Wang C, Zhang H, Shang H, Hu W, Zhang T (2014) Development of robotic spreader for earthquake rescue. In: Proceedings of the 2014 IEEE international symposium on safety, security, and rescue robotics. IEEE. https://doi.org/10.1109/SSRR.2014.7017679 – reference: WangJHLinGFChangMJHuangIHChenYRReal-time water-level forecasting using dilated causal convolutional neural networksWater Resour Manag20193337593780 – reference: GongQLiLTogninSWuQPettersson-YeoWLuiSHuangXMarquandAFMechelliAUsing structural neuroanatomy to identify trauma survivors with and without post-traumatic stress disorder at the individual levelPsychol Med201344195203 – reference: Socher R, Huval B, Bhat B, Manning CD, Ng AY (2008) Convolutional-recursive deep learning for 3D object classification. In: Proceedings of the 25th international conference on neural information processing systems, volume 1, pp 656–664 – reference: XuNGuikemaSDDavidsonRANozickLKÇağnanZVaziriKOptimizing scheduling of post-earthquake electric power restoration tasksEarthq Eng Struct Dyn200736265284 – reference: MerzBKreibichHLallUMulti-variate flood damage assessment: a tree-based data-mining approachNat Hazards Earth Syst Sci2013135364 – reference: WangJPHuangDChangSCBrantLOn-site earthquake early warning with multiple regression analysis: featuring two user-friendly applications for ExcelComput Geosci20135817 – reference: Kundu S, Srijith P, Desarkar MS (2018) Classification of short-texts generated during disasters: a deep neural network based approach. In: Proceedings of the 2018 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM). IEEE, pp 790–793, https://doi.org/10.1109/ASONAM.2018.8508695 – reference: LiuHDavidsonRAApanasovichTVSpatial generalized linear mixed models of electric power outages due to hurricanes and ice stormsReliab Eng Syst Saf200893897912 – reference: GomezCPurdieHUAV-based photogrammetry and geocomputing for hazards and disaster risk monitoring—a reviewGeoenviron Disasters2016323 – reference: EidMSEl-adawayIHIntegrating the social vulnerability of host communities and the objective functions of associated stakeholders during disaster recovery processes using agent-based modelingJ Comput Civ Eng20173104017030 – reference: SinghNRoyNGangopadhyayAAnalyzing the emotions of crowd for improving the emergency response servicesPervasive Mobile Comput201958101018 – reference: SachdevaSBhatiaTVermaAKGIS-based evolutionary optimized gradient boosted decision trees for forest fire susceptibility mappingNat Hazards20189213991418 – reference: Hochgraf C, Nygate J, Bazdresch M, Indelicato M, Johnson WP, Espinos R (2018) Providing first responders with real-time status of cellular networks during a disaster. In: The 2018 IEEE international symposium on technologies for homeland security (HST). IEEE. https://doi.org/10.1109/THS.2018.8574145 – reference: AxelCvan AardtJANBuilding damage assessment using airborne LiDARJ Appl Remote Sens20174046024 – reference: Steimle ET, Murphy RR, Lindemuth M, Hall ML (2009) Unmanned marine vehicle use at Hurricanes Wilma and Ike. In: OCEANS 2009. IEEE, pp 1–6. https://doi.org/10.23919/OCEANS.2009.5422201 – reference: WuQXuHPangWGIS and ANN coupling model: an innovative approach to evaluate vulnerability of karst water inrush in coalmines of north ChinaEnviron Geol200854937943 – reference: GaoXNayeemMKHezamIMA robust two-stage transit-based evacuation model for large-scale disaster responseMeasurement2019145713723 – reference: HuangLXiangLMethod for meteorological early warning of precipitation-induced landslides based on deep neural networkNeural Process Lett20184811431260 – reference: Zhang D, Zhang Y, Li Q, Plummer T, Wang D (2019a) CrowdLearn: A crowd-AI hybrid system for deep learning-based damage assessment applications. In: Proceedings of the IEEE 39th international conference on distributed computing systems (ICDCS). IEEE, pp 1221–1232. https://doi.org/10.1109/ICDCS.2019.00123 – reference: AljehaniMInoueMSafe map generation after a disaster, assisted by an unmanned aerial vehicle tracking systemTrans Electr Electron Eng201814271282 – reference: PerolTGharbiMDenolleMConvolutional neural network for earthquake detection and locationSci Adv20184e1700578 – reference: TakahashiBTandocECJrCarmichaelCCommunicating on Twitter during a disaster: an analysis of tweets during Typhoon Haiyan in the PhilippinesComput Hum Behav201550392398 – reference: Samir M, Chraiti M, Assi C, Ghrayeb A (2019) Joint optimization of UAV trajectory and radio resource allocation for drive-thru vehicular networks. In: Proceedings of the 2019 IEEE wireless communications and networking conference (WCNC). IEEE. https://doi.org/10.1109/WCNC.2019.8885893 – reference: WuDYanDYangGWangXXiaoWZhangHAssessment on agricultural drought vulnerability in the Yellow River basin based on a fuzzy clustering iterative modelNat Hazards201367919936 – reference: MiddletonSEMiddletonLModafferiSReal-time crisis mapping of natural disasters using social mediaIEEE Intell Syst201429917 – reference: SunWBocchiniPDavisonBDModel for estimating the impact of interdependencies on system recoveryJ Infrast Syst20202630402003110.1061/(ASCE)IS.1943-555X.0000569 – reference: ZahranSBrodySDPeacockWGVedlitzAGroverHSocial vulnerability and the natural and built environment: a model of flood casualties in TexasDisasters200832537560 – reference: Song X, Zhang Q, Sekimoto Y, Shibasaki R, Yuan NJ, Xie X (2015) A simulator of human emergency mobility following disasters: Knowledge transfer from big disaster data. In: Twenty-Ninth AAAI conference on artificial intelligence. AAAI, pp 730–736 – reference: GeißCTaubenböckHTyagunovSTischAPostJLakesTAssessment of seismic building vulnerability from spaceEarthq Spectra20143015531583 – reference: Holguín-VerasJJallerMWassenhoveLNVPérezNWachtendorfTOn the unique features of post-disaster humanitarian logisticsJ Oper Manag201230494506 – reference: GoetzJNBrenningAPetschkoHLeopoldPEvaluating machine learning and statistical prediction techniques for landslide susceptibility modelingComput Geosci201581111 – reference: KaramouzMNazifMKNazifSPrediction of sea level using a hybrid data-driven model: new challenges after Hurricane SandyWater Qual Expo Health201466371 – reference: Qiao L, Luo J (2012) Research on Q-learning algorithm with sharing experience in learning process. Computer Science, vol 39. http://en.cnki.com.cn/Article_en/CJFDTotal-JSJA201205053.htm – reference: FengQLiuJGongJUrban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier—a case of Yuyao, ChinaWater2019714371455 – reference: GhoshTKrishnamurtiTNImprovements in hurricane intensity forecasts from a multimodel superensemble utilizing a generalized neural network techniqueWeather Forecast201833387388510.1175/WAF-D-17-0006.1 – reference: YuLZhuJHNonlinear damage detection using higher statistical moments of structural responsesStruct Eng Mech201454222123710.12989/sem.2015.54.2.221 – reference: Saxena A, Wong LLS, Ng AY (2008) Learning grasp strategies with partial shape information. In: Proceedings of the 23rd national conference on artificial intelligence - volume 3, pp 1491–1494 – reference: FohringerJDranschDKreibichHSchröterKSocial media as an information source for rapid flood inundation mappingNat Hazards Earth Syst Sci20151527252738 – reference: Oktarina R, Bahagia SN, Diawati L, Pribadi KS (2019) Artificial neural network for predicting earthquake casualties and damages in Indonesia. In: The 3rd international conference on eco engineering. IOPscience, p 012156 – reference: PradhanBFlood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensingJ Spat Hydrol20099118 – reference: KahnMEThe death toll from natural disasters: the role of income, geography, and institutionsRev Econ Stat200687271284 – reference: YoonHShiftehfarRChoSSpencerBFJNelsonMEAghaGVictim localization and assessment system for emergency respondersJ Comput Civ Eng20163004015011 – reference: HasanSUkkusuriSVUrban activity pattern classification using topic models from online geo-location dataTransp Res Part C Emerg Technol20144436338110.1016/j.trc.2014.04.003 – reference: Graves A, Mohamed A-R, Hinton G (2013) Speech recognition with deep recurrent neural networks. https://arxiv.org/abs/1303.5778 – reference: Tan D, Qu W, Tu J (2010) The damage detection based on the fuzzy clustering and support vector machine. In: The 2010 international conference on intelligent system design and engineering application, pp 598–601. https://doi.org/10.1109/ISDEA.2010.404 – reference: RossiFBuilding trust in artificial intelligenceJ Int Aff2019721127134 – reference: KhoshnoudianFTalaeiSFallahianMStructural damage detection using FRF data, 2D-PCA, artificial neural networks and imperialist competitive algorithm simultaneouslyInt J Struct Stab Dyn2017171750073 – reference: MaliszewskiPJLarsonEKPerringsCEnvironmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, ArizonaReliab Eng Syst Saf201299161171 – reference: Bande S, Shete VV (2017) Smart flood disaster prediction system using IoT and neural networks. In: 2017 international conference on smart technologies for smart nation (SmartTechCon). IEEE. https://doi.org/10.1109/SmartTechCon.2017.8358367 – reference: TomaszewskiBBlanfordJRossKPezanowskiSMacEachrenAMSupporting geographically-aware web document foraging and sensemakingComput Environ Urban Syst201135192207 – reference: SuganyaRJayashreeLSFuzzy rough set inspired rate adaptation and resource allocation using Hidden Markov Model (FRSIRA-HMM) in mobile ad hoc networksClust Comput20182298759888 – reference: ReedDElectric utility distribution analysis for extreme windsJ Wind Eng Ind Aerodyn200896123140 – reference: GreifenederRBlessHPhamMWhen do people rely on affective and cognitive feelings in judgment? A reviewPers Soc Psychol Rev201115107141 – reference: Lee W, Kim S, Lee YT, Lee HW, Choi M (2017) Deep neural networks for wild fire detection with unmanned aerial vehicle. In: Proceedings of the 2017 IEEE international conference on consumer electronics (ICCE). IEEE. https://doi.org/10.1109/ICCE.2017.7889305 – reference: McCreadie R, Macdonald C, Ounis I (2016) EAIMS: emergency analysis identification and management system. In: Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 1101–1104.https://doi.org/10.1145/2911451.2911460 – reference: LagarosNDFragiadakisMFragility assessment of steel frames using neural networksEarthq Spectra200723735752 – reference: Djordjevich DD, Xavier PG, Bernard ML, Whetzel JH, Glickman MR, Verzi SJ (2008) Preparing for the aftermath: using emotional agents in game-based training for disaster response. In: The 2008 IEEE symposium on computational intelligence and games. IEEE, pp 266–275 – reference: Rodriguez-RamosASampedroCBavleHde la PuentePCampoyPA deep reinforcement learning strategy for UAV autonomous landing on a moving platformJ Intell Robot Syst201993351366 – reference: ZhouYLMaiaNMMSampaioRPCStructural damage detection using transmissibility together with hierarchical clustering analysis and similarity measureStruct Health Monit20171671173110.1016/j.cag.2013.10.008 – reference: Sun W, Bocchini P, Davison BD (2021) Quantitative models for interdependent functionality and recovery of critical infrastructure systems. In: Objective resilience: manual of practice. ASCE, Under Review – reference: Padmawar PM, Shinde AS, Sayyed TZ, Shinde SK, Moholkar K (2019) Disaster prediction system using convolution neural network. In: The 2019 international conference on communication and electronics systems (ICCES). IEEE, pp 808–812. https://doi.org/10.1109/ICCES45898.2019.9002400 – reference: Yamaguchi K, Shirota Y (2019) Pattern classification of disasters impact on companies stock prices. In: The 10th international conference on awareness science and technology (iCAST). IEEE. https://doi.org/10.1109/ICAwST.2019.8923362 – reference: Nguyen DT, Ofli F, Imran M, Mitra P (2017) Damage assessment from social media imagery data during disasters. In: Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining 2017. ACM, pp 569–576 – reference: ChangFJChenPALuYRHuangEChangKYReal-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood controlJ Hydrol2014517836846 – reference: Tian H, Pouyanfar S, Chen J, Chen SC, Iyengar SS (2018) Automatic convolutional neural network selection for image classification using genetic algorithms. In: 2018 IEEE international conference on information reuse and integration (IRI), pp 444–451. https://doi.org/10.1109/IRI.2018.00071 – reference: Imran M, Elbassuoni S, Castillo C, Diaz F (2013) Extracting information nuggets from disaster-related messages in social media. In: The 10th international conference on information systems for crisis response and management (ISCRAM). https://pdfs.semanticscholar.org/ba89/77eb5d737d643f38d84d0c1476211bb88986.pdf – reference: Oh J, Hwang JE, Smith SF (2006) Agent technologies for post-disaster urban planning. In: First international AAMAS workshop on agent technology for disaster management, pp 24–31 – reference: Layek AK, Poddar S, Mandal S (2019) Detection of flood images posted on online social media for disaster response. In: Proceedings of the 2019 second international conference on advanced computational and communication paradigms (ICACCP). https://doi.org/10.1109/ICACCP.2019.8882877 – reference: UkkusuriSVZhanXSadriAMYeQUse of social media data to explore crisis informatics: study of 2013 Oklahoma TornadoTransp Res Rec J Transp Res Board20142459110118 – reference: ZhangRRezaeeZZhuJCorporate philanthropic disaster response and ownership type: evidence from Chinese firms’ response to the Sichuan EarthquakeJ Bus Ethics2010915163 – reference: ChenWPengJHongHShahabiHPradhanBLiuJZhuAXPeiXDuanZLandslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, ChinaSci Total Environ201862611211135 – reference: GuoXYuanZTianBSupplier selection based on hierarchical potential support vector machineExpert Syst Appl20093669786985 – reference: LinGFChangMJHuangYCHoJYAssessment of susceptibility to rainfall-induced landslides using improved self-organizing linear output map, support vector machine, and logistic regressionEng Geol20172246274 – reference: Otoum S, Kantarci B, Mouftah H (2019) Empowering reinforcement learning on big sensed data for intrusion detection. In: Proceedings of the 2019 IEEE international conference on communications (ICC2019). IEEE. https://doi.org/10.1109/ICC.2019.8761575 – reference: HeckMHammerCvan HerwijnenASchweizerJFähDAutomatic detection of snow avalanches in continuous seismic data using hidden Markov modelsNat Hazards Earth Syst Sci201018383396 – reference: LiuKLiZYaoCChenJZhangKSaifullahMCoupling the k-nearest neighbor procedure with the Kalman filter for real-time updating of the hydraulic model in flood forecastingInt J Sedim Res201631149158 – reference: OfliFMeierPCastilloCTuisaDBriantJMilletPReinhardFParkanMJoostSCombining human computing and machine learning to make sense of Big (aerial) Data for disaster responseBig Data201644759 – reference: WangJZhangWIpWAn integrated road construction and resource planning approach to the evacuation of victims from single source to multiple destinationsIEEE Trans Intell Transp Syst201011277289 – reference: RafieiMHAdeliHNEEWS: A novel earthquake early warning model using neural dynamic classification and neural dynamic optimizationSoil Dyn Earthq Eng2017100417427 – reference: Wang W (2018) Human detection based on radar sensor network in natural disaster. In: Geological disaster monitoring based on sensor networks. Springer, pp 109–134 – reference: NodaKArieHSugaYOgataTMultimodal integration learning of robot behavior using deep neural networksRobot Auton Syst201462721736 – reference: RenwickNChina’s approach to disaster risk reduction: human security challenges in a time of climate changeJ Asian Secur Int Aff201742649 – reference: WangLSawadaKMoriguchiSLandslide susceptibility analysis with logistic regression model based on FCM sampling strategyComput Geosci2013578192 – reference: YeumCMDykeSJVision-based automated crack detection for bridge inspectionComput Aided Civ Infrastruct Eng201530759770 – reference: Galatzer-LevyIRKarstoftKIStatnikovAQuantitative forecasting of PTSD from early trauma responses: a machine learning applicationJ Psychiatr Res2014596876 – reference: YangSYangDChenJZhaoBReal-time reservoir operation using recurrent neural networks and inflow forecast from a distributed hydrological modelJ Hydrol2019579142229 – reference: Zheng L, Shen C, Tang L, Li T, Luis S, Chen SC (2011) Applying data mining techniques to address disaster information management challenges on mobile devices. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 283–291 – reference: DattGBhattAKKumarSDisaster management information system framework using feed forward back propagation neural networkInt J Adv Res Comput Commun Eng20154510514 – reference: KhanMAUSayemMAUnderstanding recovery of small enterprises from natural disasterEnviron Hazards201212218239 – reference: KrizhevskyASutskeverIHintonGEImageNet classification with deep convolutional neural networksCommun ACM20176010971105 – reference: KovordányiRRoyCCyclone track forecasting based on satellite images using artificial neural networksISPRS J Photogramm Remote Sens200964513521 – reference: MoriKYamaneAHayakawaYWadaTOhtsukiKOkadaHDevelopment of emergency rescue evacuation support system (ERESS) in panic-type disasters: disaster recognition algorithm by support vector machineIEICE Trans Fundam Electron Commun Comput Sci2013E96–A64965710.1587/transfun.E96.A.649 – reference: Khan TA, Alam M, Kadir K, Shahid Z, Mazliham M (2018) A novel approach for the investigation of flash floods using soil flux and CO2: an implementation of MLP with less false alarm rate. In: Proceedings of the 2nd international conference on smart sensors and application (ICSSA). IEEE, pp 130–134. https://doi.org/10.1109/ICSSA.2018.8535606 – reference: KimJSulSHChoiJBDevelopment of unmanned remote smart rescue platform applying Internet of Things technologyInt J Distrib Sens Netw201810.1177/1550147718784482 – reference: Nguyen C, Han F, Schlesinger KJ, Gür I, Carlson JM (2016) Collective decision dynamics in group evacuation: behavioral experiment and machine learning models. https://arxiv.org/abs/1606.05647 – reference: Mendoza M, Poblete B, Castillo C (2010) Twitter under crisis: Can we trust what we RT? In: The 1st workshop on social media analytics (SOMA ’10). ACM, pp 71–79 – reference: SrivastavaMAbdelzaherTSzymanskiBHuman-centric sensingPhilos Trans R Soc A Math Phys Eng Sci2012370176197 – reference: KimJMSonKKimYJAssessing regional typhoon risk of disaster management by clustering typhoon pathsEnviron Dev Sustain20192120832096 – reference: Caragea C, Squicciarini A, Stehle S, Neppalli K, Tapia A (2014) Mapping moods: geo-mapped sentiment analysis during Hurricane Sandy. In: Proceedings of the 11th international conference on information systems for crisis response and management (ISCRAM 2014). ISCRAM, pp 642–651 – reference: de MorsierFTuiaDBorgeaudMGassVThiranJPSemi-supervised novelty detection using SVM entire solution pathIEEE Trans Geosci Remote Sens20135119391950 – reference: LaddsMKeatingAHandmerKMageeLHow much do disasters cost? A comparison of disaster cost estimates in AustraliaInt J Disaster Risk Reduct201721419429 – reference: WangKShiXGohAPXQianSA machine learning based study on pedestrian movement dynamics under emergency evacuationFire Saf J2019106163176 – reference: ZidiIAl-OmaniMAldhafeeriKA new approach based on the hybridization of simulated annealing algorithm and Tabu search to solve the static ambulance routing problemProc Comput Sci201915912161228 – reference: KouskyCMichel-KerjanEExamining flood insurance claims in the United States: six key findingsJ Risk Insur201584819850 – reference: ZornCRShamsedinAYPost-disaster infrastructure restoration: a comparison of events for future planningInt J Disaster Risk Reduct201513158166 – reference: MaoHThakurGSparksKSanyalJBhaduriBMapping near-real-time power outages from social mediaInt J Digit Earth20191212851299 – reference: TanakaGYamaneTHérouxJBNakaneRKanazawaNTakedaSNumataHNakanoDHiroseARecent advances in physical reservoir computing: a reviewNeural Netw2019115100123 – reference: JiangSFriedlandCJAutomatic urban debris zone extraction from post-hurricane very high-resolution satellite and aerial imageryJ Geomat Nat Hazards Risk20167120 – reference: KimSKimHNamkoongYOrdinal classification of imbalanced data with application in emergency and disaster information servicesIEEE Intell Syst2016315056 – reference: McCaslinSEJacobsGAMeyerDLJohnson-JimenezEMetzlerTJMarmarCRHow does negative life change following disaster response impact distress among Red Cross responders?Prof Psychol Res Pract200536324625310.1037/0735-7028.36.3.246 – reference: Yang Y, Lu W, Domack J, Li T, Chen SC, Luis S, Navlakha JK (2012) MADIS: a multimedia-aided disaster information integration system for emergency management. In: Proceedings of the 8th international conference on collaborative computing: networking, applications and worksharing (CollaborateCom). IEEE. https://doi.org/10.4108/icst.collaboratecom.2012.250525 – reference: RudinCWaltzDAndersonRNBoulangerASalleb-AouissiAChowMDuttaHGrossPHuangBIeromeSIsaacDKressnerAPassonneauRJRadevaAWuLMachine learning for the New York City power gridIEEE Trans Pattern Anal Mach Intell201234328345 – reference: KarstoftKIGalatzer-LevyIRStatnikovALiZShalevAYBridging a translational gap: using machine learning to improve the prediction of PTSDBMC Psychiatry20151530 – reference: YuanCLiuZLiuZA survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniquesCan J For Res201545783792 – reference: Bahrepour M, Meratnia N, Poel M, Taghikhaki Z, Havinga PJ (2010) Distributed event detection in wireless sensor networks for disaster management. In: 2nd international conference on intelligent networking and collaborative systems. IEEE, pp 507–512. https://doi.org/10.1109/INCOS.2010.24 – reference: TapiaCPadgettJEMulti-objective optimisation of bridge retrofit and post-event repair selection to enhance sustainabilityStruct Infrastruct Eng20151293107 – reference: YilmazIComparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machineEnviron Earth Sci201061821836 – reference: Gupta R, Hosfelt R, Sajeev S, Patel N, Goodman B, Doshi J, Heim E, Choset H, Gaston M (2019) xBD: A dataset for assessing building damage from satellite imagery. In: Proceedings of the CVPR workshops 2019. arXiv: 1911.09296v1 – reference: BaiSBWangJLüGNZhouPGHouSSXuSNGIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, ChinaGeomorphology20101152331 – reference: NeppalliVKCarageaCSquicciariniATapiaAStehleSSentiment analysis during Hurricane Sandy in emergency responseInt J Disaster Risk Reduct201721213222 – reference: Cresci S, Tesconi M, Cimino A, Dell’Orletta F (2015) A linguistically-driven approach to cross-event damage assessment of natural disasters from social media messages. In: Proceedings of the 24th international conference on world wide web. ACM, pp 1195–1200 – reference: PyaytALMokhovIILangBKrzhizhanovskayaVVMeijerRJMachine learning methods for environmental monitoring and flood protectionInt J Comput Electr Autom Control Inf Eng20115549554 – reference: WangFJinZQianXRenQHuoZFuzzy clustering analysis in determining sub-faults of large earthquakes based on aftershock distributionActa Seismol Sin201234793803in Chinese – reference: AfandizadehSJahangiriAKalantariNDetermination of the optimal network configuration for emergency evacuation by simulated annealing algorithmNat Hazards20136913151335 – reference: ShiHGaoQQiYLiuJHuYWind erosion hazard assessment of the mongolian plateau using FCM and GIS techniquesEnviron Earth Sci201061689697 – reference: KimDWDeoRCLeeJSYeomJMMapping heatwave vulnerability in KoreaNat Hazards2017893555 – reference: GhoshSHuyckCKGreeneMGillSPBevingtonJSveklaWDesRochesREguchiRTCrowdsourcing for rapid damage assessment: the global earth observation catastrophe assessment network (GEO-CAN)Earthq Spectra201127S179S198 – reference: BromleyEEisenmanDPMaganaAWilliamsMKimBMcCrearyMChandraAWellsKBHow do communities use a participatory public health approach to build resilience? The Los Angeles county community disaster resilience projectInt J Environ Res Public Health20171410126710.3390/ijerph14101267 – reference: KimJMKimTYuYJSonKDevelopment of a maintenance and repair cost estimation model for educational buildings using regression analysisJ Archit Build Eng201817307312 – reference: LiuZZhangZArtificial neural network based method for seismic fragility analysis of steel framesKSCE J Civ Eng201822708717 – reference: Leon F, Atanasiu GM (2006) Data mining methods for GIS analysis of seismic vulnerability. In: Proceedings of the first international conference on software and data technologies (ICSOFT 2006), vol 2, pp 153–156 – reference: AcarAMurakiYTwitter for crisis communication: lessons learned from Japan’s tsunami disasterInt J Web Based Communities20117392402 – reference: YinJLampertACameronMRobinsonBPowerRUsing social media to enhance emergency situation awarenessIEEE Intell Syst2012275259 – reference: FotovatikhahFHerreraMShamshirbandSChaueKArdabiliSFPiranMJSurvey of computational intelligence as basis to big flood management: challenges, research directions and future workEng Appl Comput Fluid Mech201812411437 – reference: FEMA (2018) Hazard mitigation grant program. https://www.fema.gov/hazard-mitigation-grant-program – reference: WangQGuoYYuLLiPEarthquake prediction based on spatio-temporal data mining: an LSTM network approachIEEE Trans Emerg Top Comput2020814815810.1109/TETC.2017.2699169 – reference: XuCDaiFXuXLeeYHGIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, ChinaGeomorphology2012145–1467080 – reference: BejigaMZeggadaANouffidjAMelganiFA convolutional neural network approach for assisting avalanche search and rescue operations with UAV imageryRemote Sens20179100 – reference: EllingwoodBRCutlerHGardoniPPeacockWGvan de LindtJWWangNThe Centerville virtual community: a fully integrated decision model of interacting physical and social infrastructure systemsSustain Resilient Infrastruct2016195107 – reference: Ahmad K, Riegler M, Pogorelov K, Conci N, Halvorsen P, De Natale F (2017) JORD: a system for collecting information and monitoring natural disasters by linking social media with satellite imagery. In: Proceedings of the 15th international workshop on content-based multimedia indexing. ACM, Article No. 12 – reference: RoselliniAJDussailantFZubizarretaJRKesslerRCRoseSPredicting posttraumatic stress disorder following a natural disasterJ Psychiatr Res2018961522 – reference: YangTXieJLiGMouNLiZTianCZhaoJSocial media big data mining and spatio-temporal analysis on public emotions for disaster mitigationISPRS Int J Geo-Inf2019829 – reference: Schneider FE, Wildermuth D (2017) Using robots for firefighters and first responders: scenario specification and exemplary system description. In: Proceedings of the 18th carpathian control conference, pp 216–221 – reference: Wilts A (2018) Natural disaster damage cost America $306 billion in 2017. https://www.independent.co.uk/news/world/americas/natural-disasters-us-damage-cost-money-2017-a8148771.html – reference: VictoresJGMartínezSBalaguerAJCRobot-aided tunnel inspection and maintenance system by vision and proximity sensor integrationAutom Constr201120629636 – reference: Park YS, Kim J, Kim A (2019) Radar localization and mapping for indoor disaster environments via multi-modal registration to prior LiDAR map. In: 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 407–419. https://doi.org/10.1109/IROS40897.2019.8967633 – reference: SharmaHAndersonPAGranmoOCGoodwinMDeep Q-learning with Q-matrix transfer learning for novel fire evacuationIEEE Trans Syst Man Cybern Syst202010.1109/TSMC.2020.2967936 – reference: LiuYWuLGeological disaster recognition on optical remote sensing images using deep learningProc Comput Sci201691566575 – reference: GunningDStefikMChoiJMillerTStumpfSYangGZXAI—explainable artificial intelligenceSci Robot20194eaay7120 – reference: YangLCervoneGAnalysis of remote sensing imagery for disaster assessment using deep learning: a case study of flooding eventSoft Comput2019231339313408 – reference: VetrivelAGerkeMKerleNNexFVosselmanGDisaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learningISPRS J Photogramm Remote Sens20181404559 – reference: Hou MC, Deng DJ, Wu CL (2019) Optimum aerial base station deployment for UAV networks: a reinforcement learning approach. In: 2019 IEEE Globecom workshops. IEEE. https://doi.org/10.1109/GCWkshps45667.2019.9024648 – reference: WangJWuYYenNGuoSChengZBig data analytics for emergency communication networks: a surveyIEEE Commun Surv Tutor20161817581778 – reference: YanJHeHZhongXTangYQ-learning-based vulnerability analysis of smart grid against sequential topology attacksIEEE Trans Inf Forensics Secur201612200210 – reference: DuttaIDuttaSRaahemiBDetecting financial restatements using data mining techniquesExpert Syst Appl201790374393 – reference: PadilKHBakharyNHaoHThe use of a nonprobabilistic artificial neural network to consider uncertainties in vibration-based-damage detectionMech Syst Signal Process201783194209 – reference: HuDLiSChenJKamatVRDetecting, locating, and characterizing voids in disaster rubble for search and rescueAdv Eng Inform201942100974 – reference: Besaleva LI, Weaver AC (2013) CrowdHelp: a crowdsourcing application for improving disaster management. In: Proceedings of the 2013 IEEE global humanitarian technology conference. IEEE. https://doi.org/10.1109/GHTC.2013.6713678 – reference: BevingtonJSEguchiRTGillSGhoshSHuyckCKLippittCStowDCoulterLA comprehensive analysis of building damage in the 2010 Haiti earthquake using high-resolution imagery and crowdsourcingsTime-sensitive remote sensing2015New YorkSpringer131145 – reference: Sadiq FI, Selamat A, Ibrahim R (2015) Human activity recognition prediction for crowd disaster mitigation. In: Asian conference on intelligent information and database systems (ACIID). Springer, pp 200–210 – reference: MacEachren AM, Jaiswal A, Robinson AC, Pezanowski S, Savelyev A, Mitra P, Zhang X, Blanford J (2011) Senseplace2: Geotwitter analytics support for situational awareness. In: Proceedings of the IEEE conference on visual analytics science and technology 2011. IEEE, pp 181–190 – reference: Sarabakha A, Kayacan E (2016) Y6 tricopter autonomous evacuation in an indoor environment using Q-learning algorithm. In: The 2016 IEEE 55th conference on decision and control (CDC). IEEE, pp 5992–5997. https://doi.org/10.1109/CDC.2016.7799189 – reference: MihunovVVLamNSNZouLWangZWangKUse of Twitter in disaster rescue: lessons learned from Hurricane HarveyInt J Digit Earth202010.1080/17538947.2020.1729879 – reference: Maciel-Pearson BG, Marchegiani L, Akcay S, Atapour-Abarghouei A, Garforth J, Breckon TP (2019) Online deep reinforcement learning for autonomous UAV navigation and exploration of outdoor environments. https://arxiv.org/abs/1912.05684 – reference: Schwartz J (2018) How can AI help to prepare for floods in a climate-changed world? https://www.scientificamerican.com/article/former-fema-chief-uses-ai-to-prepare-for-hurricanes-and-rising-seas/ – reference: HoeppePTrends in weather related disasters—consequences for insurers and societyWeather Extreme Events2016117079 – reference: MangalathuSHwangSHChoiEJong-SuJeonRapid seismic damage evaluation of bridge portfolios using machine learning techniquesEng Struct2019201109785 – reference: KumarASinghJPDwivediYKRanaNPA deep multi-modal neural network for informative Twitter content classification during emergenciesAnn Oper Res202010.1007/s10479-020-03514-x – reference: Watson D, Clark L (1994) The PANAS-X: manual for the positive and negative affect schedule—expanded form. Technical Report, The University of Iowa. https://ntrs.nasa.gov/search.jsp?R=20150003831 – reference: PouyanfarSSadiqSTianHTaoYReyesMPShyuMLChenSCIyengarSSA survey on deep learning: algorithms, techniques, and applicationsACM Comput Surv201851136 – reference: GamaMSantosBFScaparraMPA multi-period shelter location-allocation model with evacuation orders for flood disastersEURO J Comput Optim20164299323 – reference: SunWBocchiniPDavisonBDResilience metrics and measurement methods for transportation infrastructure: the state of the artSustain Resil Infrastruct20205316819910.1080/23789689.2018.1448663 – reference: BengtssonLLuXThorsonAGarfieldRvon SchreebJImproved response to disasters and outbreaks by tracking population movements with mobile phone network data: a post-earthquake geospatial study in HaitiPLoS Med20118e1001083 – reference: WangJZhuSGongYDriving safety monitoring using semi-supervised learning on time series dataIEEE Trans Intell Transp Syst201011728737 – reference: ZhouCYinKCaoYAhmedBLiYCataniFPourghasemiHRLandslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges reservoir area, ChinaComput Geosci20181122337 – reference: DogaruDIDumitracheICyber attack of a power grid analysis using a deep neural networks approachJ Control Eng Appl Inform2019214250 – reference: LinTHLiawDCDevelopment of an intelligent disaster information-integrated platform for radiation monitoringNat Hazards20157617111725 – reference: GhoshJPadgettJDueñas-OsorioLDSurrogate modeling and failure surface visualization for efficient seismic vulnerability assessment of highway bridgesProbab Eng Mech201334189199 – reference: Castellanos CL, Marti JR, Sarkaria S (2018) Distributed reinforcement learning framework for resource allocation in disaster response. In: 2018 IEEE global humanitarian technology conference (GHTC). IEEE. https://doi.org/10.1109/GHTC.2018.8601911 – reference: Wang Y, Wang Q, Shi S, He X, Tang Z, Zhao K, Chu X (2019f) Benchmarking the performance and power of AI accelerators for AI training. https://arxiv.org/abs/1910.10045 – reference: Aydin ME, Fellows R (2018) Building collaboration in multi-agent systems using reinforcement learning. In: International conference on computational collective intelligence (ICCCI 2018). Springer, pp 201–212 – reference: Avvenuti M, Cresci S, Marchetti A, Meletti C, Tesconi M (2014) EARS (earthquake alert and report system): a real time decision support system for earthquake crisis management. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1749–1758 – reference: ZhaoLHicksFEFayekARApplicability of multilayer feed-forward neural networks to model the onset of river breakupCold Reg Sci Technol2012703242 – reference: PourrahmaniEDelavarMRMostafaviMAOptimization of an evacuation plan with uncertain demands using fuzzy credibility theory and genetic algorithmInt J Disaster Risk Reduct201514357372 – reference: DahlGEYuDDengLAceroAContext-dependent pre-trained deep neural networks for large-vocabulary speech recognitionIEEE Trans Audio Speech Lang Process2012203042 – reference: YaoZZhangGLuDLiuHData-driven crowd evacuation: a reinforcement learning methodNeurocomputing2019366314327 – reference: EickenHJonesJMeyerFMahoneyADruckenmillerMLRohithMKambhamettuCEnvironmental security in Arctic ice-covered seas: from strategy to tactics of hazard identification and emergency responseMar Technol Soc J2011453748 – reference: Hong L, Yin D, Guo J, Davison BD (2011) Tracking trends: incorporating term volume into temporal topic models. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp 484–492 – reference: PengYLiSWHuZZA self-learning dynamic path planning method for evacuation in large public buildings based on neural networksNeurocomputing20193657185 – reference: LattanziDMillerGR3D scene reconstruction for robotic bridge inspectionJ Infrastruct Syst20152104014041 – reference: Yin J, Karimi S, Robinson B, Cameron M (2012a) ESA: emergency situation awareness via microbloggers. In: The 21st ACM international conference on information and knowledge management. ACM, pp 2701–2703 – reference: PillaiASChandraprasadGSKhwajaASAnpalaganAA service oriented IoT architecture for disaster preparedness and forecasting systemInternet Things201910.1016/j.iot.2019.100076 – reference: Murphy R (2014) Introduction. In: Disaster robotics. The MIT Press, pp 1–20 – reference: Ilyas A (2014) MicroFilters: harnessing Twitter for disaster management. In: Proceedings of the IEEE global humanitarian technology conference (GHTC 2014). IEEE, pp 417–424. https://doi.org/10.1109/GHTC.2014.6970316 – reference: LiuZDuYYiJLiangFMaTPeiTQuantitative estimates of collective geo-tagged human activities in response to typhoon Hato using location-aware big dataInt J Digit Earth201910.1080/17538947.2019.1645894 – reference: BadmusOWhen the storm is over: sentiments, communities and information flow in the aftermath of Hurricane DorianInt J Disaster Risk Reduct202010.1016/j.ijdrr.2020.101645 – reference: YuPSYangTCChenSYKuoCMTsengHWComparison of random forests and support vector machine for real-time radar-derived rainfall forecastingJ Hydrol201755292104 – reference: KhadrMForecasting of meteorological drought using Hidden Markov Model (case study: the upper Blue Nile river basin, Ethiopia)Ain Shams Eng J201674756 – reference: ZhengSLiuHImproved multi-agent deep deterministic policy gradient for path planning-based crowd simulationIEEE Access2019714775547770 – reference: Takeda T, Mori Y, Kubota N, Arai Y (2014) A route planning for disaster waste disposal based on robot technology. In: 2014 IEEE symposium on robotic intelligence in informationally structured space (RiiSS). IEEE. https://doi.org/10.1109/RIISS.2014.7009173 – reference: XuNZhangQZhangHHongMAkerkardRLiangYGlobal optimization for multi-stage construction of rescue units in disaster responseSustain Cities Soc201951101768 – reference: KellermannPSchröterKThiekenAHHaubrockSNKreibichHThe object-specific flood damage database HOWAS21Nat Hazards Earth Syst Sci202010.5194/nhess-2019-420 – reference: RenMWangBFuQLGClassified real-time flood forecasting by coupling fuzzy clustering and neural networkInt J Sedim Res201025134148 – reference: WangZNChenJChenWCArulrajahAHorpibulsukSInvestigation into the tempo-spatial distribution of recent fire hazards in ChinaNat Hazards20189218891907 – reference: CervoneGSavaEHuangQSchnebeleEHarrisonJWatersNUsing Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case studyInt J Remote Sens201637100124 – reference: ChenSMaoJLiGMaCCaoYUncovering sentiment and retweet patterns of disaster-related tweets from a spatiotemporal perspective—a case study of Hurricane HarveyTelemat Inform202047101326 – reference: MoonSHKimYHLeeYHMoonBRApplication of machine learning to an early warning system for very short-term heavy rainfallJ Hydrol201856810421054 – reference: IzumiTShawRDjalanteRIshiwatariMKominoTDisaster risk reduction and innovationsProg Disaster Sci20192100033 – reference: PeduzziPDaoHHeroldCMoutonFAssessing global exposure and vulnerability towards natural hazards: the Disaster Risk IndexNat Hazards Earth Syst Sci2009911491159 – reference: KimDjoo LeeHChoSResponse modeling with support vector regressionExpert Syst Appl20083411021108 – reference: BartoliGFantacciRGeiFMarabissiDMicciulloLA novel emergency management platform for smart public safetyInt J Commun Syst201328928943 – reference: LiWBattyMGoodchildMFReal-time GIS for smart citiesInt J Geogra Inf Sci201910.1080/13658816.2019.1673397 – reference: JamaliMNejatAGhoshSJinFCaoGSocial media data and post-disaster recoveryInt J Inf Manag2019442537 – reference: HanWTianZHuangZHuangDJiaYQuantitative assessment of wireless connected intelligent robot swarms network security situationIEEE Access20197134293134300 – reference: MahmoudiSNChouinardLSeismic fragility assessment of highway bridges using support vector machinesBull Earthq Eng20161415711587 – reference: CavalcanteIMFrazzonEMForcelliniFAIvanovDA supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturingInt J Inf Manag2019498697 – reference: BellaireSHerwijnenAMittererCSchweizerJOn forecasting wet-snow avalanche activity using simulated snow cover dataCold Reg Sci Technol20171442838 – reference: ZhangYBurtonHVSunHShokrabadiMA machine learning framework for assessing post-earthquake structural safetyStruct Saf201872116 – reference: Tomin N, Kurbatsky V, Rehtanz C (2013) An intelligent security alert system for power system pre-emergency control. In: The 13th international conference on environment and electrical engineering (EEEIC). IEEE. https://doi.org/10.1109/EEEIC-2.2013.6737884 – reference: GhaffarianSKerleNPasolliEArsanjaniJJPost-disaster building database updating using automated deep learning: an integration of pre-disaster OpenStreetMap and multi-temporal satellite dataRemote Sens2019112427 – reference: McGovernAGagneDJIITroutmanNBrownRABasaraJWilliamsJKUsing spatiotemporal relational random forests to improve our understanding of severe weather processesStat Anal Data Min20114407429 – reference: OrabiWSenouciABEl-RayesKAl-DerhamHOptimizing resource utilization during the recovery of civil infrastructure systemsJ Manag Eng201026237246 – reference: MutluBNefesliogluHASezerEAAkcayolMAGokceogluCAn experimental research on the use of recurrent neural networks in landslide susceptibility mappingInt J Geo-Inf20198578 – reference: XiongJLiJChengWWangNGuoLA gis-based support vector machine model for flash flood vulnerability assessment and mapping in ChinaInt J Geo-Inf20198297 – reference: RheeJImJMeteorological drought forecasting for ungauged areas based on machine learning: using long-range climate forecast and remote sensing dataAgric For Meteorol2017237–238105122 – reference: GünayOTaşdemirKTöreyinBUÇetinAEFire detection in video using LMS based active learningFire Technol201046551577 – reference: FEMA (2019) Federal insurance and mitigation administration national flood insurance program (FIMA NFIP) redacted claims dataset. https://www.fema.gov/media-library/assets/documents/180374 – reference: BasuMShandilyaAKhoslaPGhoshKGhoshSExtracting resource needs and availabilities from microblogs for aiding post-disaster relief operationsIEEE Trans Comput Soc Syst20196604618 – reference: Yu L, Wang N, Meng X (2005) Real-time forest fire detection with wireless sensor networks. In: International conference on wireless communications, networking and mobile computing. IEEE, pp 1214–1217 – reference: Akhtar N, Siddique B (2017) On hierarchical visualization of event detection in Twitter. In: Advances in computer and computational sciences, pp 571–579 – reference: HuangXLiZWangCNingHIdentifying disaster related social media for rapid response: a visual-textual fused CNN architectureInt J Digit Earth201910.1080/17538947.2019.1633425 – reference: GrasicVKosAMileva-BoshkoskaBClassification of incoming calls for the capital city of Solvenia smart city 112 public safety system using open Internet of Things dataInt J Distrib Sens Netw201814911210.1177/1550147718801703 – reference: Nabian MA, Meidani H (2018a) Accelerating stochastic assessment of post-earthquake transportation network connectivity via machine-learning-based surrogates. In: The 97th annual meeting of transportation research board (TRB). TRB – reference: PhamTTHApparicioPGomezCWeberCMathonDTowards a rapid automatic detection of building damage using remote sensing for disaster management: the 2010 Haiti EarthquakeDisaster Prev Manag2014235366 – reference: RasouliMRIntelligent process-aware information systems to support agility in disaster relief operations: a survey of emerging approachesInt J Prod Res20185718571872 – reference: BerkhahnSFuchsLNeuweilerIAn ensemble neural network model for real-time prediction of urban floodsJ Hydrol2019575743754 – reference: RiadJKNorrisFHRubackRBPredicting evacuation in two major disasters: risk perception, social influence, and access to resourcesJ Appl Soc Psychol200629918934 – reference: The Rockefeller Foundation (2019) 100 Resilient Cities (100RC). http://www.100resilientcities.org – reference: Velev D, Zlateva P, Zong X (2018) Challenges of 5G usability in disaster management. In: Proceedings of the 2018 international conference on computing and artificial intelligence (ICCAI 2018). ACM, pp 71–75 – reference: QiuMMingZWangJYangLTXiangYEnabling cloud computing in emergency management systemsIEEE Cloud Comput201416067 – reference: EguchiRTGoltzJDTaylorCEChangSEFloresPJJohnsonLASeligsonHABlaisNCDirect economic lossed in the Northridge Earthquake: a three-year post-event perspectiveEarthq Spectra199814245264 – reference: ConnerAJShaoYCampbellJBDetection of urban damage using remote sensing and machine learning algorithms: revisiting the 2010 Haiti earthquakeRemote Sens20168868 – reference: TrugmanDTShearerPMGrowClust: A hierarchical clustering algorithm for relative earthquake relocation, with application to the Spanish Springs and Sheldon, Nevada, earthquake sequencesSeismol Res Lett201788379391 – reference: KoBKwakSSurvey of computer vision-based natural disaster warning systemsOpt Eng201251070901 – reference: Neppalli VK, Caragea C, Caragea D (2018) Deep neural networks versus Naïve Bayes classifiers for identifying informative tweets during disasters. In: Boersma K, Tomaszewski B (eds) Proceedings of the 15th international conference on information systems for crisis response and management (ISCRAM 2018). ACM. http://idl.iscram.org/files/venkatakishoreneppalli/2018/2141_VenkataKishoreNeppalli_etal2018.pdf – reference: SchempfHChemelBEverettNNeptune: above-ground storage tank inspection robot systemIEEE Robot Autom Soc Mag19952615 – reference: ChenWCutterSLEmrichCTShiPMeasuring social vulnerability to natural hazards in the Yangtze River Delta region, ChinaInt J Disaster Risk Sci20144169181 – reference: Kim S, Lee W, Park Y, Lee H, Lee Y (2016c) Forest fire monitoring system based on aerial image. In: Proceedings of the 3rd international conference on information and communication technologies for disaster management (ICT-DM). IEEE, pp 1–6 – reference: MaharjanLDitsworthMNiraulaMNarvaezCCFahimiBMachine learning based energy management system for grid disaster mitigationIET Smart Grid20182172182 – reference: LinYMargolinDWenXTracking and analyzing individual distress following terrorist attacks using social media streamsRisk Anal20173715801605 – reference: ZouLLamNSNShamsSCaiHMeyerMAYangSSocial and geographical disparities in Twitter use during Hurricane HarveyInt Journal Digit Earth20191213001318 – reference: AgarwalSKachrooPRegentovaEA hybrid model using logistic regression and wavelet transformation to detect traffic incidentsIATSS Res2016405663 – reference: KhalooALattanziDCunninghamKDell’AndreaRRileyMUnmanned aerial vehicle inspection of the Placer River trail bridge through image-based 3D modellingStruct Infrastruct Eng201714124136 – reference: Wu K, Yang S, Zhu KQ (2015) False rumors detection on Sina Weibo by propagation structures. In: The IEEE 31st international conference on data engineering. IEEE, pp 651–662 – reference: UddinMNIslamAKMSBalaSKIslamGMTAdhikarySSahaDHaqueSFahadMGRAkterRMapping of climate vulnerability of the coastal region of Bangladesh using principal component analysisAppl Geol20191024757 – reference: ZhangHLiNZhangWPeiXExperiments to automatically monitor drought variation using simulated annealing algorithmNat Hazards201684175184 – reference: LaylaviFRajabifardAKalantariMEvent relatedness assessment of Twitter messages for emergency responseInf Process Manag201753266280 – reference: BenítezMCRamírezJSeguraJCIbáñezJMAlmendrosJGarcía-YeguasACortésGContinuous HMM-based seismic-event classification at Deception Island, AntarcticaIEEE Trans Geosci Remote Sens200745138146 – reference: BagrowJPWangDBarabásiALCollective response of human populations to large-scale emergenciesPLoS One20116e1768010.1371/journal.pone.0017680 – reference: NateghiRGuikemaSDQuiringSMPower outage estimation for tropical cyclones: improved accuracy with simpler modelsRisk Anal20143410691078 – reference: Tatsubori M, Watanabe H, Shibayama A, Sato S, Imamura F (2012) Social web in disaster archives. In: The proceedings of the 21st international conference companion on world wide web—WWW’12 Companion. ACM, pp 715–716. https://doi.org/10.1145/2187980.2188190 – reference: KhanSHHeXPorikliFBennamounMForest change detection in incomplete satellite images with deep neural networksIEEE Trans Geosci Remote Sens20175554075423 – reference: TunusluogluMCGokceogluCNefesliogluHASonmezHExtraction of potential debris source areas by logistic regression technique: a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey)Environ Geol200754922 – reference: KameshwarSPadgettJEMulti-hazard risk assessment of highway bridges subjected to earthquake and hurricane hazardsEng Sturct201478154166 – reference: JaechAZhangBOstendorfMKirschenDSReal-time prediction of the duration of distribution system outagesIEEE Trans Power Syst201934773781 – reference: TorokMMGolparvar-FardMKochersbergerKBImage-based automated 3D crack detection for post-disaster building assessmentJ Comput Civ Eng201428A4014004 – reference: EPA (2016) Incident waste decision support tool (I-WASTE DST). http://www2.ergweb.com/bdrtool/login.asp – reference: LiQJinZWanCZengDDMining opinion summarizations using convolutional neural networks in Chinese microblogging systemsKnowl Based Syst2016107289300 – reference: MitsovaDEsnardAMSapatALaiBSSocioeconomic vulnerability and electric power restoration timelines in Florida: the case of Hurricane IrmaNat Hazards201894689709 – reference: Parra J, Fuentes O, Anthony EY, Kreinovich V (2016) Use of machine learning to analyze and—hopefully—predict volcano activity. Technical Report UTEP-CS-16-80a, University of Texas at El Paso. http://digitalcommons.utep.edu/cs_techrep/1053 – reference: Ramchurn SD, Huynh TD, Ikuno Y, Flann J, Wu F, Moreau L, Jennings NR, Fischer J, Jiang W, Rodden T, Simpson E, Reece S, Roberts SJ (2015) HAC-ER: a disaster response system based on human-agent collectives. In: Proceedings of the 2015 international conference on autonomous agents and multiagent systems (AAMAS 2015), pp 533–541 – reference: Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy gradient algorithms. In: Proceedings of the 31st international conference on machine learning (ICML-14). ACM, pp 387–395 – reference: Ganesan P, Sathish BS, Sajiv G (2016) A comparative approach of identification and segmentation of forest fire region in high resolution satellite images. In: 2016 world conference on futuristic trends in research and innovation for social welfare (startup conclave). IEEE. https://doi.org/10.1109/STARTUP.2016.7583959 – reference: D’AmicoDFQuiringSMMaderiaCMMcRobertsDBImproving the hurricane outage prediction model by including tree speciesClim Risk Manag201925100193 – reference: RakgaseMNorrisDFactors that influence choice of drought coping strategies in Limpopo Province, South AfricaJ Hum Ecol201447111116 – reference: JhongBCWangJHLinGFAn integreated two-stage support vector machine approach to forecast inundation maps during typhoonsJ Hydrol2017547236252 – reference: NguyenVQAnhTNYangHJReal-time event detection using recurrent neural network in social sensorsInt J Distrib Sens Netw201910.1177/1550147719856492 – reference: SakakiTOkazakiMMatsuoYTweet analysis for real-time event detection and earthquake reporting system developmentIEEE Trans Knowl Data Eng201225919931 – reference: EisenmanDPChandraAFoglemanSMaganaAHendricksAWellsKBWilliamsMTangJPloughAThe Los Angeles county community disaster resilience project—a community-level, public health initiative to build community disaster resilienceInt J Environ Res Public Health20141184758490 – reference: MehrjooMKhajiNMoharramiHBahreininejadADamage detection of truss bridge joints using artificial neural networksExpert Syst Appl20083511221131 – reference: Canon MJ, Satuito A, Sy C (2018) Determining disaster risk management priorities through a neural network-based text classifier. In: Proceedings of the 2018 international symposium on computer, consumer and control (IS3C). IEEE, pp 237–241. https://doi.org/10.1109/IS3C.2018.00067 – reference: NabianMAMeidaniHDeep learning for accelerated seismic reliability analysis of transportation networksJ Comput Aided Civ Infrastruct Eng201833443458 – reference: JonesSSThomasAEvansRSWelchSJHaugPJSnowGLForecasting daily patient volumes in the emergency departmentAcad Emerg Med200815159170 – reference: GilmourPMThe application of photography in investigating fraudImaging Sci J201967421522310.1080/13682199.2019.1600254 – reference: UN (2015) Sendai framework for disaster risk reduction: 2015–2030. https://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf – reference: CerraiDWanikDWBhuiyanMAEZhangXYangJFredianiMEBAnagnostouENPredicting storm outages through new representations of weather and vegetationIEEE Access201972963929654 – reference: MitsovaDEscalerasMSapatAEsnardAMLamadridAJThe effects of infrastructure service disruptions and socio-economic vulnerability on hurricane recoverySustainability201911516 – reference: LiangXImage-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimizationComput Aided Civ Infrastruct Eng201834415430 – reference: Suriya M, Sumithra MG (2019) Enhancing cooperative spectrum sensing in flying cell towers for disaster management using convolutional neural networks. In: Proceedings of the EAI international conference on big data innovation for sustainable cognitive computing, pp 181–190 – reference: ZhangYBurtonHVPattern recognition approach to assess the residual structural capacity of damaged tall buildingsStruct Saf2019781222 – reference: ShibuyaYTanakaHUsing social media to detect socio-economic disaster recoveryIEEE Intell Syst2019342937 – reference: EskandarpourRKhodaeiAMachine learning based power grid outage prediction in response to extreme eventsIEEE Trans Power Syst20173233153316 – reference: ZhuCWuJHybrid of genetic algorithm and simulated annealing for support vector regression optimization in rainfall forecastingInt J Comput Intell Appl2013121350012 – reference: Stojadinovic Z, Kovacevic M, Marinkovic D, Stojadinovic B (2017) Data-driven housing damage and repair cost prediction framework based on the 2010 Kraljevo earthquake data. In: Proceedings of the 16th world conference on earthquake engineering (16WCEE), p 4987 – reference: VanschorenJvan RijnJNBischlBTorgoLOpenML: networked science in machine learningACM SIGKDD Explor Newsl2014154960 – reference: YuLZhuJHYuLLStructural damage detection in a truss bridge model using fuzzy clustering and measured FRF data reduced by principal component projectionAdv Struct Eng201616207217 – reference: ChangLCShenHYWangYFHuangJYLinYTClustering-based hybrid inundation model for forecasting flood inundation depthsJ Hydrol2010385257268 – reference: ChenSWangWDecision tree learning for freeway automatic incident detectionExpert Syst Appl20093641014105 – reference: Ifrim G, Shi B, Brigadir I (2014) Event detection in Twitter using aggressive filtering and hierarchical tweet clustering. In: The second workshop on social news on the web (SNOW). http://hdl.handle.net/10197/7546 – reference: NaitoSTomozawaHMoriYNakamuraHFujiwaraHDamage detection method for buildings with machine-learning techniques utilizing images of automobile running surveys aftermath of the 2016 Kumamoto EarthquakeJ Disaster Res201813928942 – reference: Sarkale Y, Nozhati S, Chong EKP, Ellingwood BR, Mahmoud H (2018) Solving Markov decision processes for network-level post-hazard recovery via simulation optimization and rollout. In: The IEEE 14th international conference on automation science and engineering (CASE). IEEE, pp 906–912 – reference: CurtisAMillsJWKennedyBFotheringhamSMcCarthyTUnderstanding the geography of post-traumatic stress: an academic justification for using a spatial video acquisition system in the response to Hurricane KatrinaJ Conting Crisis Manag200715208219 – reference: LeeJEoGChoiCJungJKimHDevelopment of rainfall-flood damage estimation function using nonlinear regression equationJ Soc Disaster Inf2016127488 – reference: YuMYangCLiYBig data in natural disaster management: a reviewGeosciences20188165 – reference: ChangSEYipJZKCongerTOulahenGMarteleiraMCommunity vulnerability to coastal hazards: developing a typology for disaster risk reductionAppl Geogr2018918188 – reference: USGS (2016a) ShakeCast. https://earthquake.usgs.gov/research/software/shakecast.php – reference: SankaranarayananSPrabhakarMSatishSJainPRamprasadAKrishnanAFlood prediction based on weather parameters using deep learningJ Water Clim Change201910.2166/wcc.2019.321 – reference: BasuSRoySDasbitSA post-disaster demand forecasting system using principal component regression analysis and case-based reasoning over smartphone-based DTNIEEE Trans Eng Manag201966224239 – reference: WangBLiYMingWWangSDeep reinforcement learning method for demand response management of interruptible loadIEEE Trans Smart Grid202010.1109/TSG.2020.2967430 – reference: GermanSJeonJSZhuZBearmanCBrilakisIDesRochesRLowesLMachine vision-enhanced postearthquake inspectionJ Comput Civ Eng201327622634 – reference: HuangZZhouJSongLLuYZhangYFlood disaster loss comprehensive evaluation model based on optimization support vector machineExpert Syst Appl20103738103814 – reference: Cheng X, Zhang R, Zhou J, Xu W (2017) DeepTransport: learning spatial-temporal dependency for traffic condition forecasting. https://arxiv.org/abs/1709.09585 – reference: ZhangHHousehold vulnerability and economic status during disaster recovery and its determinants: a case study after the Wenchuan earthquakeNat Hazards20168315051526 – reference: HungKCKalantariMRajabifardAMethods for assessing the credibility of volunteered geographic information in flood response: a case study in Brisbane, AustraliaAppl Geogr201668374710.1016/j.apgeog.2016.01.005 – reference: CasagliNFrodellaWMorelliSTofaniVCiampaliniAIntrieriERaspiniFRossiGTanteriLLuPSpaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warningGeoenviron Disasters201749 – reference: Higuchi H, Fujimura J, Nakamura T, Kogo K, Tsudaka K, Wada T (2014) Disaster detection by statistics and SVM for emergency rescue evacuation support system. In: The 43rd international conference on parallel processing workshops. IEEE. https://doi.org/10.1109/ICPPW.2014.52 – reference: LiJRaoHTwitter as a rapid response news service: an exploration in the context of the 2008 China earthquakeElectron J Inf Syst Develop Ctries201042122 – reference: Guha S, Rastogi R, Shim K (1998) CURE: an efficient clustering algorithm for large databases. In: Proceeedings of the 1998 ACM SIGMOD international conference on management of data. ACM, pp 73–84 – reference: ChenWTHuangYHApproximately predicting the cost and duration of school reconstruction projects in TaiwanConstruct Manag Econ20062412311239 – reference: BunkerDLevineLWoodyCRepertoires of collaboration for common operating pictures of disasters and extreme eventsInf Syst Front2015175165 – reference: Hernandez-SuarezASanchez-PerezGToscano-MedinaKPerez-MeanaHPortillo-PortilloJSanchezVVillalbaLJGUsing Twitter data to monitor natural disaster social dynamics: a recurrent neural network approach with word embeddings and kernel density estimationSensors2019191746 – reference: MudaZYassinWSulaimanMNUdzirNIA K-means and Naïve Bayes learning approach for better intrusion detectionInf Technol J201110648655 – reference: NguyenLYangZLiJPanZCaoGJinFForecasting people’s needs in hurricane events from social networkIEEE Trans Big Data201910.1109/TBDATA.2019.2941887 – reference: ReillyJDashtiSErvastiMBrayJDGlaserSDBayenAMMobile phones as seismologic sensors: automating data extraction for the iShake systemIEEE Robot Autom Soc201310242251 – reference: LattanziDMillerGReview of robotic infrastructure inspection systemsJ Infrastruct Syst20172304017004 – reference: Mason AJ (2013) Simulation and real-time optimised relocation for improving ambulance operations. In: Handbook of healthcare operations management. Springer, pp 289–317 – reference: LiuYYangJZhengYWuZYaoMMulti-robot coordination in complex environment with task and communication constraintsInt J Adv Rob Syst201310229 – reference: Hernández E, Sanchez-Anguix V, Julian V, Palanca J, Duque N (2016) Rainfall prediction: a deep learning approach. In: Proceedings of the international conference on hybrid artificial intelligence systems (HASI2016), pp 151–162 – reference: Toreyin BU, Cetin AE (2009) Wildfire detection using LMS based active learning. In: Proceedings of the 2009 IEEE international conference on acoustics, speech and signal processing, pp 1461–1464 – reference: LamNSNReamsMLiKLiCMataLPMeasuring community resilience to coastal hazards along the Northern Gulf of MexicoNat Hazards Rev20161704015013 – reference: PeirisRHHalléCBudmanHMoresoliCPeldszusSHuckPMLeggeRLIdentifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matricesWater Res201044185194 – reference: MabonLCharting disaster recovery via Google Street View: a social science perspective on challenges raised by the Fukushima nuclear disasterInt J Disaster Risk Sci20167175185 – reference: Tapia AH, Bajpai K, Jansen BJ, Yen J (2011) Seeking the trustworthy tweet: Can microblogged data fit the information needs of disaster response and humanitarian relief organizations. In: The 8th international conference on information systems for crisis response and management: from early-warning systems to preparedness and training (ISCRAM 2011), pp 1–10 – reference: YangJYuMA model for seismic vulnerability score assignment of road infrastructure using linear regression techniqueAppl Mech Mater2011147266269 – reference: ZhangYPeacockWGPlanning for housing recovery? Lessons learned from Hurricane AndrewJ Am Plan Assoc200976524 – reference: Nolasco-JavierDKumarLDeriving the rainfall threshold for shallow landslide early warning during tropical cyclones: a case study in northern PhilippinesNat Hazards201890921941 – reference: WangZLamNSObradovichNYeXAre vulnerable communities digitally left behind in social responses to natural disasters? an evidence from Hurricane Sandy with Twitter dataAppl Geogr201910818 – reference: ZhengYJLingHFXueJYChenSYPopulation classification in fire evacuation: a multiobjective particle swarm optimization approachIEEE Trans Evol Comput2013187081 – reference: ZhaoQChenZLiuCLuoNExtracting and classifying typhoon disaster information based on volunteered geographic information from chinese sina microblogConcurr Comput Pract Exp201931e4910 – reference: Lohumi K, Roy S (2018) Automatic detection of flood severity level from flood videos using deep learning models. In: Proceedings of the 2018 5th international conference on information and communication technologies for disaster management (ICT-DM). IEEE. https://doi.org/10.1109/ICT-DM.2018.8636373 – reference: ESRI (2016) Disaster response program. https://www.esri.com/en-us/disaster-response/overview – reference: HacklJAdeyBTLethanhNDetermination of near-optimal restoration programs for transportation networks following natural hazard events using simulated annealingComput Aided Civ Infrastruct Eng201833618637 – reference: ChoiJYeumCDykeSJahanshahiMComputer-aided approach for rapid post-event visual evaluation of a building façadeSensors2018183017 – reference: AsgaryANainiASModelling the adaptation of business continuity planning by business using neural networksIntell Syst Acc Finance Manag20111889104 – reference: LuoYLiuLHuangWQad Jie DengYNYYinCHRenHWangXYA disaster response and management competency mapping of community nurses in ChinaIran J Public Health2013429941949 – reference: DeryuginaTThe fiscal cost of hurricanes: disaster aid versus social insuranceAm Econ J Econ Policy20179168198 – reference: GiustiAGuzziJCireşanDCHeFLRodríguezJPFontanaFFaesslerMForsterCSchmidhuberJCaroGDScaramuzzaDGambardellaLMA machine learning approach to visual perception of forest trails for mobile robotsIEEE Robot Autom Lett2015166166710.1109/LRA.2015.2509024 – reference: LenjaniAYeumCMDykeSJBilionisIAutomated building image extraction from 360∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} panoramas for postdisaster evaluationComput Aided Civ Infrastruct Eng201910.1111/mice.12493 – reference: LiTXieNZengCZhouWZhengLJiangYYangYHaHYXueWHuangYChenSCNavlakhaJIyengarSSData-driven techniques in disaster information managementACM Comput Surv201750145 – reference: Kusumawardani RP, Hafidz I, Putra SF (2016) BencanaVis visualization and clustering of disaster readiness using K Means with R shiny a case study for disaster, medical personnel and health facilities data at province level in Indonesia. In: Proceedings of the 2016 international conference on information and communication technology and systems (ICTS). IEEE, pp 178–186. https://doi.org/10.1109/ICTS.2016.7910295 – reference: MurphyRRKravitzJStoverSLShoureshiRMobile robotics in mine rescue and recoveryIEEE Robot Autom Mag20091691103 – reference: TinocoJCorreiaAGCortezPTollDGData-driven model for stability condition prediction of soil embankments based on visual data featuresJ Comput Civ Eng20183204018027 – reference: Tian H, Chen SC (2017a) MCA-NN: Multiple correspondence analysis based neural network for disaster information detection. In: The 3rd IEEE international conference on multimedia big data. IEEE. https://doi.org/10.1109/BigMM.2017.30 – reference: Acuna V, Kumbhar A, Vattapparamban E, Rajabli F, Guvenc I (2017) Localization of WiFi devices using probe requests captured at unmanned aerial vehicles. In: Proceedings of the 2017 IEEE wireless communications and networking conference (WCNC). IEEE. https://doi.org/10.1109/WCNC.2017.7925654 – reference: ZhouYLMaiaNMMWahabMADamage detection using transmissibility compressed by principal component analysis enhanced with distance measureJ Vib Control20182420012019 – reference: LongZWangPLinZZhuJResearch on system of marine situation information analysis and early warning based on artificial intelligenceAdv Eng Res2018164362368 – reference: HouTCLiuJWLiuYWAlgorithmic clustering of LiDAR point cloud data for textural damage identifications of structural elementsMeasurement20171087790 – reference: Wang LC, Lai CC, Shuai HH, Lin HP, Li CY, Cheng TH, Chen CH (2019d) Communications and networking technologies for intelligent drone cruisers. In: Proceedings of the 2019 IEEE GLOBECOM workshops on space-ground integrated networks. IEEE. https://doi.org/10.1109/GCWkshps45667.2019.9024679 – reference: Zhao J, Zhu L, Liu GF, Liu G, Han Z (2009) A modified genetic algorithm for global path planning of searching robot in mine disasters. In: 2009 international conference on mechatronics and automation. IEEE, pp 4936–4940. https://doi.org/10.1109/ICMA.2009.5246026 – reference: RosserJFLeiboviciDGJacksonMJRapid flood inundation mapping using social media, remote sensing and topographic dataNat Hazards201787103120 – reference: FanCZhangCYahjaAMostafaviADisaster City Digital Twin: a vision for integrating artificial and human intelligence for disaster managementInt J Inf Manag201910.1016/j.ijinfomgt.2019.102049 – reference: WangLAbdel-AtyMLeeJShiQAnalysis of real-time crash risk for expressway ramps using traffic, geometric, trip generation, and socio-demographic predictorsAccid Anal Prev2019122378384 – reference: BawonoASAliMIKusumadewiSRamliNIMethodological study to classification of damage state immediately subsequent to the Banjarnegara Indonesia Earthquake on 2018IOP Conf Ser Mater Sci Eng2020712012032 – reference: Moustapha AI, Selmic RR (2007) Wireless sensor network modeling using modified recurrent neural networks: application to fault detection. In: 2007 IEEE international conference on networking, sensing and control. IEEE, pp 313–318. https://doi.org/10.1109/ICNSC.2007.372797 – reference: HuangYJinLZhaoHHuangXFuzzy neural network and LLE algorithm for forecasting precipitation in tropical cyclones: comparisons with interpolation method by ECMWF and stepwise regression methodNat Hazards201891201220 – reference: Lenz I (2016) Deep learning for robotics. PhD dissertation, Cornell University – reference: SriramLMKUlakMBOzguvenEEArghandehRMulti-network vulnerability causal model for infrastructure co-resilienceIEEE Access20197353443535810.1109/ACCESS.2019.2904457 – reference: ArrietaABDíaz-RodríguezNSerJDBennetotATabikSBarbadoAGarcíaSGil-LópezSMolinaDBenjaminsRChatilaRHerreraFExplainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AIInf Fusion20205882115510.1016/j.inffus.2019.12.012 – reference: BocchiniPFrangopolDMRestoration of bridge networks after an earthquake: multicriteria intervention optimizationEarthq Spectra20122842745510.1193/1.4000019 – reference: Andersson M, Rydell J, St-Laurent L, Prévost D, Gustafsson F (2012) Crowd analysis with target tracking, K-means clustering and hidden Markov models. In: The 15th international conference on information fusion. IEEE, pp 1903–1910 – reference: Jiang FZ, Zhong L, Thilakarathna K, Seneviratne A, Takano K, Yamada S, Ji Y (2017) Supercharging crowd dynamics estimation in disasters via spatio-temporal deep neural network. In: The 2017 IEEE international conference on data science and advanced analytics (DSAA). IEEE. https://doi.org/10.1109/DSAA.2017.11 – reference: SunYLiSReal-time collaborative GIS: a technological reviewISPRS J Photogramm Remote Sens2016115143152 – reference: KochersbergerKKroegerKKrawiecBBrewerEWeberTPost-disaster remote sensing and sampling via an autonomous helicopterJ Field Robot201431510521 – reference: RanzatoMMnihVSusskindJMHintonGEModeling natural images using gated MRFsIEEE Trans Pattern Anal Mach Intell20133522062222 – reference: Russell SJ, Norvig P (2016) Learning from examples. Artificial intelligence: a modern approach, 3rd Edn. Pearson, Chap 18, pp 693–767 – reference: OzdemirAAlturalTA comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW TurkeyJ Asian Earth Sci201364180197 – reference: TrafalisTBAdriantoIRichmanMBLakshmivarahanSMachine-learning classifiers for imbalanced tornado dataCMS201411403418 – reference: Biswas R, Friedrich C, Rao YN, Chakraborty A (2019) Deep reinforcement learning for autonomous inspection system. In: Purdue undergraduate research conference, p 29 – reference: KochCPaalSGRashidiAZhuZKönigMBrilakisIAchievements and challenges in machine vision-based inspection of large concrete structuresAdv Struct Eng201617303318 – reference: ChaudhuriNBoseIExploring the role of deep neural networks for post-disaster decision supportDecis Support Syst202013011323410.1016/j.dss.2019.113234 – reference: MoradiARazmiJBabazadehRSabbaghniaAAn integrated principal component analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertaintyAm Inst Math Sci201915855879 – reference: MousaviSMZhuWShengYBerozaGCCRED: a deep residual network of convolutional and recurrent units for earthquake signal detectionSci Rep2019910267 – reference: Hartawan DR, Purboyo TW, Setianingsih C (2019) Disaster victims detection system using convolutional neural network (CNN) method. In: 2019 IEEE international conference on industry 4.0. Artificial Intelligence, and Communications Technology (IAICT), IEEE, pp 105–111. https://doi.org/10.1109/ICIAICT.2019.8784782 – reference: PualJAHariharanGLocation-allocation planning of stockpiles for effective disaster mitigationAnn Oper Res2012196469490 – reference: SimmonsKMSutterDTornado warning, lead times and tornado casualties: an empirical investigationWeather Forecast200823246258 – reference: Rahnemoonfar M, Murphy R, Miquel MV, Dobbs D, Adams A (2018) Flooded area detection from UAV images based on densely connected recurrent neural networks. In: Proceedings of the 2018 IEEE international geoscience and remotely sensing symposium. IEEE, pp 1788–1791. https://doi.org/10.1109/IGARSS.2018.8517946 – reference: ChengGGuoLZhaoTHanJLiHFangJAutomatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSAInt J Remote Sens2013344559 – reference: Tucker I, Gil-Garcia JR, Sayogo DS (2017) Collaborative data analytics for emergency response: Identifying key factors and proposing a preliminary framework. In: Proceedings of the 10th international conference on theory and practice of electronic governance, pp 508–515 – reference: Alam F, Imran M, Ofli F (2017) Image4Act: online social media image processing for disaster response. In: Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining 2017 (ASONAM‘17). IEEE, pp 601–604 – reference: IrelandGVolpiMPetropoulosGPExamining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean floodRemote Sens2015733723399 – reference: DeVriesPMRViégasFWattenbergMMeadeBJDeep learning of aftershock patterns following large earthquakesNature2018560632634 – reference: ZhaoYMengXQiTQingFXiongMLiYGuoPChenGAI-based identification of low-frequency debris flow catchments in the Bailong River basin, ChinaGeomorphology2020359107125 – reference: GomesGFAlmeidaFAJunqueiraDMCunhaSSJrAncelottiACJrOptimized damage identification in CFRP plates by reduced mode shapes and GA-ANN methodsEng Struct2019181111123 – reference: Gopnarayan A, Deshpande S (2019) Tweets analysis for disaster management: preparedness, emergency response, impact, and recovery. In: International conference on innovative data communication technologies and application. Springer, pp 760–764 – reference: RuanJHWangXPChanFTSShiYOptimizing the intermodal transportation of emergency medical supplies using balanced fuzzy clusteringInt J Prod Res20165443684386 – reference: ChenRSharmanRChakravartiNRaoHRUpadhyayaSJEmergency response information system interoperability: development of chemical incident response data modelJ Assoc Inf Syst20089200230 – reference: CurtisADuval-DiopDNovakJIdentifying spatial patterns of recovery and abandonment in the post-Katrina Holy Cross neighborhood of New OrleansCartogr Geogr Inf Sci2010374556 – reference: AnsariAFiruziEEtemadsaeedLDelineation of seismic sources in probabilistic seismic-hazard analysis using fuzzy cluster analysis and Monte Carlo simulationBull Seismol Soc Am201510521742191 – reference: FernandezPMouratoSMoreiraMPereiraLA new approach for computing a flood vulnerability index using cluster analysisPhys Chem Earth Parts A/B/C2016944755 – reference: YanYKongLHeXOuyangMPeetaSChenXPre-disaster investment decisions for strengthening the Chinese railway system under earthquakesTransp Res Part E Logist Transp Rev20171053959 – reference: Eguchi RT, Huyck CK, Ghosh S, Adams BJ (2008) The application of remote sensing technologies for disaster management. In: The 14th world conference on earthquake engineering, paper ID. K004. https://www.iitk.ac.in/nicee/wcee/article/14_K004.pdf – reference: Stefanov WL, Evans CA (2014) The international space station: a unique platform for remote sensing of natural disasters. Technical Report 20150003831, NASA. https://ntrs.nasa.gov/search.jsp?R=20150003831 – reference: NIST (2018) Community resilience planning guide. https://www.nist.gov/topics/community-resilience/community-resilience-planning-guide – reference: YabeTUkkusuriSVIntegrating information from heterogeneous networks on social media to predict post-disaster returning behaviorJ Comput Sci2019321220 – reference: Imran M, Castillo C, Lucas J, Meier P, Vieweg S (2014) AIDR: artificial intelligence for disaster response. In: Proceedings of the 23rd international conference on world wide web. ACM, pp 159–162 – reference: AtaseverUHA new unsupervised change detection approach with hybrid clustering for detecting the areal damage after natural disasterFresen Environ Bull20172638913896 – reference: EU-CIRCLE (2019) A pan-European framework for strengthening critical infrastructure resilience to climate change. https://www.eu-circle.eu/eu-funded-projects/ – reference: TerranovaOGGarianoSLIaquintaPIovineGGRGA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{GA}$$\end{document}SAKe: forecasting landslide activations by a genetic-algorithms-based hydrological modelGeosci Model Develop2015819551978 – reference: Careem M, Silva CD, Silva RD, Raschid L, Weerawarana S (2006) Sahana: Overview of a disaster management system. In: Proceedings of the 2006 international conference on information and automation. IEEE, pp 361–366. https://doi.org/10.1109/ICINFA.2006.374152 – reference: ChungKParkRCP2P cloud network services for IoT based disaster situations informationPeer Peer Netw Appl20169566577 – reference: Mao H, Alizadeh M, Menache I, Kandula S (2016) Resource management with deep reinforcement learning. In: Proceedings of the 15th ACM workshop on hot topics in networks. ACM, pp 50–56. https://doi.org/10.1145/3005745.3005750 – reference: Rauter M, Winkler D (2018) Predicting natural hazards with neuronal networks. https://arxiv.org/pdf/1802.07257.pdf – reference: Yoon DK, Jeong S (2016) Assessment of community vulnerability to natural disasters in Korea by using GIS and machine learning techniques. In: Quantitative regional economic and environmental analysis for sustainability in Korea. Springer, pp 123–140 – reference: ChoubinBBorjiMMosaviASajedi-HosseiniFSinghVPShamshirbandSSnow avalanche hazard prediction using machine learning methodsJ Hydrol2019577123929 – reference: BaiYGaoCSinghSKochMAdrianoBMasEKoshimuraSA framework of rapid regional tsunami damage recognition from post-event TerraSAR-X imagery using deep neural networksIEEE Geosci Remote Sens Lett2018154347 – reference: Zhang K, Niroui F, Fococelli M, Nejat G (2018a) Robot navigation of environments with unknown rough terrain using deep reinforcement learning. In: Proceedings of the 2018 IEEE international symposium on safety, security, and rescue robotics (SSRR). https://doi.org/10.1109/SSRR.2018.8468643 – reference: HuangXWangCLiZNingHA visual-textual fused approach to automated tagging of flood-related tweets during a flood eventInt J Digit Earth20191212481264 – reference: SadiqFISelamatAIbrahimRPerformance valuation of classifiers on activity recognition for disasters mitigation using smartphone sensingJurnal Teknologi2018771119 – reference: SuttonRSBartoAGSuttonRSBartoAGTemporal-difference learningReinforcement learning: an introduction20182CambridgeThe MIT Press119140 – reference: ChenLHHongYTRegional Taiwan rainfall frequency analysis using principal component analysis, self-organizing maps and L-momentsHydrol Res201243275285 – reference: Saad OM, Shalaby A, Sayed MS (2014) Automatic arrival time detection for earthquakes based on fuzzy possibilistic C-means clustering algorithm. In: Proceedings of the 2017 8th international conference on recent advances in space technologies (RAST). IEEE, pp 1749–1758 – reference: JiaMZhangZCritical mass of women on BODs, multiple identities, and corporate philanthropic disaster response: evidence from privately owned Chinese firmsJ Bus Ethics201211830331710.1007/s10551-012-1589-7 – reference: ButlerDCrowdsourcing goes mainstream in typhoon responseNature201310.1038/nature.2013.14186 – reference: CortezBCarreraBKimYJJungJYAn architecture for emergency event prediction using LSTM recurrent neural networksExpert Syst Appl201897315324 – reference: Liu X, Nourbakhsh A, Li Q, Fang R, Shah S (2015) Real-time rumor debunking on Twitter. In: Proceedings of the 24th ACM international on conference on information and knowledge management (CIKM’15). ACM, pp 1867–1870 – reference: LiangNJShihYTShihFYWuHMWangHJShiSFWangBBDisaster epidemiology and medical response in the Chi-Chi earthquake in TaiwanAnn Emerg Med200138554955510.1067/mem.2001.118999 – reference: MishraAKDesaiVRDrought forecasting using feed-forward recursive neural networkEcol Model2006198127138 – reference: Pessin G, Osorio F, Wolf DF, Dias MA (2009) Genetic algorithm applied to robotic squad coordination. In: 2009 electronics, robotics and automotive mechanics conference (CERMA). IEEE, pp 169–174. https://doi.org/10.1109/CERMA.2009.17 – reference: Tian H, Chen SC (2017b) A video-aided semantic analytics system for disaster information integration. In: The 3rd IEEE international conference on multimedia big data. IEEE, pp 242–243. https://doi.org/10.1109/BigMM.2017.31 – reference: PezanowskiSMacEachrenAMSavelyevARobinsonACSensePlace3: a geovisual framework to analyze place-time-attribute information in social mediaJ Cartogr Geogr Inf Sci201845420437 – reference: ShirzaeiMWalterTRTime-dependent volcano source monitoring using interferometric synthetic aperture radar time series: a combined genetic algorithm and Kalman filter approachJ Geophys Res2010115B10421 – reference: SunHBurtonHWallaceJReconstructing seismic response demands across multiple tall buildings using kernel-based machine learning methodsStruct Control Health Monit201926e2359 – reference: ChaYJChoiWBüyüközturkODeep learning-based crack damage detection using convolutional neural networksComput Aided Civ Infrastruct Eng201732361378 – reference: Tinoco J, Correia AG, Cortez P, Toll D (2019) Combining artificial neural networks and genetic algorithms for rock cuttings slopes stability condition identification. In: International conference on information technology in geo-engineering. Springer, pp 196–209 – reference: GonzalezMCHidalgoCABarabasiALUnderstanding individual human mobility patternsNature2009453779782 – reference: KimJMWoodsPKParkYJKimTSonKPredicting hurricane wind damage by claim payout based on Hurricane Ike in TexasGeomat Nat Hazards Risk201576565585 – reference: SmithABKatzRWUS billion-dollar weather and climate disasters: data sources, trends, accuracy and biasesNat Hazards201367387410 – reference: DevaultJERobotic system for underwater inspection of bridge piersIEEE Instrum Measur Magaz200033237 – reference: LiuXLiuYChenYReinforcement learning in multiple-UAV networks: deployment and movement designIEEE Trans Veh Technol20196880368049 – reference: StraussAHoffmanSWendnerRBergmeiterKStructural assessment and reliability analysis for existing engineering structures, applications for real structuresStruct Infrastruct Eng20095277286 – reference: Verma S, Nair HS, Agarwal G, Dhar J, Shukla A (2020) Deep reinforcement learning for single-shot diagnosis and adaptation in damaged robots. In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. ACM, pp 82–89 – reference: GaoYChenYXDingYSTangBYImmune genetic algorithm based on network model for flood disaster evaluationJ Nat Disaster200615110114 – reference: Khouj M, López C, Sarkaria S, Marti J (2011) Disaster management in real time simulation using machine learning. In: Proceedings of the 24th Canadian conference on electrical and computer engineering (CCECE). IEEE. https://doi.org/10.1109/CCECE.2011.6030716 – reference: ChenPAChangLCChangFJReinforced recurrent neural networks for multi-step-ahead flood forecastsJ Hydrol20134977179 – reference: Rudner TGJ, Rußwurm M, Fil J, Pelich R, Bischke B, Kopačková V, Biliński P (2019) Multi3Net: segmenting flooded buildings via fusion of multiresolution, multisensor, and multitemporal satellite imagery. In: The thirty-third AAAI conference on artificial intelligence (AAAI-19). AAAI, pp 702–709 – reference: Giffard-Roisin S, Yang M, Charpiat G, Kégl B, Monteleoni C (2018) Deep learning for hurricane track forecasting from aligned spatio-temporal climate datasets. In: Workshop on modeling and decision-making in the spatiotemporal domain, the 32nd conference on neural information processing systems (NIPS 2018). https://openreview.net/pdf?id=rkMdBSdRKm – reference: Huang W, Wang Y, Yi X (2017) Deep Q-learning to preserve connectivity in multi-robot systems. In: Proceedings of the 9th international conference on signal processing systems (ICSPS2017). ACM, pp 45–50 – reference: LiHParikhDHeQQianBLiZFangDHampapurAImproving rail network velocity: a machine learning approach to predictive maintenanceTransp Res Part C2014451726 – reference: ShirzadiABuiDTPhamBTSolaimaniKChapiKKavianAShahabiHRevhaugIShallow landslide susceptibility assessment using a novel hybrid intelligence approachEnviron Earth Sci20177660 – reference: GuoJWuJGuoJJiangZA damage identification approach for offshore jacket platforms using partial modal results and artificial neural networksAppl Sci201882173 – reference: NHERI (2019) DesignSafe. https://www.designsafe-ci.org/ – reference: ChenRSharmanRRaoHRUpadhyayaSJCoordination in emergency response managementCommun ACM2008516673 – reference: LinYRGonçalvesBPerraNEvent-related crowd activities on social mediaSocial phenomena2015BerlinSpringer235250 – reference: KuangSDavisonBDLearning word embeddings with Chi-Square weights for healthcare tweet classificationAppl Sci201778846 – reference: BarabadiAAyeleYPost-disaster infrastructure recovery: prediction of recovery rate using historical dataReliab Eng Syst Saf2018169209223 – reference: AlamPBoothDLeeKThordarsonTThe use of fuzzy clustering algorithm and self-organizing neural networks for identifying potentially failing banks: an experimental studyExpert Syst Appl200018185199 – reference: Pugh J, Martinoli A (2007) Inspiring and modeling multi-robot search with particle swarm optimization. In: 2007 IEEE swarm intelligence symposium. IEEE. https://doi.org/10.1109/SIS.2007.367956 – reference: WlwoodECorotisRBApplication of fuzzy pattern recognition of seismic damage to concrete structuresASCE-ASME J Risk Uncertain Eng Syst Part A Civ Eng2015104015011 – reference: Kumar A, Jiang M, Fang Y (2014) Where not to go?: Detecting road hazards using Twitter. In: Proceedings of the 37th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 1223–1226 – reference: Zhou J, Pei H, Wu H (2017a) Early warning of human crowds based on query data from Baidu maps: analysis based on Shanghai Stampede. In: Big data support of urban planning and management. Springer, pp 19–41 – reference: ReschBUsländerFHavasCCombining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessmentJ Artif Intell Res201845362376 – reference: BarthelFNeumayerEA trend analysis of normalized insured damage from natural disastersClim Change2012113215237 – reference: SeydiSRastiveisHA deep learning framework for roads network damage assessment using post-earthquake LiDAR dataInt Soc Photogramm Remote Sens201942955961 – reference: MitropoulouCCPapadrakakisMDeveloping fragility curves based on neural network IDA predictionsEng Struct20113334093421 – reference: Socher R, Lin CC, Manning C, Ng AY (2011) Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the international conference on machine learning. Omnipress, pp 129–136 – reference: SunYTanWA trust-aware task allocation method using deep Q-learning for uncertain mobile crowdsourcingHuman-centric Comput Inf Sci2019925 – reference: XiaoYLiBGongZReal-time identification of urban rainstorm waterlogging disasters based on Weibo big dataNat Hazards201894833842 – reference: MemarzadehMPozziMModel-free reinforcement learning with model-based safe exploration: Optimizing adaptive recovery process of infrastructure systemsStruct Saf2019804655 – reference: RobertsonBWJohnsonMMurthyDSmithWRStephensKKUsing a combination of human insights and ‘deep learning’ for real-time disaster communicationProg Disaster Sci20192100030 – reference: AdamsSMLevitanMFriedlandCJHigh resolution imagery collection for post-disaster studies utilizing unmanned aircraft systems (UAS)Photogram Eng Remote Sens20141211611168 – reference: Kondaveti R, Ganz A (2009) Decision support system for resource allocation in disaster management. In: The annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 3425–3428. https://doi.org/10.1109/IEMBS.2009.5332498 – reference: Adeel A, Gogate M, Farooq S, Ieracitano C, Dashtipour K, Larijani H, Hussain A (2018) A survey on the role of wireless sensor networks and IoT in disaster management. In: Geological disaster monitoring based on sensor networks. Springer, pp 57–66 – reference: BarrientosFSainzGInterpretable knowledge extraction from emergency call data based on fuzzy unsupervised decision treeKnowl Based Syst2012257787 – reference: KongQAllenRMSchreierLKwonYWMyShake: a smartphone seismic network for earthquake early warning and beyondSci Adv20162e1501055 – reference: IliadisLSA decision support system applying an integrated fuzzy model for long-term forest fire risk estimationEnviron Model Softw200520613621 – reference: MangalahtuSJeonJSDesRochesRCritical uncertainty parameters influencing seismic performance of bridges using Lasso regressionEarthq Eng Struct Dyn201847784801 – reference: WangJZhangJGongLLiQZhouDIndirect seismic economic loss assessment and recovery evaluation using nighttime light images—application for Wenchuan earthquakeNat Hazards Earth Syst Sci20181832533266 – reference: KiatpanontRTanlamaiUChongstitvatanaPExaction of actionable information from crowdsourced disaster dataJ Emerg Manag201614377390 – reference: AliEMAhmedMMWulffSSDetection of critical safety events on freeways in clear and rainy weather using SHRP2 naturalistic driving data: parametric and non-parametric techniquesSaf Sci2019119141149 – reference: SharmaSOgunlanaKUsing genetic algorithm and neural network for modeling learning behavior in a multi-agent system during emergency evacuationInt J Comput Appl201522172182 – reference: EidMSEl-adawayIHSustainable disaster recovery: multiagent-based model for integrating environmental vulnerability into decision-making processes of the associated stakeholdersJ Urban Plann Develop201714304016022 – reference: Burris JW, Shrestha R, Gautam B, Bista B (2015) Machine learning for the activation of contraflow during hurricane evacuation. In: The 2015 IEEE global humanitarian technology conference (GHTC). IEEE. https://doi.org/10.1109/GHTC.2015.7343981 – reference: Zhong L, Garlichs K, Yamada S, Takano K, Ji Y (2018) Mission planning for UAV-based opportunistic disaster recovery networks. In: 2018 15th IEEE annual consumer communications and networking conference (CCNC). IEEE. https://doi.org/10.1109/CCNC.2018.8319233 – reference: da SilvaSJúniorMDJuniorVLBrennanMJStructural damage detection by fuzzy clusteringMech Syst Signal Process20082216361649 – reference: Eckle M, Herfort B, Yan Y, Kuo CL, Zipf A (2017) Towards using volunteered geographic information to monitor post-disaster recovery in tourist destinations. In: Proceedings of the 14th ISCRAM conference, pp 1008–1019 – reference: MitsopoulosIMallinisGA data-driven approach to assess large fire size generation in GreeceNat Hazards20178815911607 – reference: Yang B, Liu M (2018) Keeping in touch with collaborative UAVs: a deep reinforcement learning approach. In: Proceedings of the twenty-seventh international joint conference on artificial intelligence (IJCAI-18), pp 562–568 – reference: LiJStephensKKZhuYMurthyDUsing social media to call for help in Hurricane Harvey: bonding emotion, culture, and community relationshipsInt J Disaster Risk Reduct201938101212 – reference: DOE (2014) Lantern live. https://github.com/GSA/digitalgov.gov/blob/master/content/posts/2014/12/2014-12-04-find-fuel-during-disasters-with-lantern-live-app.md – reference: ZhangJRisk assessment of drought disaster in the maize-growing region of Songliao Plain, ChinaAgric Ecosyst Environ2004102133153 – reference: SheuJBAn emergency logistics distribution approach for quick response to urgent relief demand in disastersTransp Res Part E Logist Transp Rev200743687709 – reference: Ahmad R, Samy GN, Ibrahim NK, Bath PA, Ismail Z (2009) Threats identification in healthcare information systems using genetic algorithm and cox regression. In: The fifth international conference on information assurance and security, pp 757–760. https://doi.org/10.1109/IAS.2009.313 – reference: Novellino A, Jordan C, Ager G, Bateson L, Fleming C, Confuorto P (2018) Remote sensing for natural or man-made disasters and environmental changes. In: Geological disaster monitoring based on sensor networks. Springer, pp 23–31 – reference: Wang P, Tan E, Jin Y, Wang J, Wang L (2019e) A deep reinforcement leaning evolution of emergency state during traffic network. In: Proceedings of the 14th IEEE conference on industrial electronics and applications. IEEE. https://doi.org/10.1109/ICIEA.2019.8833977 – reference: Wilson R, zu Erbach-Schoenberg E, Albert M, Power D, Tudge S, Gonzalez M, Guthrie S, Chamberlain H, Brooks C, Hughes C, Pitonakova L, Buckee C, Lu X, Wetter E, Tatem A, Bengtsson L (2016) Rapid and near real-time assessments of population displacement using mobile phone data following disasters: the 2015 Nepal earthquake. PLoS Curr Disasters. https://doi.org/10.1371/currents.dis.d073fbece328e4c39087bc086d694b5c – reference: HutchinsonTCChenZOptimized estimated ground truth for object-based urban damage estimation using satellite images from the 2003 Bam, Iran, EarthquakeEarthq Spectra200521S239S254 – reference: SongXZhangQSekimotoYShibasakiRYuanNJXieXPrediction and simulation of human mobility following natural disastersACM Trans Intell Syst Technol20168123 – reference: Romlay MRM, Rashid MM, Toha SF (2016) Development of particle swarm optimization based rainfall-runoff prediction model for Pahang River Pekan. In: Proceedings of the 2016 international conference on computer and communication engineering (ICCCE). IEEE, pp 306–310. https://doi.org/10.1109/ICCCE.2016.72 – reference: BoccardoPTonoloFGRemote sensing role in emergency mapping for disaster responseEng Geol Soc Territ201451724 – reference: Mane SS, Mokashi MK (2015) Real-time flash-flood monitoring, alerting and forecasting system using data mining and wireless sensor network. In: Proceedings of the 2015 international conference on communications and signal processing (ICCSP). IEEE, pp 1881–1886. https://doi.org/10.1109/ICCSP.2015.7322851 – reference: Duncan A, Chen AS, Keedwell E, Djordjević S, Savić DA (2013) RAPIDS: early warning system for urban flooding and water quality hazards. In: Proceedings of machine learning in water systems symposium: part of AISB annual convention 2013. http://hdl.handle.net/10871/16090 – reference: DouMChenJChenDChenXDengZZhangXXuaKWangJModeling and simulation for natural disaster contingency planning driven by high-resolution remote sensing imagesFuture Gener Comput Syst201437367377 – reference: Zhang L, Lv X, Dhakal S (2019b) A reinforcement learning-based stakeholder value aggregation model for collaborative decision making on disaster resilience. In: ASCE international conference on computing in civil engineering 2019. ASCE, pp 490–497 – reference: ÖzdamarLDemirOA hierarchical clustering and routing procedure for large scale disaster relief logistics planningTransp Res Part E Logist Transp Rev201248591602 – reference: BarringtonLGhoshSGreeneMHar-NoySBergerJGillSLinAYMHuyckCCrowdsourcing earthquake damage assessment using remote sensing imageryAnn Geophys20115468068710.4401/ag-5324 – reference: ChaeJThomDJangYKimSErtlTEbertDPublic behavior response analysis in disaster events utilizing visual analytics of microblog dataComput Graph201438516010.1016/j.cag.2013.10.008 – reference: MoyaLYamazakiFLiuWYamadaMDetection of collapsed buildings from LiDAR data due to the 2016 Kumamoto earthquake in JapanNat Hazards Earth Syst Sci2018186578 – reference: DengLYuDDeep learning: methods and applicationsFound Trends Sig Process20147199200 – reference: Dong L, Wei F, Tan C, Tang D, Zhou M, Xu K (2014) Adaptive recursive neural network for target-dependent Twitter sentiment classification. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (short papers). Association for Computational Linguistics, pp 49–54 – reference: SheuJBDynamic relief-demand management for emergency logistics operations under large-scale disastersTransp Res Part E Logist Transp Rev201046117 – reference: Elsayed M, Erol-Kantarc M (2018) Deep Q-learning for low-latency tactile applications: microgrid communications. In: Proceedings of the 2018 IEEE international conference on communications, control, and computing technologies for smart grids (SmartGridComm). IEEE. https://doi.org/10.1109/SmartGridComm.2018.8587476 – reference: Sun H, Tian X, Li Z, Chen E, Wang W (2017) Remotely sensed monitoring forest changes-a case study in the Jinhe town of Inner Mongolia. In: 2017 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE. https://doi.org/10.1109/IGARSS.2017.8127747 – reference: MelchiorreCMatteucciMAzzoniAZanchiAArtificial neural networks and cluster analysis in landslide susceptibility zonationGeomorphology200894379400 – reference: AlfaiateJAliabadiMGuaglianoMSusmelLIdentification of damaged bars in three-dimensional redundant truss structures by means of genetic algorithmsKey Eng Mater2007348–349229232 – reference: MangalathuSHeoGJeonJSArtificial neural network based multi-dimensional fragility development of skewed concrete bridge classesEng Struct2018162166176 – reference: ChengMYHoangNDSlope collapse prediction using Bayesian framework with K-nearest neighbor density estimation: case study in TaiwanJ Comput Civ Eng20143004014116 – reference: GauthierFGermainDHuétuBLogistic models as a forecasting tool for snow avalanches in a cold maritime climate: northern Gaspésie, Québec, CanadaNat Hazards201789201232 – reference: FallahianMKhoshnoudianFMeruaneVEnsemble classification method for structural damage assessment under varying temperatureStruct Health Monit201817747762 – reference: DHS (2010) DHS risk lexicon. https://www.dhs.gov/xlibrary/assets/dhs-risk-lexicon-2010.pdf – reference: BandaraRPChanTHThambiratnamDPStructural damage detection method using frequency response functionsStruct Health Monit201413418429 – reference: LinWTChouWCLinCYEarthquake-induced landslide hazard and vegetation recovery assessment using remotely sensed data and a neural network-based classifier: a case study in central TaiwanNat Hazards200847331347 – reference: Hoot N, Aronsky D (2006) An early warning system for overcrowding in the emergency department. In: AMIA annual symposium proceedings symposiu, vol 2006, pp 339–343. PMCID: PMC1839284 – reference: S̆ubikS, Rohde S, Weber T, Wietfeld C (2010) SPIDER: enabling interoperable information sharing between public institutions for efficient disaster recovery and response. In: Proceedings of the 2010 IEEE international conference on technologies for homeland security. IEEE, pp 190–196. https://doi.org/10.1109/THS.2010.5655061 – reference: PechenkinADemidovRApplication of deep neural networks for security analysis of digital infrastructure componentsSHS Web Conf20184400068 – reference: Lingam G, Rout RR, Somayajulu DVLN (2019) Deep Q-learning and particular swarm optimization for bot detection in online social networks. In: Proceedings of the 10th international conference on computing, communication and networking technologies (ICCCNT). https://doi.org/10.1109/ICCCNT45670.2019.8944493 – reference: ReynardDShirgaokarMHarnessing the power of machine learning: Can Twitter data be useful in guiding resource allocation decisions during a natural disaster?Transp Res Part D Transp Environ201977449463 – reference: GoodchildMFGlennonJACrowdsourcing geographic information for disaster response: a research frontierInt J Digit Earth2010323124110.1080/17538941003759255 – reference: JayaramNBakerJWEfficient sampling and data reduction techniques for probabilistic seismic lifeline risk assessmentEarthq Eng Struct Dyn20103911091131 – reference: BagdePRChaudhariMSAnalysis of fraud detection mechanism in health insurance using statistical data mining techniquesInt J Comput Sci Inf Technol20167925927 – reference: ZhangLZhangLDuBDeep learning for remote sensing data: a technical tutorial on the state of the artIEEE Geosci Remote Sens Mag201642240 – reference: MoskowitzHDrnevichPErsoyOAltinkemerKChaturvediAUsing real-time decision tools to improve distributed decision-making capabilities in high-magnitude crisis situationsDecis Sci201142477493 – reference: NaiduSSajinkumarKSOommenTAnujaVJSamuelRAEarly warning system for shallow landslides using rainfall threshold and slope stability analysisGeosci Front2018918711882 – reference: HuangMLeiYChengSDamage identification of bridge structure considering temperature variations based on particle swarm optimization—cuckoo search algorithmAdv Struct Eng20192232623276 – reference: NoymaneeJNikitinNOKalyuzhnayaAVUrban pluvial flood forecasting using open data with machine learning techniques in Pattani BasinProc Comput Sci2017119288297 – reference: ShiHKimMLeeSCPyoSEsfahaniIYooCLocalized indoor air quality monitoring for indoor pollutants’ healthy risk assessment using sub-principal component analysis driven model and engineering big dataKorean J Chem Eng20153219601969 – reference: Karamlou A, Bocchini P, Christou V (2016) Metrics and algorithm for optimal retrofit strategy of resilient transportation networks. In: Proceedings of the maintenance, monitoring, safety, risk and resilience of bridges and bridge networks (IABMAS2016), pp 1121–1128 – reference: Raymond R, Morimura T, Osogami T, Hirosue N (2012) Map matching with hidden Markov model on sampled road network. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012). IEEE, pp 2242–2245 – reference: ZareMPourghasemiHRVafakhahMPradhanBLandslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithmsArab J Geosci2013628732888 – reference: Guo J, Huo Y, Shi X, Wu J, Yu P, Feng L, Li W (2019) 3D aerial vehicle base station (UAV-BS) position planning based on deep Q-learning for capacity enhancement of users with different QoS requirements. In: Proceedings of the 15th international wireless communications and mobile computing conference (IWCMC). IEEE. https://doi.org/10.1109/IWCMC.2019.8766625 – reference: Vieweg S (2012) Situational awareness in mass emergency: a behavioral and linguistic analysis of microblogged communications. PhD dissertation, University of Colorado at Boulder – reference: Ning L, Li Y, Zhou M, Song H, Dong H (2019) A deep reinforcement learning approach to high-speed train timetable rescheduling under disturbances. In: 2019 IEEE intelligent transportation systems conference (ITSC). IEEE, pp 3469–3474 – reference: LiZMeierMHaukssonEZhanZAndrewsJMachine learning seismic wave discrimination: application to earthquake early warningGeophys Res Lett20184547734779 – reference: ForestiGLFarinosiMVernierMSituational awareness in smart environments: socio-mobile and sensor data fusion for emergency response to disastersJ Ambient Intell Humaniz Comput20156239257 – reference: MalawaniADNurmandiAPurnomoEPRahmanTSocial media in aid of post disaster managementTransform Gov People Process Policy202010.1108/TG-09-2019-0088 – reference: LiuCHChenZTangJXuJPiaoCEnergy-efficient UAV control for effective and fair communication coverage: a deep reinforcement learning approachIEEE J Sel Areas Commun20183620592070 – reference: SaitoHNakayamaDMatsuyamaHComparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, JapanGeomorphology2009109108121 – reference: YuanCMoayediHEvaluation and comparison of the advanced metaheuristic and conventional machine learning methods for the prediction of landslide occurrenceEng Comput201910.1007/s00366-019-00798-x – reference: UunkLWijinbergKMorelissenRAutomated mapping of the intertidal beach bathymetry from video imagesOcean Eng201057461469 – reference: Baldazo D, Parras J, Zazo S (2019) Decentralized multi-agent deep reinforcement learning in swarms of drones for flood monitoring. In: 2019 27th European signal processing conference (EUSIPCO). IEEE. https://doi.org/10.23919/EUSIPCO.2019.8903067 – reference: Adams BJ, Huyck C, Mansouri B, Eguchi R, Shinozuka M (2002) Post-disaster bridge damage assessment. In: Proceedings of the 15th Pecora conference: integrating remote sensing at the global, regional, and local scale, 8p, on CD-ROM – reference: KaramlouABocchiniPSequencing algorithm with multiple-input genetic operators: application to disaster resilienceEng Struct2016117591602 – reference: BerawiMALeviakangasPMuhammadFSariMYatmoYASuryanegaraMOptimizing search and rescue personnel allocation in disaster emergency response using fuzzy logicInt J Technol20191014161426 – reference: JahangiriAAfandizadehSKalantariNThe optimization of traffic signal timing for emergency evacuation using the simulated annealing algorithmTransport201126133140 – reference: WangCWuJWangXHeXApplication of the hidden Markov model in a dynamic risk assessment of rainstorms in Dalian, ChinaStoch Env Res Risk Assess20183220452056 – reference: Sánchez-GarcíaJA distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenarioFuture Gener Comput Syst201990129148 – reference: Rahman R, Hasan S (2018) Short-term traffic speed prediction for freeways during hurricane evacuation: a deep learning approach. In: The 21st international conference on intelligent transportation systems (ITSC). IEEE, pp 1291–1296. https://doi.org/10.1109/ITSC.2018.8569443 – reference: RuzGAHenríquezPAnoAMSentiment analysis of Twitter data during critical events through Bayesian networks classifiersFuture Gener Comput Syst202010692104 – reference: YangYChenGReniersGVulnerability assessment of atmospheric storage tanks to floods based on logistic regressionReliab Eng Syst Saf2019196106721 – reference: YuMHuangQQinHScheeleCYangCDeep learning for real-time social media text classification for situation awareness—using Hurricanes Sandy, Harvey, and Irma as case studiesInt J Digit Earth20191212301247 – reference: AhmadKPogorelovKRieglerMOstroukhovaOHalvorsenPConciNDahyotRAutomatic detection of passable roads after floods in remote sensed and social media dataSig Process Image Commun201974110118 – reference: Rawat P, Haddad M, Altman E (2015) Towards efficient disaster management: 5G and device to device communication. In: Proceedings of the 2nd international conference on information and communication technologies for disaster management (ICT-DM). IEEE. https://doi.org/10.1109/ICT-DM.2015.7402056 – reference: CavalieriFFranchinPCortésJAMBTesfamariamSModels for seismic vulnerability analysis of power networks: comparative assessmentComput Aided Civ Infrastruct Eng201429590607 – reference: LodreeEJJDavisLBEmpirical analysis of volunteer convergence following the 2011 tornado disaster in Tuscaloosa, AlabamaNat Hazards20168411091135 – reference: MaCZhangJZhaoYHabibMFSavasSSMukherjeeBTraveling repairman problem for optical network recovery to restore virtual networks after a disasterIEEE/OSA J Opt Commun Netw20157B81B92 – reference: Morito T, Sugiyama O, Kojima R, Nakadai K (2016) Partially shared deep neural network in sound source separation and identification using a UAV-embedded microphone array. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1299–1304. https://doi.org/10.1109/IROS.2016.7759215 – reference: Pogrebnykov N, Maldonado E (2017) Identifying emergency stages in Facebook posts of police departments with convolutional and recurrent neural networks and support vector machines. In: Proceedings of the 2017 IEEE international conference on big data. IEEE, pp 4343–4352. https://doi.org/10.1109/BigData.2017.8258464 – reference: SongXShibasakiRYuanNJXieXLiTAdachiRDeepMob: learning deep knowledge of human emergency behavior and mobility from big and heterogeneous dataACM Trans Intell Syst Technol201735119 – reference: ValkaniotisSPapathanassiouGGanasAMapping an earthquake-induced landslide based on UAV imagery: case study of the 2015 Okeanos landslide, Lefkada, GreeceEng Geol2018245141152 – ident: 4124_CR510 doi: 10.23919/OCEANS.2009.5422201 – volume: 366 start-page: 314 year: 2019 ident: 4124_CR615 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.021 – volume: 58 start-page: 82 year: 2020 ident: 4124_CR24 publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.12.012 – volume: 62 start-page: 721 year: 2014 ident: 4124_CR397 publication-title: Robot Auton Syst doi: 10.1016/j.robot.2014.03.003 – ident: 4124_CR479 – volume: 119 start-page: 141 year: 2019 ident: 4124_CR18 publication-title: Saf Sci doi: 10.1016/j.ssci.2019.01.007 – volume: 78 start-page: 154 year: 2014 ident: 4124_CR244 publication-title: Eng Sturct doi: 10.1016/j.engstruct.2014.05.016 – volume: 84 start-page: 819 year: 2015 ident: 4124_CR275 publication-title: J Risk Insur doi: 10.1111/jori.12106 – ident: 4124_CR185 doi: 10.1109/ICASSP.2013.6638947 – ident: 4124_CR13 doi: 10.1109/IAS.2009.313 – ident: 4124_CR193 – volume: 68 start-page: 37 year: 2016 ident: 4124_CR223 publication-title: Appl Geogr doi: 10.1016/j.apgeog.2016.01.005 – ident: 4124_CR335 doi: 10.1109/VAST.2011.6102456 – volume: 33 start-page: 3759 year: 2019 ident: 4124_CR575 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02342-4 – volume: 143 start-page: 04017018 year: 2017 ident: 4124_CR603 publication-title: J Urban Plan Dev doi: 10.1061/(ASCE)UP.1943-5444.0000404 – volume: 8 start-page: 767 year: 2014 ident: 4124_CR99 publication-title: Front Environ Sci Eng doi: 10.1007/s11783-014-0632-6 – volume: 81 start-page: 1 year: 2015 ident: 4124_CR177 publication-title: Comput Geosci doi: 10.1016/j.cageo.2015.04.007 – volume: 77 start-page: 11 year: 2018 ident: 4124_CR470 publication-title: Jurnal Teknologi – volume: 196 start-page: 469 year: 2012 ident: 4124_CR428 publication-title: Ann Oper Res doi: 10.1007/s10479-011-1052-7 – volume: 31 start-page: 3369 year: 2010 ident: 4124_CR41 publication-title: Int J Remote Sens doi: 10.1080/01431161003727671 – ident: 4124_CR229 doi: 10.1145/2567948.2577034 – volume: 59 start-page: 68 year: 2014 ident: 4124_CR159 publication-title: J Psychiatr Res doi: 10.1016/j.jpsychires.2014.08.017 – volume: 35 start-page: 2206 year: 2013 ident: 4124_CR440 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.29 – volume: 39 start-page: 101251 year: 2019 ident: 4124_CR61 publication-title: Int J Disaster Risk Reduct doi: 10.1016/j.ijdrr.2019.101251 – volume: 34 start-page: 189 year: 2013 ident: 4124_CR171 publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2013.09.003 – year: 2020 ident: 4124_CR361 publication-title: Int J Digit Earth doi: 10.1080/17538947.2020.1729879 – ident: 4124_CR540 doi: 10.1007/978-3-030-32029-4_18 – volume: 3 start-page: 23 year: 2016 ident: 4124_CR179 publication-title: Geoenviron Disasters doi: 10.1186/s40677-016-0060-y – volume: 48 start-page: 1143 year: 2018 ident: 4124_CR216 publication-title: Neural Process Lett doi: 10.1007/s11063-017-9778-0 – volume: 21 start-page: 04014041 year: 2015 ident: 4124_CR288 publication-title: J Infrastruct Syst doi: 10.1061/(ASCE)IS.1943-555X.0000229 – volume: 365 start-page: 71 year: 2019 ident: 4124_CR416 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.06.099 – volume: 42 start-page: 100974 year: 2019 ident: 4124_CR215 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2019.100974 – ident: 4124_CR589 doi: 10.17077/48vt-m4t2 – volume: 32 start-page: 537 year: 2008 ident: 4124_CR633 publication-title: Disasters doi: 10.1111/j.1467-7717.2008.01054.x – volume: 47 start-page: 101326 year: 2020 ident: 4124_CR94 publication-title: Telemat Inform doi: 10.1016/j.tele.2019.101326 – volume: 99 start-page: 161 year: 2012 ident: 4124_CR340 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2011.10.011 – volume: 34 start-page: 1069 year: 2014 ident: 4124_CR386 publication-title: Risk Anal doi: 10.1111/risa.12131 – volume: 15 start-page: 107 year: 2011 ident: 4124_CR186 publication-title: Pers Soc Psychol Rev doi: 10.1177/1088868310367640 – ident: 4124_CR352 doi: 10.1145/2911451.2911460 – ident: 4124_CR651 doi: 10.23919/ChiCC.2017.8027884 – volume: 577 start-page: 123929 year: 2019 ident: 4124_CR106 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.123929 – volume: 162 start-page: 166 year: 2018 ident: 4124_CR343 publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.01.053 – volume: 24 start-page: 1650 year: 2002 ident: 4124_CR349 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2002.1114856 – volume: 12 start-page: 1248 year: 2019 ident: 4124_CR220 publication-title: Int J Digit Earth doi: 10.1080/17538947.2018.1523956 – volume: 106 start-page: 163 year: 2019 ident: 4124_CR577 publication-title: Fire Saf J doi: 10.1016/j.firesaf.2019.04.008 – ident: 4124_CR143 doi: 10.1109/SmartGridComm.2018.8587476 – volume: 17 start-page: 747 year: 2018 ident: 4124_CR149 publication-title: Struct Health Monit doi: 10.1177/1475921717717311 – volume: 530 start-page: 829 year: 2015 ident: 4124_CR616 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.10.038 – volume: 145 start-page: 713 year: 2019 ident: 4124_CR162 publication-title: Measurement doi: 10.1016/j.measurement.2019.05.067 – volume: 4 start-page: 9 year: 2017 ident: 4124_CR74 publication-title: Geoenviron Disasters doi: 10.1186/s40677-017-0073-1 – volume: 30 start-page: 347 year: 2015 ident: 4124_CR82 publication-title: Comput Aided Civ Infrastruct Eng doi: 10.1111/mice.12122 – ident: 4124_CR146 – ident: 4124_CR161 doi: 10.1109/STARTUP.2016.7583959 – volume: 24 start-page: 2001 year: 2018 ident: 4124_CR662 publication-title: J Vib Control doi: 10.1177/1077546316674544 – ident: 4124_CR2 doi: 10.1109/ICCCE.2018.8539253 – volume: 497 start-page: 71 year: 2013 ident: 4124_CR90 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2013.05.038 – ident: 4124_CR370 doi: 10.1109/IROS.2016.7759215 – year: 2019 ident: 4124_CR293 publication-title: Comput Aided Civ Infrastruct Eng doi: 10.1111/mice.12493 – volume: 18 start-page: 185 year: 2000 ident: 4124_CR16 publication-title: Expert Syst Appl doi: 10.1016/S0957-4174(99)00061-5 – volume: E96–A start-page: 649 year: 2013 ident: 4124_CR369 publication-title: IEICE Trans Fundam Electron Commun Comput Sci doi: 10.1587/transfun.E96.A.649 – volume: 112 start-page: 23 year: 2018 ident: 4124_CR659 publication-title: Comput Geosci doi: 10.1016/j.cageo.2017.11.019 – ident: 4124_CR272 doi: 10.1109/IEMBS.2009.5332498 – volume: 11 start-page: 70 year: 2016 ident: 4124_CR206 publication-title: Weather Extreme Events – ident: 4124_CR388 – ident: 4124_CR502 – volume: 17 start-page: 1750073 year: 2017 ident: 4124_CR256 publication-title: Int J Struct Stab Dyn doi: 10.1142/S0219455417500730 – volume: 11 start-page: 728 year: 2010 ident: 4124_CR572 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2010.2050200 – volume: 105 start-page: 39 year: 2017 ident: 4124_CR606 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2017.07.001 – ident: 4124_CR478 doi: 10.1109/COASE.2018.8560473 – volume: 66 start-page: 224 year: 2019 ident: 4124_CR50 publication-title: IEEE Trans Eng Manag doi: 10.1109/TEM.2018.2794146 – ident: 4124_CR547 doi: 10.1145/3047273.3047379 – volume: 35 start-page: 1122 year: 2008 ident: 4124_CR354 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.08.008 – volume: 359 start-page: 107125 year: 2020 ident: 4124_CR652 publication-title: Geomorphology doi: 10.1016/j.geomorph.2020.107125 – volume: 8 start-page: 297 year: 2019 ident: 4124_CR597 publication-title: Int J Geo-Inf doi: 10.3390/ijgi8070297 – ident: 4124_CR134 – ident: 4124_CR538 doi: 10.1109/IRI.2018.00071 – volume: 16 start-page: 207 year: 2016 ident: 4124_CR625 publication-title: Adv Struct Eng doi: 10.1260/1369-4332.16.1.207 – ident: 4124_CR267 doi: 10.1109/ICT-DM.2016.7857214 – volume: 711 start-page: 135161 year: 2019 ident: 4124_CR211 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.135161 – ident: 4124_CR201 doi: 10.1007/978-3-319-32034-2_13 – volume: 9 start-page: 200 year: 2008 ident: 4124_CR91 publication-title: J Assoc Inf Syst – ident: 4124_CR227 doi: 10.1109/GHTC.2014.6970316 – volume: 23 start-page: 246 year: 2008 ident: 4124_CR497 publication-title: Weather Forecast doi: 10.1175/2007WAF2006027.1 – volume: 10 start-page: 931 year: 2013 ident: 4124_CR10 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-013-0281-5 – volume: 51 start-page: 1 year: 2018 ident: 4124_CR426 publication-title: ACM Comput Surv doi: 10.1145/3150226 – volume: 12 start-page: 1300 year: 2019 ident: 4124_CR667 publication-title: Int Journal Digit Earth doi: 10.1080/17538947.2018.1545878 – volume: 12 start-page: 1161 year: 2014 ident: 4124_CR6 publication-title: Photogram Eng Remote Sens doi: 10.14358/PERS.80.12.1161 – year: 2019 ident: 4124_CR393 publication-title: Int J Distrib Sens Netw doi: 10.1177/1550147719856492 – ident: 4124_CR554 doi: 10.1109/THS.2010.5655061 – ident: 4124_CR317 doi: 10.1109/ICCCNT45670.2019.8944493 – volume: 6 start-page: e17680 year: 2011 ident: 4124_CR35 publication-title: PLoS One doi: 10.1371/journal.pone.0017680 – ident: 4124_CR295 – volume: 115 start-page: B10421 year: 2010 ident: 4124_CR494 publication-title: J Geophys Res doi: 10.1029/2010JB007476 – volume: 10 start-page: 648 year: 2011 ident: 4124_CR375 publication-title: Inf Technol J doi: 10.3923/itj.2011.648.655 – volume: 38 start-page: 549 issue: 5 year: 2001 ident: 4124_CR309 publication-title: Ann Emerg Med doi: 10.1067/mem.2001.118999 – ident: 4124_CR395 doi: 10.1109/ITSC.2019.8917180 – year: 2019 ident: 4124_CR392 publication-title: IEEE Trans Big Data doi: 10.1109/TBDATA.2019.2941887 – volume: 89 start-page: 35 year: 2017 ident: 4124_CR260 publication-title: Nat Hazards doi: 10.1007/s11069-017-2951-y – volume: 44 start-page: 195 year: 2013 ident: 4124_CR180 publication-title: Psychol Med doi: 10.1017/S0033291713000561 – volume: 181 start-page: 111 year: 2019 ident: 4124_CR178 publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.11.081 – ident: 4124_CR205 doi: 10.1109/THS.2018.8574145 – volume: 15 start-page: 159 year: 2008 ident: 4124_CR241 publication-title: Acad Emerg Med doi: 10.1111/j.1553-2712.2007.00032.x – volume: 35 start-page: 41 year: 2000 ident: 4124_CR155 publication-title: Saf Sci doi: 10.1016/S0925-7535(00)00021-7 – volume: 140 start-page: 45 year: 2018 ident: 4124_CR563 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2017.03.001 – volume: 122 start-page: 378 year: 2019 ident: 4124_CR579 publication-title: Accid Anal Prev doi: 10.1016/j.aap.2017.06.003 – ident: 4124_CR72 – ident: 4124_CR225 – volume: 34 start-page: 1102 year: 2008 ident: 4124_CR259 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2006.12.019 – ident: 4124_CR410 doi: 10.1109/IROS40897.2019.8967633 – volume: 96 start-page: 123 year: 2008 ident: 4124_CR445 publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2007.04.002 – volume: 11 start-page: 403 year: 2014 ident: 4124_CR545 publication-title: CMS doi: 10.1007/s10287-013-0174-6 – ident: 4124_CR621 doi: 10.1007/978-981-10-0300-4_7 – volume: 7 start-page: 3372 year: 2015 ident: 4124_CR230 publication-title: Remote Sens doi: 10.3390/rs70303372 – volume: 14 start-page: 124 year: 2017 ident: 4124_CR252 publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2017.1330891 – volume: 43 start-page: 687 year: 2007 ident: 4124_CR487 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2006.04.004 – volume: 29 start-page: 9 year: 2014 ident: 4124_CR360 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2013.126 – ident: 4124_CR103 doi: 10.1109/IJCNN.2018.8489600 – volume: 53 start-page: 339 year: 2007 ident: 4124_CR87 publication-title: Environ Geol doi: 10.1007/s00254-007-0649-2 – volume: 109 start-page: 108 year: 2009 ident: 4124_CR471 publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.02.026 – volume: 579 start-page: 142229 year: 2019 ident: 4124_CR611 publication-title: J Hydrol – volume: 42 start-page: 1 year: 2010 ident: 4124_CR299 publication-title: Electron J Inf Syst Develop Ctries doi: 10.1002/j.1681-4835.2010.tb00300.x – volume: 6 start-page: 63 year: 2014 ident: 4124_CR248 publication-title: Water Qual Expo Health doi: 10.1007/s12403-014-0119-5 – ident: 4124_CR481 doi: 10.1109/CarpathianCC.2017.7970400 – volume: 130 start-page: 113234 year: 2020 ident: 4124_CR88 publication-title: Decis Support Syst doi: 10.1016/j.dss.2019.113234 – volume: 8 start-page: 287 year: 2009 ident: 4124_CR531 publication-title: Malar J doi: 10.1186/1475-2875-8-287 – volume: 11 start-page: 277 year: 2010 ident: 4124_CR571 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2010.2040276 – volume: 27 start-page: 52 year: 2012 ident: 4124_CR620 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2012.6 – volume: 27 start-page: S179 year: 2011 ident: 4124_CR172 publication-title: Earthq Spectra doi: 10.1193/1.3636416 – volume: 17 start-page: 405 year: 2010 ident: 4124_CR567 publication-title: Smart Struct Syst doi: 10.12989/sss.2010.6.4.405 – ident: 4124_CR31 doi: 10.1007/978-3-319-98446-9_19 – volume: 15 start-page: 43 year: 2018 ident: 4124_CR38 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2017.2772349 – volume: 12 start-page: 218 year: 2012 ident: 4124_CR253 publication-title: Environ Hazards doi: 10.1080/17477891.2012.761593 – volume: 47 start-page: 784 year: 2018 ident: 4124_CR342 publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.2991 – volume: 11 start-page: 8475 year: 2014 ident: 4124_CR140 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph110808475 – volume: 115 start-page: 143 year: 2016 ident: 4124_CR521 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2015.09.011 – ident: 4124_CR534 – ident: 4124_CR36 doi: 10.1109/INCOS.2010.24 – ident: 4124_CR69 doi: 10.1109/GHTC.2015.7343981 – volume: 29 start-page: 918 year: 2006 ident: 4124_CR452 publication-title: J Appl Soc Psychol doi: 10.1111/j.1559-1816.1999.tb00132.x – ident: 4124_CR213 doi: 10.1109/GCWkshps45667.2019.9024648 – year: 2019 ident: 4124_CR476 publication-title: J Water Clim Change doi: 10.2166/wcc.2019.321 – ident: 4124_CR26 – ident: 4124_CR526 doi: 10.1109/RIISS.2014.7009173 – ident: 4124_CR289 doi: 10.1109/ICACCP.2019.8882877 – ident: 4124_CR535 – volume: 12 start-page: 1230 year: 2019 ident: 4124_CR627 publication-title: Int J Digit Earth doi: 10.1080/17538947.2019.1574316 – ident: 4124_CR294 – volume: 45 start-page: 783 year: 2015 ident: 4124_CR631 publication-title: Can J For Res doi: 10.1139/cjfr-2014-0347 – ident: 4124_CR303 doi: 10.1145/2983323.2983355 – volume: 83 start-page: 194 year: 2017 ident: 4124_CR408 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.06.007 – volume: 23 start-page: 53 year: 2014 ident: 4124_CR421 publication-title: Disaster Prev Manag doi: 10.1108/DPM-12-2012-0148 – volume: 370 start-page: 176 year: 2012 ident: 4124_CR508 publication-title: Philos Trans R Soc A Math Phys Eng Sci doi: 10.1098/rsta.2011.0244 – volume: 28 start-page: 427 year: 2012 ident: 4124_CR65 publication-title: Earthq Spectra doi: 10.1193/1.4000019 – volume: 32 start-page: 04018027 year: 2018 ident: 4124_CR539 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000770 – volume: 31 start-page: 04017030 year: 2017 ident: 4124_CR138 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000680 – ident: 4124_CR40 doi: 10.23919/EUSIPCO.2019.8903067 – ident: 4124_CR468 doi: 10.1109/PERCOMW.2017.7917529 – ident: 4124_CR501 – volume: 33 start-page: 443 year: 2018 ident: 4124_CR383 publication-title: J Comput Aided Civ Infrastruct Eng doi: 10.1111/mice.12359 – volume: 26 start-page: e2359 year: 2019 ident: 4124_CR517 publication-title: Struct Control Health Monit – ident: 4124_CR418 doi: 10.1109/CERMA.2009.17 – volume: 57 start-page: 1857 year: 2018 ident: 4124_CR441 publication-title: Int J Prod Res doi: 10.1080/00207543.2018.1509392 – ident: 4124_CR144 – volume: 11 start-page: 516 year: 2019 ident: 4124_CR366 publication-title: Sustainability doi: 10.3390/su11020516 – ident: 4124_CR477 doi: 10.1109/CDC.2016.7799189 – volume: 57 start-page: 81 year: 2013 ident: 4124_CR578 publication-title: Comput Geosci doi: 10.1016/j.cageo.2013.04.006 – volume: 21 start-page: 2083 year: 2019 ident: 4124_CR265 publication-title: Environ Dev Sustain doi: 10.1007/s10668-018-0086-2 – ident: 4124_CR292 doi: 10.1109/ICCE.2017.7889305 – ident: 4124_CR187 doi: 10.1145/276305.276312 – volume: 13 start-page: 928 year: 2018 ident: 4124_CR385 publication-title: J Disaster Res doi: 10.20965/jdr.2018.p0928 – volume: 32 start-page: 41 year: 2017 ident: 4124_CR199 publication-title: Aust J Emerg Manag – ident: 4124_CR126 doi: 10.1016/S1464-2859(14)70322-0 – volume: 22 start-page: 868 year: 2018 ident: 4124_CR635 publication-title: Adv Struct Eng doi: 10.1177/1369433218789191 – ident: 4124_CR1 doi: 10.1007/978-3-030-03828-1_6 – volume: 23 start-page: 735 year: 2007 ident: 4124_CR285 publication-title: Earthq Spectra doi: 10.1193/1.2798241 – volume: 8 start-page: 29 year: 2019 ident: 4124_CR612 publication-title: ISPRS Int J Geo-Inf doi: 10.3390/ijgi8010029 – volume: 15 start-page: 30 year: 2015 ident: 4124_CR249 publication-title: BMC Psychiatry doi: 10.1186/s12888-015-0399-8 – volume: 14 start-page: 377 year: 2016 ident: 4124_CR258 publication-title: J Emerg Manag doi: 10.5055/jem.2016.0302 – volume: 15 start-page: 855 year: 2019 ident: 4124_CR368 publication-title: Am Inst Math Sci – volume: 37 start-page: 367 year: 2014 ident: 4124_CR130 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2013.12.018 – volume: 7 start-page: 82 year: 2017 ident: 4124_CR23 publication-title: Int J Space Based Situat Comput doi: 10.1504/IJSSC.2017.10008038 – volume: 51 start-page: 66 year: 2008 ident: 4124_CR92 publication-title: Commun ACM doi: 10.1145/1342327.1342340 – ident: 4124_CR584 doi: 10.1109/CCGrid49817.2020.00-15 – volume: 7 start-page: B81 year: 2015 ident: 4124_CR332 publication-title: IEEE/OSA J Opt Commun Netw doi: 10.1364/JOCN.7.000B81 – ident: 4124_CR409 doi: 10.1109/ICCES45898.2019.9002400 – ident: 4124_CR396 – volume: 7 start-page: 1 year: 2016 ident: 4124_CR240 publication-title: J Geomat Nat Hazards Risk – volume: 547 start-page: 236 year: 2017 ident: 4124_CR237 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.01.057 – volume: 2 start-page: e1500779 issue: 3 year: 2016 ident: 4124_CR278 publication-title: Sci Adv doi: 10.1126/sciadv.1500779 – ident: 4124_CR132 – ident: 4124_CR607 doi: 10.24963/ijcai.2018/78 – volume: 67 start-page: 215 issue: 4 year: 2019 ident: 4124_CR175 publication-title: Imaging Sci J doi: 10.1080/13682199.2019.1600254 – volume: 48 start-page: 591 year: 2012 ident: 4124_CR406 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2011.11.003 – volume: 20 start-page: 30 year: 2012 ident: 4124_CR115 publication-title: IEEE Trans Audio Speech Lang Process doi: 10.1109/TASL.2011.2134090 – volume: 46 start-page: 918 year: 2009 ident: 4124_CR296 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2008.12.003 – volume: 7 start-page: 29639 year: 2019 ident: 4124_CR79 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902558 – ident: 4124_CR637 doi: 10.1109/SSRR.2014.7017679 – ident: 4124_CR551 – volume: 49 start-page: 86 year: 2019 ident: 4124_CR77 publication-title: Int J Inf Manag doi: 10.1016/j.ijinfomgt.2019.03.004 – ident: 4124_CR442 – ident: 4124_CR543 doi: 10.1109/ICASSP.2009.4959870 – year: 2020 ident: 4124_CR484 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2020.2967936 – volume: 54 start-page: 937 year: 2008 ident: 4124_CR595 publication-title: Environ Geol doi: 10.1007/s00254-007-0887-3 – ident: 4124_CR191 doi: 10.1109/IWCMC.2019.8766625 – volume: 90 start-page: 921 year: 2018 ident: 4124_CR398 publication-title: Nat Hazards doi: 10.1007/s11069-017-3081-2 – ident: 4124_CR523 doi: 10.1007/978-3-030-19562-5_18 – volume: 33 start-page: 618 year: 2018 ident: 4124_CR194 publication-title: Comput Aided Civ Infrastruct Eng doi: 10.1111/mice.12346 – volume: 46 start-page: 551 year: 2010 ident: 4124_CR188 publication-title: Fire Technol doi: 10.1007/s10694-009-0106-8 – ident: 4124_CR412 – volume: 27 start-page: 622 year: 2013 ident: 4124_CR169 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000333 – volume: 50 start-page: 392 year: 2015 ident: 4124_CR525 publication-title: Comput Hum Behav doi: 10.1016/j.chb.2015.04.020 – ident: 4124_CR654 doi: 10.1145/2020408.2020457 – ident: 4124_CR604 doi: 10.1109/ICAwST.2019.8923362 – volume: 8 start-page: 1955 year: 2015 ident: 4124_CR533 publication-title: Geosci Model Develop doi: 10.5194/gmd-8-1955-2015 – ident: 4124_CR561 doi: 10.1145/3371158.3371168 – year: 2020 ident: 4124_CR568 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2020.2967430 – volume: 22 start-page: 708 year: 2018 ident: 4124_CR325 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-017-1329-8 – volume: 8 start-page: e1001083 year: 2011 ident: 4124_CR55 publication-title: PLoS Med doi: 10.1371/journal.pmed.1001083 – volume: 560 start-page: 632 year: 2018 ident: 4124_CR123 publication-title: Nature doi: 10.1038/s41586-018-0438-y – volume: 43 start-page: 275 year: 2012 ident: 4124_CR89 publication-title: Hydrol Res doi: 10.2166/nh.2012.032 – volume: 4 start-page: 47 year: 2016 ident: 4124_CR401 publication-title: Big Data doi: 10.1089/big.2014.0064 – volume: 60 start-page: 1097 year: 2017 ident: 4124_CR277 publication-title: Commun ACM doi: 10.1145/3065386 – ident: 4124_CR466 doi: 10.1109/RAST.2017.8003001 – volume: 85 start-page: 471 year: 2017 ident: 4124_CR27 publication-title: Nat Hazards doi: 10.1007/s11069-016-2579-3 – volume: 11 start-page: 2427 year: 2019 ident: 4124_CR170 publication-title: Remote Sens doi: 10.3390/rs11202427 – ident: 4124_CR619 doi: 10.1145/2396761.2398732 – volume: 18 start-page: 383 year: 2010 ident: 4124_CR200 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-18-383-2018 – volume: 14 start-page: 1571 year: 2016 ident: 4124_CR338 publication-title: Bull Earthq Eng doi: 10.1007/s10518-016-9894-7 – volume: 53 start-page: 266 year: 2017 ident: 4124_CR290 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2016.09.002 – volume: 14 start-page: 1267 issue: 10 year: 2017 ident: 4124_CR67 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph14101267 – volume: 67 start-page: 919 year: 2013 ident: 4124_CR593 publication-title: Nat Hazards doi: 10.1007/s11069-013-0617-y – volume: 9 start-page: 100 year: 2017 ident: 4124_CR53 publication-title: Remote Sens doi: 10.3390/rs9020100 – ident: 4124_CR151 – volume: 144 start-page: 28 year: 2017 ident: 4124_CR54 publication-title: Cold Reg Sci Technol doi: 10.1016/j.coldregions.2017.09.013 – volume: 38 start-page: 101212 year: 2019 ident: 4124_CR300 publication-title: Int J Disaster Risk Reduct doi: 10.1016/j.ijdrr.2019.101212 – volume: 57 start-page: 708 year: 2017 ident: 4124_CR39 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.02.028 – volume: 8 start-page: 165 year: 2018 ident: 4124_CR626 publication-title: Geosciences doi: 10.3390/geosciences8050165 – volume: 17 start-page: 117 year: 2012 ident: 4124_CR64 publication-title: J Bridge Eng doi: 10.1061/(asce)be.1943-5592.0000201 – volume: 89 start-page: 201 year: 2017 ident: 4124_CR164 publication-title: Nat Hazards doi: 10.1007/s11069-017-2959-3 – volume: 4 start-page: 26 year: 2017 ident: 4124_CR448 publication-title: J Asian Secur Int Aff – volume: 18 start-page: 825 year: 2011 ident: 4124_CR358 publication-title: Struct Control Health Monit doi: 10.1002/stc.401 – volume: 102 start-page: 133 year: 2004 ident: 4124_CR640 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2003.08.003 – volume: 34 start-page: 29 year: 2019 ident: 4124_CR492 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2019.2918245 – volume: 97 start-page: 315 year: 2018 ident: 4124_CR109 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.12.037 – volume: 91 start-page: 81 year: 2018 ident: 4124_CR86 publication-title: Appl Geogr doi: 10.1016/j.apgeog.2017.12.017 – volume: 34 start-page: 415 year: 2018 ident: 4124_CR310 publication-title: Comput Aided Civ Infrastruct Eng doi: 10.1111/mice.12425 – volume: 70 start-page: 32 year: 2012 ident: 4124_CR649 publication-title: Cold Reg Sci Technol doi: 10.1016/j.coldregions.2011.08.011 – volume: 21 start-page: 42 year: 2019 ident: 4124_CR127 publication-title: J Control Eng Appl Inform – volume: 94 start-page: 47 year: 2016 ident: 4124_CR154 publication-title: Phys Chem Earth Parts A/B/C doi: 10.1016/j.pce.2016.04.003 – volume: 15 start-page: 2725 year: 2015 ident: 4124_CR156 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-15-2725-2015 – volume: 76 start-page: 60 year: 2017 ident: 4124_CR493 publication-title: Environ Earth Sci doi: 10.1007/s12665-016-6374-y – volume: 44 start-page: 185 year: 2010 ident: 4124_CR415 publication-title: Water Res doi: 10.1016/j.watres.2009.09.036 – ident: 4124_CR542 doi: 10.1109/EEEIC-2.2013.6737884 – volume: 51 start-page: 070901 year: 2012 ident: 4124_CR269 publication-title: Opt Eng doi: 10.1117/1.OE.51.7.070901 – volume: 245 start-page: 141 year: 2018 ident: 4124_CR556 publication-title: Eng Geol doi: 10.1016/j.enggeo.2018.08.010 – volume: 74 start-page: 110 year: 2019 ident: 4124_CR12 publication-title: Sig Process Image Commun doi: 10.1016/j.image.2019.02.002 – volume: 348–349 start-page: 229 year: 2007 ident: 4124_CR17 publication-title: Key Eng Mater – volume: 34 start-page: 793 year: 2012 ident: 4124_CR570 publication-title: Acta Seismol Sin – volume: 15 start-page: 662 year: 2012 ident: 4124_CR66 publication-title: J Inf Commun Soc doi: 10.1080/1369118X.2012.678878 – ident: 4124_CR648 doi: 10.1109/ICMA.2009.5246026 – ident: 4124_CR411 – volume: 8 start-page: 578 year: 2019 ident: 4124_CR381 publication-title: Int J Geo-Inf doi: 10.3390/ijgi8120578 – volume: 552 start-page: 92 year: 2017 ident: 4124_CR628 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.06.020 – ident: 4124_CR245 – volume: 26 start-page: 3891 year: 2017 ident: 4124_CR28 publication-title: Fresen Environ Bull – year: 2018 ident: 4124_CR111 publication-title: Adv Civ Eng doi: 10.1155/2018/7258156 – ident: 4124_CR312 doi: 10.1145/2480362.2480511 – ident: 4124_CR348 doi: 10.1007/978-1-4614-5885-2_11 – volume: 34 start-page: 328 year: 2012 ident: 4124_CR462 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.108 – ident: 4124_CR516 doi: 10.1109/IGARSS.2017.8127747 – ident: 4124_CR174 – ident: 4124_CR432 – volume: 9 start-page: 25 year: 2019 ident: 4124_CR522 publication-title: Human-centric Comput Inf Sci doi: 10.1186/s13673-019-0187-4 – ident: 4124_CR609 – volume: 84 start-page: 175 year: 2016 ident: 4124_CR639 publication-title: Nat Hazards doi: 10.1007/s11069-016-2414-x – ident: 4124_CR76 doi: 10.6028/NIST.IR.8231 – volume: 33 start-page: 873 issue: 3 year: 2018 ident: 4124_CR173 publication-title: Weather Forecast doi: 10.1175/WAF-D-17-0006.1 – volume: 78 start-page: 247 year: 2019 ident: 4124_CR97 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-018-1256-z – volume: 7 start-page: 846 issue: 8 year: 2017 ident: 4124_CR279 publication-title: Appl Sci doi: 10.3390/app7080846 – ident: 4124_CR282 doi: 10.1109/ASONAM.2018.8508695 – volume: 38 start-page: 97 year: 2014 ident: 4124_CR330 publication-title: Prog Phys Geogr Earth Environ doi: 10.1177/0309133313515293 – volume: 36 start-page: 265 year: 2007 ident: 4124_CR600 publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.623 – volume: 16 start-page: 596 year: 2015 ident: 4124_CR473 publication-title: IEEE Trans Intell Transp Syst – ident: 4124_CR351 – volume: 45 start-page: 138 year: 2007 ident: 4124_CR56 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2006.882264 – volume: 224 start-page: 62 year: 2017 ident: 4124_CR311 publication-title: Eng Geol doi: 10.1016/j.enggeo.2017.05.009 – ident: 4124_CR562 doi: 10.3990/2.369 – volume: 169 start-page: 209 year: 2018 ident: 4124_CR44 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.08.018 – volume: 21 start-page: 213 year: 2017 ident: 4124_CR387 publication-title: Int J Disaster Risk Reduct doi: 10.1016/j.ijdrr.2016.12.011 – volume: 91 start-page: 566 year: 2016 ident: 4124_CR323 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2016.07.144 – ident: 4124_CR152 – volume: 42 start-page: 955 year: 2019 ident: 4124_CR483 publication-title: Int Soc Photogramm Remote Sens doi: 10.5194/isprs-archives-XLII-4-W18-955-2019 – ident: 4124_CR643 doi: 10.1061/9780784482445.063 – volume: 102 start-page: 47 year: 2019 ident: 4124_CR549 publication-title: Appl Geol – volume: 72 start-page: 1 year: 2018 ident: 4124_CR647 publication-title: Struct Saf doi: 10.1016/j.strusafe.2017.12.001 – year: 2020 ident: 4124_CR101 publication-title: Curr Issues Tour doi: 10.1080/13683500.2019.1711029 – ident: 4124_CR75 doi: 10.1109/GHTC.2018.8601911 – volume: 45 start-page: 362 year: 2018 ident: 4124_CR449 publication-title: J Artif Intell Res – volume: 13 start-page: 53 year: 2013 ident: 4124_CR359 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-13-53-2013 – volume: 1 start-page: 63 year: 2016 ident: 4124_CR422 publication-title: Sustain Resil Infrastruct doi: 10.1080/23789689.2016.1179529 – volume: 12 start-page: 1350012 year: 2013 ident: 4124_CR663 publication-title: Int J Comput Intell Appl doi: 10.1142/S1469026813500120 – volume: 90 start-page: 374 year: 2017 ident: 4124_CR133 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.08.030 – ident: 4124_CR209 doi: 10.1145/2020408.2020485 – volume: 9 start-page: 1 year: 2009 ident: 4124_CR427 publication-title: J Spat Hydrol – volume: 69 start-page: 1315 year: 2013 ident: 4124_CR8 publication-title: Nat Hazards doi: 10.1007/s11069-012-0359-2 – volume: 11 start-page: 1 year: 2016 ident: 4124_CR668 publication-title: PLoS One doi: 10.1371/journal.pone.0150989 – volume: 38 start-page: 51 year: 2014 ident: 4124_CR83 publication-title: Comput Graph doi: 10.1016/j.cag.2013.10.008 – volume: 45 start-page: 965 year: 2017 ident: 4124_CR231 publication-title: J Indian Soc Remote Sens doi: 10.1007/s12524-017-0660-3 – ident: 4124_CR560 – volume: 22 start-page: 1636 year: 2008 ident: 4124_CR495 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2008.01.004 – volume: 18 start-page: 70 year: 2013 ident: 4124_CR657 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2281396 – volume: 8 start-page: 2173 year: 2018 ident: 4124_CR190 publication-title: Appl Sci doi: 10.3390/app8112173 – volume: 164 start-page: 362 year: 2018 ident: 4124_CR329 publication-title: Adv Eng Res – volume: 45 start-page: 420 year: 2018 ident: 4124_CR419 publication-title: J Cartogr Geogr Inf Sci doi: 10.1080/15230406.2017.1370391 – volume: 9 start-page: 351 year: 2013 ident: 4124_CR632 publication-title: Int J Emerg Manag doi: 10.1504/IJEM.2013.059879 – volume: 87 start-page: 271 year: 2006 ident: 4124_CR243 publication-title: Rev Econ Stat doi: 10.1162/0034653053970339 – volume: 90 start-page: 129 year: 2019 ident: 4124_CR475 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2018.07.048 – volume: 575 start-page: 743 year: 2019 ident: 4124_CR58 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.05.066 – volume: 568 start-page: 1042 year: 2018 ident: 4124_CR367 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.11.060 – ident: 4124_CR424 doi: 10.1109/BigData.2017.8258464 – volume: 9 start-page: 1149 year: 2009 ident: 4124_CR414 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-9-1149-2009 – volume: 21 start-page: 04014054 year: 2015 ident: 4124_CR141 publication-title: J Infrastruct Syst doi: 10.1061/(ASCE)IS.1943-555X.0000246 – volume: 42 start-page: 477 year: 2011 ident: 4124_CR371 publication-title: Decis Sci doi: 10.1111/j.1540-5915.2011.00319.x – volume: 46 start-page: 1 year: 2010 ident: 4124_CR488 publication-title: Transp Res Part E Logist Transp Rev doi: 10.1016/j.tre.2009.07.005 – ident: 4124_CR444 – volume: 44 start-page: 25 year: 2019 ident: 4124_CR235 publication-title: Int J Inf Manag doi: 10.1016/j.ijinfomgt.2018.09.005 – volume: 84 start-page: 405 year: 2016 ident: 4124_CR263 publication-title: Nat Hazards doi: 10.1007/s11069-016-2425-7 – ident: 4124_CR239 doi: 10.1109/DSAA.2017.11 – year: 2020 ident: 4124_CR281 publication-title: Ann Oper Res doi: 10.1007/s10479-020-03514-x – volume: 115 start-page: 100 year: 2019 ident: 4124_CR528 publication-title: Neural Netw doi: 10.1016/j.neunet.2019.03.005 – ident: 4124_CR242 doi: 10.1109/BigData47090.2019.9006385 – volume: 83 start-page: 1505 year: 2016 ident: 4124_CR638 publication-title: Nat Hazards – volume: 94 start-page: 689 year: 2018 ident: 4124_CR365 publication-title: Nat Hazards doi: 10.1007/s11069-018-3413-x – volume: 517 start-page: 836 year: 2014 ident: 4124_CR84 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.06.013 – volume: 9 start-page: 168 year: 2017 ident: 4124_CR121 publication-title: Am Econ J Econ Policy doi: 10.1257/pol.20140296 – volume: 5 start-page: 277 year: 2009 ident: 4124_CR512 publication-title: Struct Infrastruct Eng doi: 10.1080/15732470601185638 – year: 2019 ident: 4124_CR630 publication-title: Eng Comput doi: 10.1007/s00366-019-00798-x – volume: 14 start-page: 1 issue: 9 year: 2018 ident: 4124_CR184 publication-title: Int J Distrib Sens Netw doi: 10.1177/1550147718801703 – ident: 4124_CR255 doi: 10.1109/ICSSA.2018.8535606 – volume: 4 start-page: e1700578 year: 2018 ident: 4124_CR417 publication-title: Sci Adv doi: 10.1126/sciadv.1700578 – volume: 29 start-page: 590 year: 2014 ident: 4124_CR78 publication-title: Comput Aided Civ Infrastruct Eng doi: 10.1111/mice.12064 – ident: 4124_CR453 doi: 10.1145/3297280.3297481 – ident: 4124_CR565 – volume: 28 start-page: 928 year: 2013 ident: 4124_CR48 publication-title: Int J Commun Syst doi: 10.1002/dac.2716 – ident: 4124_CR321 doi: 10.1145/2806416.2806651 – volume: 76 start-page: 1711 year: 2015 ident: 4124_CR313 publication-title: Nat Hazards doi: 10.1007/s11069-014-1565-x – volume: 3 start-page: 32 year: 2000 ident: 4124_CR122 publication-title: IEEE Instrum Measur Magaz doi: 10.1109/5289.863909 – volume: 77 start-page: 449 year: 2019 ident: 4124_CR450 publication-title: Transp Res Part D Transp Environ doi: 10.1016/j.trd.2019.03.002 – ident: 4124_CR382 – ident: 4124_CR403 doi: 10.1088/1755-1315/426/1/012156 – volume: 28 start-page: A4014004 year: 2014 ident: 4124_CR544 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000334 – volume: 169 start-page: 012056 year: 2018 ident: 4124_CR566 publication-title: IOP Conf Ser Earth Environ Sci doi: 10.1088/1755-1315/169/1/012056 – volume: 7 start-page: 134293 year: 2019 ident: 4124_CR195 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2940822 – start-page: 235 volume-title: Social phenomena year: 2015 ident: 4124_CR316 doi: 10.1007/978-3-319-14011-7_12 – volume: 100 start-page: 417 year: 2017 ident: 4124_CR434 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2017.05.013 – volume: 7 start-page: 147755 year: 2019 ident: 4124_CR656 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946659 – volume: 36 start-page: 246 issue: 3 year: 2005 ident: 4124_CR350 publication-title: Prof Psychol Res Pract doi: 10.1037/0735-7028.36.3.246 – ident: 4124_CR125 doi: 10.1109/CIG.2008.5035649 – volume: 51 start-page: 101768 year: 2019 ident: 4124_CR601 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2019.101768 – volume: 17 start-page: 51 year: 2015 ident: 4124_CR68 publication-title: Inf Syst Front doi: 10.1007/s10796-014-9515-4 – volume: 12 start-page: 411 year: 2018 ident: 4124_CR158 publication-title: Eng Appl Comput Fluid Mech – volume: 76 start-page: 565 year: 2015 ident: 4124_CR262 publication-title: Geomat Nat Hazards Risk doi: 10.1007/s11069-014-1508-6 – volume: 30 start-page: 04015011 year: 2016 ident: 4124_CR622 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000483 – volume: 57 start-page: 661 year: 2016 ident: 4124_CR439 publication-title: J Artif Intell Res doi: 10.1613/jair.5098 – volume: 88 start-page: 379 year: 2017 ident: 4124_CR546 publication-title: Seismol Res Lett doi: 10.1785/0220160188 – volume: 31 start-page: e4910 year: 2019 ident: 4124_CR650 publication-title: Concurr Comput Pract Exp doi: 10.1002/cpe.4910 – volume: 12 start-page: 200 year: 2016 ident: 4124_CR605 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2016.2607701 – volume: 10 start-page: 229 year: 2013 ident: 4124_CR324 publication-title: Int J Adv Rob Syst doi: 10.5772/54379 – ident: 4124_CR658 doi: 10.1109/CCNC.2018.8319233 – volume: 4 start-page: 299 year: 2016 ident: 4124_CR160 publication-title: EURO J Comput Optim doi: 10.1007/s13675-015-0058-3 – volume: 23 start-page: 13393 year: 2019 ident: 4124_CR610 publication-title: Soft Comput doi: 10.1007/s00500-019-03878-8 – year: 2017 ident: 4124_CR203 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-2017-74 – volume: 9 start-page: 943 year: 2011 ident: 4124_CR557 publication-title: Photogramm Eng Remote Sens doi: 10.14358/PERS.77.9.943 – ident: 4124_CR457 doi: 10.1109/ICCCE.2016.72 – ident: 4124_CR463 doi: 10.1609/aaai.v33i01.3301702 – volume: 12 start-page: 74 year: 2016 ident: 4124_CR291 publication-title: J Soc Disaster Inf – volume: 288 start-page: 30 year: 2018 ident: 4124_CR376 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.083 – volume: 35 start-page: 1 year: 2017 ident: 4124_CR506 publication-title: ACM Trans Intell Syst Technol doi: 10.1145/3057280 – ident: 4124_CR341 doi: 10.1109/ICCSP.2015.7322851 – volume: 4 start-page: 169 year: 2014 ident: 4124_CR95 publication-title: Int J Disaster Risk Sci doi: 10.1007/s13753-013-0018-6 – year: 2020 ident: 4124_CR32 publication-title: Int J Disaster Risk Reduct doi: 10.1016/j.ijdrr.2020.101645 – volume: 20 start-page: 613 year: 2005 ident: 4124_CR226 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2004.03.006 – volume: 117 start-page: 591 year: 2016 ident: 4124_CR246 publication-title: Eng Struct doi: 10.1016/j.engstruct.2016.03.038 – ident: 4124_CR520 doi: 10.1061/9780784415894.ch4 – volume: 64 start-page: 77 year: 2011 ident: 4124_CR380 publication-title: J Intell Robot Syst doi: 10.1007/s10846-010-9514-8 – ident: 4124_CR504 doi: 10.1609/aaai.v29i1.9237 – volume: 21 start-page: 419 year: 2017 ident: 4124_CR284 publication-title: Int J Disaster Risk Reduct doi: 10.1016/j.ijdrr.2017.01.004 – ident: 4124_CR580 doi: 10.1109/GCWkshps45667.2019.9024679 – ident: 4124_CR536 doi: 10.1109/BigMM.2017.30 – volume: 40 start-page: 56 year: 2016 ident: 4124_CR9 publication-title: IATSS Res doi: 10.1016/j.iatssr.2016.06.001 – volume: 93 start-page: 803 year: 2018 ident: 4124_CR585 publication-title: Nat Hazards doi: 10.1007/s11069-018-3325-9 – ident: 4124_CR5 – volume: 9 start-page: 10267 year: 2019 ident: 4124_CR372 publication-title: Sci Rep doi: 10.1038/s41598-019-45748-1 – volume: 54 start-page: 4368 year: 2016 ident: 4124_CR461 publication-title: Int J Prod Res doi: 10.1080/00207543.2016.1174344 – volume: 137 start-page: 6 year: 2014 ident: 4124_CR629 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.12.007 – ident: 4124_CR377 doi: 10.7551/mitpress/9407.001.0001 – volume: 16 start-page: 91 year: 2009 ident: 4124_CR379 publication-title: IEEE Robot Autom Mag doi: 10.1109/MRA.2009.932521 – ident: 4124_CR166 doi: 10.1109/IROS.2014.6942626 – volume: 159 start-page: 1216 year: 2019 ident: 4124_CR664 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2019.09.291 – volume: 7 start-page: 199 year: 2014 ident: 4124_CR120 publication-title: Found Trends Sig Process – volume: 8 start-page: 868 year: 2016 ident: 4124_CR108 publication-title: Remote Sens doi: 10.3390/rs8100868 – volume: 26 start-page: 237 year: 2010 ident: 4124_CR404 publication-title: J Manag Eng doi: 10.1061/(ASCE)ME.1943-5479.0000024 – ident: 4124_CR71 doi: 10.1109/IS3C.2018.00067 – volume: 34 start-page: 773 year: 2019 ident: 4124_CR233 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2860904 – volume: 22 start-page: 172 year: 2015 ident: 4124_CR485 publication-title: Int J Comput Appl – volume: 115 start-page: 23 year: 2010 ident: 4124_CR37 publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.09.025 – ident: 4124_CR43 doi: 10.1109/SmartTechCon.2017.8358367 – volume: 39 start-page: 1109 year: 2010 ident: 4124_CR236 publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.988 – volume: 79 start-page: 1359 year: 2015 ident: 4124_CR588 publication-title: Nat Hazards doi: 10.1007/s11069-015-1908-2 – ident: 4124_CR394 – ident: 4124_CR15 doi: 10.1145/3110025.3110164 – ident: 4124_CR112 doi: 10.1145/2740908.2741722 – volume: 14 start-page: 271 year: 2018 ident: 4124_CR19 publication-title: Trans Electr Electron Eng doi: 10.1002/tee.22806 – volume: 712 start-page: 012032 year: 2020 ident: 4124_CR51 publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899X/712/1/012032 – ident: 4124_CR496 – volume: 92 start-page: 1889 year: 2018 ident: 4124_CR587 publication-title: Nat Hazards doi: 10.1007/s11069-018-3264-5 – volume: 93 start-page: 351 year: 2019 ident: 4124_CR456 publication-title: J Intell Robot Syst doi: 10.1007/s10846-018-0891-8 – ident: 4124_CR653 doi: 10.21437/Interspeech.2016-354 – volume: 93 start-page: 897 year: 2008 ident: 4124_CR319 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2007.03.038 – ident: 4124_CR553 – ident: 4124_CR119 doi: 10.1109/ELEKTRO.2018.8398359 – volume: 91 start-page: 51 year: 2010 ident: 4124_CR644 publication-title: J Bus Ethics doi: 10.1007/s10551-009-0067-3 – volume: 17 start-page: 04015013 year: 2016 ident: 4124_CR286 publication-title: Nat Hazards Rev doi: 10.1061/(ASCE)NH.1527-6996.0000193 – volume: 19 start-page: 1746 year: 2019 ident: 4124_CR202 publication-title: Sensors doi: 10.3390/s19071746 – volume: 7 start-page: 175 year: 2016 ident: 4124_CR334 publication-title: Int J Disaster Risk Sci doi: 10.1007/s13753-016-0087-4 – volume: 198 start-page: 127 year: 2006 ident: 4124_CR362 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2006.04.017 – volume: 147 start-page: 266 year: 2011 ident: 4124_CR608 publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.147.266 – year: 2019 ident: 4124_CR150 publication-title: Int J Inf Manag doi: 10.1016/j.ijinfomgt.2019.102049 – ident: 4124_CR443 doi: 10.1109/ICT-DM.2015.7402056 – ident: 4124_CR4 doi: 10.1109/WCNC.2017.7925654 – volume: 47 start-page: 331 year: 2008 ident: 4124_CR314 publication-title: Nat Hazards doi: 10.1007/s11069-008-9222-x – year: 2019 ident: 4124_CR326 publication-title: Int J Digit Earth doi: 10.1080/17538947.2019.1645894 – volume: 35 start-page: 192 year: 2011 ident: 4124_CR541 publication-title: Comput Environ Urban Syst doi: 10.1016/j.compenvurbsys.2011.01.003 – year: 2018 ident: 4124_CR261 publication-title: Int J Distrib Sens Netw doi: 10.1177/1550147718784482 – volume: 541 start-page: 563 year: 2016 ident: 4124_CR147 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.04.017 – year: 2013 ident: 4124_CR70 publication-title: Nature doi: 10.1038/nature.2013.14186 – volume: 31 start-page: 149 year: 2016 ident: 4124_CR320 publication-title: Int J Sedim Res doi: 10.1016/j.ijsrc.2016.02.002 – volume: 18 start-page: 3017 year: 2018 ident: 4124_CR104 publication-title: Sensors doi: 10.3390/s18093017 – volume: 106 start-page: 92 year: 2020 ident: 4124_CR465 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2020.01.005 – volume: 9 start-page: 1871 year: 2018 ident: 4124_CR384 publication-title: Geosci Front doi: 10.1016/j.gsf.2017.10.008 – volume: 2 start-page: 6 year: 1995 ident: 4124_CR480 publication-title: IEEE Robot Autom Soc Mag doi: 10.1109/100.388296 – ident: 4124_CR20 – volume: 79 start-page: 37 year: 2016 ident: 4124_CR274 publication-title: Fire Saf J doi: 10.1016/j.firesaf.2015.11.015 – ident: 4124_CR552 – volume: 51 start-page: 32 year: 2018 ident: 4124_CR669 publication-title: ACM Comput Surv doi: 10.1145/3161603 – volume: 4 start-page: 407 year: 2011 ident: 4124_CR353 publication-title: Stat Anal Data Min doi: 10.1002/sam.10128 – ident: 4124_CR7 doi: 10.1007/978-981-13-0992-2_5 – ident: 4124_CR247 doi: 10.1201/9781315207681-171 – start-page: 119 volume-title: Reinforcement learning: an introduction year: 2018 ident: 4124_CR524 – volume: 14 start-page: e0214367 year: 2019 ident: 4124_CR306 publication-title: PLoS One doi: 10.1371/journal.pone.0214367 – ident: 4124_CR399 doi: 10.1007/978-981-13-0992-2_3 – ident: 4124_CR204 doi: 10.1109/ICPPW.2014.52 – year: 2019 ident: 4124_CR307 publication-title: Int J Geogra Inf Sci doi: 10.1080/13658816.2019.1673397 – volume: 113 start-page: 215 year: 2012 ident: 4124_CR47 publication-title: Clim Change doi: 10.1007/s10584-011-0331-2 – volume: 26 start-page: 04020031 issue: 3 year: 2020 ident: 4124_CR518 publication-title: J Infrast Syst doi: 10.1061/(ASCE)IS.1943-555X.0000569 – ident: 4124_CR613 doi: 10.4108/icst.collaboratecom.2012.250525 – ident: 4124_CR498 – volume: 52 start-page: 167 year: 2014 ident: 4124_CR486 publication-title: Geoforum doi: 10.1016/j.geoforum.2014.01.006 – volume: 22 start-page: 3262 year: 2019 ident: 4124_CR217 publication-title: Adv Struct Eng doi: 10.1177/1369433219861728 – volume: 385 start-page: 257 year: 2010 ident: 4124_CR85 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.02.028 – volume: 108 start-page: 1 year: 2019 ident: 4124_CR586 publication-title: Appl Geogr doi: 10.1016/j.apgeog.2019.05.001 – volume: 78 start-page: 12 year: 2019 ident: 4124_CR645 publication-title: Struct Saf doi: 10.1016/j.strusafe.2018.12.004 – volume: 149 start-page: 52 year: 2017 ident: 4124_CR420 publication-title: CATENA doi: 10.1016/j.catena.2016.09.007 – volume: 37 start-page: 3810 year: 2010 ident: 4124_CR222 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.11.039 – volume: 30 start-page: 1553 year: 2014 ident: 4124_CR165 publication-title: Earthq Spectra doi: 10.1193/121812EQS350M – volume: 54 start-page: 680 year: 2011 ident: 4124_CR46 publication-title: Ann Geophys doi: 10.4401/ag-5324 – volume: 626 start-page: 1121 year: 2018 ident: 4124_CR96 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.01.124 – volume: 3 start-page: 231 year: 2010 ident: 4124_CR182 publication-title: Int J Digit Earth doi: 10.1080/17538941003759255 – volume: 33 start-page: 3409 year: 2011 ident: 4124_CR363 publication-title: Eng Struct doi: 10.1016/j.engstruct.2011.07.005 – volume: 20 start-page: 629 year: 2011 ident: 4124_CR564 publication-title: Autom Constr doi: 10.1016/j.autcon.2010.12.005 – volume: 54 start-page: 9 year: 2007 ident: 4124_CR548 publication-title: Environ Geol doi: 10.1007/s00254-007-0788-5 – volume: 37 start-page: 45 year: 2010 ident: 4124_CR114 publication-title: Cartogr Geogr Inf Sci doi: 10.1559/152304010790588043 – ident: 4124_CR529 – volume: 5 start-page: 77 issue: 1 year: 2014 ident: 4124_CR455 publication-title: Risk Hazards Crisis doi: 10.1002/rhc3.12047 – volume: 3 start-page: 1128 year: 2018 ident: 4124_CR21 publication-title: IEEE Robot Autom doi: 10.1109/LRA.2018.2792701 – ident: 4124_CR210 – volume: 45 start-page: 1053 year: 2014 ident: 4124_CR665 publication-title: Decis Sci doi: 10.1111/deci.12103 – ident: 4124_CR336 – volume: 42 start-page: 941 issue: 9 year: 2013 ident: 4124_CR331 publication-title: Iran J Public Health – year: 2019 ident: 4124_CR167 publication-title: Int J Comput Appl doi: 10.1080/1206212X.2019.1706812 – volume: 94 start-page: 379 year: 2008 ident: 4124_CR355 publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.10.035 – ident: 4124_CR464 – ident: 4124_CR357 doi: 10.1145/1964858.1964869 – volume: 44 start-page: 00068 year: 2018 ident: 4124_CR413 publication-title: SHS Web Conf doi: 10.1051/shsconf/20184400068 – ident: 4124_CR11 doi: 10.1145/3095713.3095726 – volume: 10 start-page: 242 year: 2013 ident: 4124_CR446 publication-title: IEEE Robot Autom Soc – ident: 4124_CR591 – volume: 74 start-page: 397 year: 2015 ident: 4124_CR212 publication-title: Environ Earth Sci doi: 10.1007/s12665-015-4047-x – volume: 7 start-page: 392 year: 2011 ident: 4124_CR3 publication-title: Int J Web Based Communities doi: 10.1504/IJWBC.2011.041206 – volume: 36 start-page: 6978 year: 2009 ident: 4124_CR192 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.08.074 – volume: 32 start-page: 12 year: 2019 ident: 4124_CR602 publication-title: J Comput Sci doi: 10.1016/j.jocs.2019.02.002 – volume: 34 start-page: 45 year: 2013 ident: 4124_CR100 publication-title: Int J Remote Sens doi: 10.1080/01431161.2012.705443 – volume: 80 start-page: 46 year: 2019 ident: 4124_CR356 publication-title: Struct Saf doi: 10.1016/j.strusafe.2019.04.003 – volume: 25 start-page: 919 year: 2012 ident: 4124_CR472 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.29 – volume: 37 start-page: 1580 year: 2017 ident: 4124_CR315 publication-title: Risk Anal doi: 10.1111/risa.12829 – ident: 4124_CR328 doi: 10.1109/ICT-DM.2018.8636373 – ident: 4124_CR391 doi: 10.1145/3110025.3110109 – volume: 58 start-page: 101018 year: 2019 ident: 4124_CR499 publication-title: Pervasive Mobile Comput doi: 10.1016/j.pmcj.2019.04.009 – volume: 10 start-page: 1416 year: 2019 ident: 4124_CR57 publication-title: Int J Technol doi: 10.14716/ijtech.v10i7.3709 – ident: 4124_CR345 doi: 10.1145/3005745.3005750 – volume: 78 start-page: 1749 year: 2015 ident: 4124_CR129 publication-title: Nat Hazards doi: 10.1007/s11069-015-1799-2 – ident: 4124_CR402 – volume: 116 start-page: 1 year: 2015 ident: 4124_CR513 publication-title: Ocean Coast Manag doi: 10.1016/j.ocecoaman.2015.06.026 – volume: 6 start-page: 239 year: 2015 ident: 4124_CR157 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-014-0227-x – volume: 18 start-page: 65 year: 2018 ident: 4124_CR374 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-18-65-2018 – volume: 7 start-page: 1437 year: 2019 ident: 4124_CR153 publication-title: Water doi: 10.3390/w7041437 – ident: 4124_CR59 doi: 10.1109/GHTC.2013.6713678 – volume: 119 start-page: 288 year: 2017 ident: 4124_CR400 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2017.11.187 – volume: 18 start-page: 3253 year: 2018 ident: 4124_CR574 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-18-3253-2018 – volume: 201 start-page: 109785 year: 2019 ident: 4124_CR344 publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.109785 – ident: 4124_CR62 – volume: 12 start-page: 93 year: 2015 ident: 4124_CR530 publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2014.995676 – ident: 4124_CR197 doi: 10.1109/ICIAICT.2019.8784782 – volume: 16 start-page: 711 year: 2017 ident: 4124_CR661 publication-title: Struct Health Monit doi: 10.1016/j.cag.2013.10.008 – volume: 108 start-page: 77 year: 2017 ident: 4124_CR214 publication-title: Measurement doi: 10.1016/j.measurement.2017.05.032 – volume: 4 start-page: eaay7120 year: 2019 ident: 4124_CR189 publication-title: Sci Robot doi: 10.1126/scirobotics.aay7120 – ident: 4124_CR280 doi: 10.1145/2600428.2609550 – ident: 4124_CR594 doi: 10.1109/ICDE.2015.7113322 – volume: 18 start-page: 1758 year: 2016 ident: 4124_CR573 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2016.2540004 – volume: 2459 start-page: 110 year: 2014 ident: 4124_CR550 publication-title: Transp Res Rec J Transp Res Board doi: 10.3141/2459-13 – ident: 4124_CR660 doi: 10.1007/978-3-319-51929-6_2 – ident: 4124_CR503 doi: 10.1145/2623330.2623628 – volume: 24 start-page: 1231 year: 2006 ident: 4124_CR98 publication-title: Construct Manag Econ doi: 10.1080/01446190600953805 – volume: 124 start-page: 67 year: 2019 ident: 4124_CR34 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.01.042 – volume: 30 start-page: 759 year: 2015 ident: 4124_CR617 publication-title: Comput Aided Civ Infrastruct Eng doi: 10.1111/mice.12141 – volume: 14 start-page: 245 year: 1998 ident: 4124_CR135 publication-title: Earthq Spectra doi: 10.1193/1.1585998 – ident: 4124_CR583 doi: 10.1007/978-981-13-0992-2_8 – volume: 7 start-page: e47203 year: 2012 ident: 4124_CR196 publication-title: PLoS One doi: 10.1371/journal.pone.0047203 – volume: 25 start-page: 134 year: 2010 ident: 4124_CR447 publication-title: Int J Sedim Res doi: 10.1016/S1001-6279(10)60033-9 – volume: 14 start-page: 357 year: 2015 ident: 4124_CR425 publication-title: Int J Disaster Risk Reduct doi: 10.1016/j.ijdrr.2015.09.002 – volume: 15 start-page: 110 year: 2006 ident: 4124_CR163 publication-title: J Nat Disaster – volume: 96 start-page: 15 year: 2018 ident: 4124_CR458 publication-title: J Psychiatr Res doi: 10.1016/j.jpsychires.2017.09.010 – volume: 1 start-page: 661 year: 2015 ident: 4124_CR176 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2015.2509024 – volume: 107 start-page: 289 year: 2016 ident: 4124_CR301 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2016.06.017 – ident: 4124_CR636 doi: 10.1109/ICDCS.2019.00123 – ident: 4124_CR435 doi: 10.1109/ITSC.2018.8569443 – volume: 36 start-page: 4101 year: 2009 ident: 4124_CR93 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.03.012 – volume: 2 start-page: e1501055 year: 2016 ident: 4124_CR273 publication-title: Sci Adv doi: 10.1126/sciadv.1501055 – volume: 15 start-page: 49 year: 2014 ident: 4124_CR558 publication-title: ACM SIGKDD Explor Newsl doi: 10.1145/2641190.2641198 – volume: 8 start-page: 1 year: 2016 ident: 4124_CR505 publication-title: ACM Trans Intell Syst Technol doi: 10.1145/2970819 – volume: 8 start-page: 100 year: 2011 ident: 4124_CR514 publication-title: Int J Autom Comput doi: 10.1007/s11633-010-0560-2 – volume: 52 start-page: 411 year: 2017 ident: 4124_CR305 publication-title: Knowl Inf Syst doi: 10.1007/s10115-016-1014-0 – ident: 4124_CR559 doi: 10.1145/3194452.3194475 – volume: 143 start-page: 04016022 year: 2017 ident: 4124_CR139 publication-title: J Urban Plann Develop doi: 10.1061/(ASCE)UP.1943-5444.0000349 – volume: 32 start-page: 2045 year: 2018 ident: 4124_CR569 publication-title: Stoch Env Res Risk Assess doi: 10.1007/s00477-018-1530-4 – ident: 4124_CR624 – volume: 17 start-page: 134 year: 2017 ident: 4124_CR207 publication-title: IEEE Trans Dependable Secure Comput doi: 10.1109/TDSC.2017.2751478 – volume: 2 start-page: 100033 year: 2019 ident: 4124_CR232 publication-title: Prog Disaster Sci doi: 10.1016/j.pdisas.2019.100033 – volume: 87 start-page: 103 year: 2017 ident: 4124_CR459 publication-title: Nat Hazards doi: 10.1007/s11069-017-2755-0 – volume: 45 start-page: 37 year: 2011 ident: 4124_CR137 publication-title: Mar Technol Soc J doi: 10.4031/MTSJ.45.3.1 – volume: 31 start-page: 50 year: 2016 ident: 4124_CR266 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2016.27 – volume: 54 start-page: 187 year: 2015 ident: 4124_CR333 publication-title: Transp Res Part C doi: 10.1016/j.trc.2015.03.014 – volume: 55 start-page: 5407 year: 2017 ident: 4124_CR254 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2017.2707528 – volume: 57 start-page: 461 year: 2010 ident: 4124_CR555 publication-title: Ocean Eng – volume: 61 start-page: 689 year: 2010 ident: 4124_CR490 publication-title: Environ Earth Sci doi: 10.1007/s12665-009-0381-1 – volume: 237–238 start-page: 105 year: 2017 ident: 4124_CR451 publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2017.02.011 – volume: 33 start-page: 5 year: 2018 ident: 4124_CR268 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2018.043741317 – volume: 64 start-page: 180 year: 2013 ident: 4124_CR407 publication-title: J Asian Earth Sci doi: 10.1016/j.jseaes.2012.12.014 – volume: 5 start-page: 549 year: 2011 ident: 4124_CR430 publication-title: Int J Comput Electr Autom Control Inf Eng – year: 2019 ident: 4124_CR423 publication-title: Internet Things doi: 10.1016/j.iot.2019.100076 – ident: 4124_CR482 – volume: 32 start-page: 1960 year: 2015 ident: 4124_CR491 publication-title: Korean J Chem Eng doi: 10.1007/s11814-015-0042-x – volume: 6 start-page: 604 year: 2019 ident: 4124_CR49 publication-title: IEEE Trans Comput Soc Syst doi: 10.1109/TCSS.2019.2914179 – volume: 37 start-page: 100 year: 2016 ident: 4124_CR80 publication-title: Int J Remote Sens doi: 10.1080/01431161.2015.1117684 – volume: 453 start-page: 779 year: 2009 ident: 4124_CR181 publication-title: Nature doi: 10.1038/nature06958 – volume: 6 start-page: 2873 year: 2013 ident: 4124_CR634 publication-title: Arab J Geosci doi: 10.1007/s12517-012-0610-x – volume: 64 start-page: 513 year: 2009 ident: 4124_CR276 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2009.03.002 – volume: 57 start-page: 102115 year: 2020 ident: 4124_CR431 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102115 – volume: 22 start-page: 9875 year: 2018 ident: 4124_CR515 publication-title: Clust Comput doi: 10.1007/s10586-018-1783-1 – volume: 21 start-page: S239 year: 2005 ident: 4124_CR224 publication-title: Earthq Spectra doi: 10.1193/1.2098937 – volume: 43 start-page: 451 year: 2013 ident: 4124_CR655 publication-title: IEEE Trans Hum Mach Syst doi: 10.1109/THMS.2013.2281762 – ident: 4124_CR183 doi: 10.1007/978-3-030-38040-3_87 – volume: 45 start-page: 4773 year: 2018 ident: 4124_CR308 publication-title: Geophys Res Lett doi: 10.1029/2018GL077870 – ident: 4124_CR511 – start-page: 131 volume-title: Time-sensitive remote sensing year: 2015 ident: 4124_CR60 doi: 10.1007/978-1-4939-2602-2_9 – volume: 9 start-page: 566 year: 2016 ident: 4124_CR107 publication-title: Peer Peer Netw Appl doi: 10.1007/s12083-015-0386-3 – volume: 5 start-page: 17 year: 2014 ident: 4124_CR63 publication-title: Eng Geol Soc Territ – volume: 45 start-page: 17 year: 2014 ident: 4124_CR297 publication-title: Transp Res Part C doi: 10.1016/j.trc.2014.04.013 – ident: 4124_CR581 doi: 10.1109/ICIEA.2019.8833977 – ident: 4124_CR257 doi: 10.1109/CCECE.2011.6030716 – ident: 4124_CR148 – volume: 72 start-page: 127 issue: 1 year: 2019 ident: 4124_CR460 publication-title: J Int Aff – volume: 4 start-page: 046024 year: 2017 ident: 4124_CR30 publication-title: J Appl Remote Sens – volume: 17 start-page: 307 year: 2018 ident: 4124_CR264 publication-title: J Archit Build Eng doi: 10.3130/jaabe.17.307 – ident: 4124_CR436 doi: 10.1109/IGARSS.2018.8517946 – volume: 44 start-page: 363 year: 2014 ident: 4124_CR198 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2014.04.003 – volume: 47 start-page: 111 year: 2014 ident: 4124_CR437 publication-title: J Hum Ecol doi: 10.1080/09709274.2014.11906743 – volume: 58 start-page: 1 year: 2013 ident: 4124_CR576 publication-title: Comput Geosci doi: 10.1016/j.cageo.2013.04.018 – ident: 4124_CR474 doi: 10.1109/WCNC.2019.8885893 – volume: 17 start-page: 303 year: 2016 ident: 4124_CR270 publication-title: Adv Struct Eng doi: 10.1260/1369-4332.17.3.303 – volume: 25 start-page: 77 year: 2012 ident: 4124_CR45 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2011.01.014 – volume: 118 start-page: 303 year: 2012 ident: 4124_CR238 publication-title: J Bus Ethics doi: 10.1007/s10551-012-1589-7 – volume: 84 start-page: 1109 year: 2016 ident: 4124_CR327 publication-title: Nat Hazards doi: 10.1007/s11069-016-2477-8 – volume: 11 start-page: 1174 year: 2019 ident: 4124_CR489 publication-title: Remote Sens doi: 10.3390/rs11101174 – ident: 4124_CR283 doi: 10.1109/ICTS.2016.7910295 – ident: 4124_CR527 doi: 10.1109/ISDEA.2010.404 – volume: 2 start-page: 172 year: 2018 ident: 4124_CR337 publication-title: IET Smart Grid doi: 10.1049/iet-stg.2018.0043 – volume: 94 start-page: 833 year: 2018 ident: 4124_CR596 publication-title: Nat Hazards doi: 10.1007/s11069-018-3427-4 – volume: 4 start-page: 510 year: 2015 ident: 4124_CR117 publication-title: Int J Adv Res Comput Commun Eng – ident: 4124_CR29 doi: 10.1145/2623330.2623358 – volume: 13 start-page: 418 year: 2014 ident: 4124_CR42 publication-title: Struct Health Monit doi: 10.1177/1475921714522847 – ident: 4124_CR218 doi: 10.1145/3163080.3163113 – ident: 4124_CR532 doi: 10.1145/2187980.2188190 – ident: 4124_CR128 doi: 10.3115/v1/P14-2009 – ident: 4124_CR52 doi: 10.1109/SPAWC.2018.8445768 – ident: 4124_CR168 – volume: 196 start-page: 106721 year: 2019 ident: 4124_CR614 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2019.106721 – volume: 18 start-page: 89 year: 2011 ident: 4124_CR25 publication-title: Intell Syst Acc Finance Manag doi: 10.1002/isaf.326 – volume: 51 start-page: 1939 year: 2013 ident: 4124_CR118 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2012.2236683 – ident: 4124_CR136 – volume: 25 start-page: 3 year: 2007 ident: 4124_CR378 publication-title: J Field Robot doi: 10.1002/rob.20207 – volume: 1 start-page: 95 year: 2016 ident: 4124_CR142 publication-title: Sustain Resilient Infrastruct doi: 10.1080/23789689.2016.1255000 – volume: 80 start-page: 491 year: 2015 ident: 4124_CR110 publication-title: GeoJournal doi: 10.1007/s10708-014-9597-z – volume: 54 start-page: 221 issue: 2 year: 2014 ident: 4124_CR623 publication-title: Struct Eng Mech doi: 10.12989/sem.2015.54.2.221 – year: 2020 ident: 4124_CR250 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-2019-420 – ident: 4124_CR373 doi: 10.1109/ICNSC.2007.372797 – volume: 7 start-page: 47 year: 2016 ident: 4124_CR251 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2015.11.005 – ident: 4124_CR469 doi: 10.1007/978-3-319-15702-3_20 – volume: 1 start-page: 04015011 year: 2015 ident: 4124_CR592 publication-title: ASCE-ASME J Risk Uncertain Eng Syst Part A Civ Eng doi: 10.1061/AJRUA6.0000831 – ident: 4124_CR389 – volume: 30 start-page: 04014116 year: 2014 ident: 4124_CR102 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000456 – ident: 4124_CR228 – volume: 7 start-page: 925 year: 2016 ident: 4124_CR33 publication-title: Int J Comput Sci Inf Technol – ident: 4124_CR73 doi: 10.1109/ICINFA.2006.374152 – volume: 283 start-page: 1345 year: 2018 ident: 4124_CR302 publication-title: Ann Oper Res doi: 10.1007/s10479-018-3037-2 – year: 2019 ident: 4124_CR219 publication-title: Int J Digit Earth doi: 10.1080/17538947.2019.1633425 – ident: 4124_CR537 doi: 10.1109/BigMM.2017.31 – volume: 10 start-page: 134 year: 2019 ident: 4124_CR131 publication-title: Int J Disaster Risk Sci doi: 10.1007/s13753-018-0189-2 – volume: 7 start-page: 35344 year: 2019 ident: 4124_CR507 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904457 – volume: 30 start-page: 494 year: 2012 ident: 4124_CR208 publication-title: J Oper Manag doi: 10.1016/j.jom.2012.08.003 – volume: 50 start-page: 1 year: 2017 ident: 4124_CR304 publication-title: ACM Comput Surv doi: 10.1145/2996357 – volume: 68 start-page: 8036 year: 2019 ident: 4124_CR322 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2019.2922849 – volume: 32 start-page: 361 year: 2017 ident: 4124_CR81 publication-title: Comput Aided Civ Infrastruct Eng doi: 10.1111/mice.12263 – volume: 31 start-page: 510 year: 2014 ident: 4124_CR271 publication-title: J Field Robot doi: 10.1002/rob.21502 – ident: 4124_CR14 doi: 10.1007/978-981-10-3773-3_55 – volume: 91 start-page: 201 year: 2018 ident: 4124_CR221 publication-title: Nat Hazards doi: 10.1007/s11069-017-3122-x – ident: 4124_CR509 – ident: 4124_CR590 doi: 10.1371/currents.dis.d073fbece328e4c39087bc086d694b5c – volume: 4 start-page: 22 year: 2016 ident: 4124_CR642 publication-title: IEEE Geosci Remote Sens Mag doi: 10.1109/MGRS.2016.2540798 – volume: 25 start-page: 100193 year: 2019 ident: 4124_CR116 publication-title: Clim Risk Manag doi: 10.1016/j.crm.2019.100193 – ident: 4124_CR124 – volume: 76 start-page: 5 year: 2009 ident: 4124_CR646 publication-title: J Am Plan Assoc doi: 10.1080/01944360903294556 – ident: 4124_CR429 doi: 10.1109/SIS.2007.367956 – volume: 67 start-page: 387 year: 2013 ident: 4124_CR500 publication-title: Nat Hazards doi: 10.1007/s11069-013-0566-5 – volume: 12 start-page: 1285 year: 2019 ident: 4124_CR346 publication-title: Int J Digit Earth doi: 10.1080/17538947.2018.1535000 – volume: 15 start-page: 208 year: 2007 ident: 4124_CR113 publication-title: J Conting Crisis Manag doi: 10.1111/j.1468-5973.2007.00522.x – volume: 88 start-page: 1591 year: 2017 ident: 4124_CR364 publication-title: Nat Hazards doi: 10.1007/s11069-017-2934-z – volume: 145–146 start-page: 70 year: 2012 ident: 4124_CR598 publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.12.040 – volume: 61 start-page: 821 year: 2010 ident: 4124_CR618 publication-title: Environ Earth Sci doi: 10.1007/s12665-009-0394-9 – volume: 1 start-page: 60 year: 2014 ident: 4124_CR433 publication-title: IEEE Cloud Comput doi: 10.1109/MCC.2014.71 – volume: 5 start-page: 168 issue: 3 year: 2020 ident: 4124_CR519 publication-title: Sustain Resil Infrastruct doi: 10.1080/23789689.2018.1448663 – volume: 8 start-page: 148 year: 2020 ident: 4124_CR582 publication-title: IEEE Trans Emerg Top Comput doi: 10.1109/TETC.2017.2699169 – ident: 4124_CR641 doi: 10.1109/SSRR.2018.8468643 – ident: 4124_CR438 – volume: 23 start-page: 04017004 year: 2017 ident: 4124_CR287 publication-title: J Infrastruct Syst doi: 10.1061/(ASCE)IS.1943-555X.0000353 – volume: 2 start-page: 100030 year: 2019 ident: 4124_CR454 publication-title: Prog Disaster Sci doi: 10.1016/j.pdisas.2019.100030 – year: 2020 ident: 4124_CR339 publication-title: Transform Gov People Process Policy doi: 10.1108/TG-09-2019-0088 – volume: 26 start-page: 16 year: 2018 ident: 4124_CR298 publication-title: J Contingencies Crisis Manag doi: 10.1111/1468-5973.12194 – volume: 92 start-page: 1399 year: 2018 ident: 4124_CR467 publication-title: Nat Hazards doi: 10.1007/s11069-018-3256-5 – volume: 13 start-page: 158 year: 2015 ident: 4124_CR666 publication-title: Int J Disaster Risk Reduct doi: 10.1016/j.ijdrr.2015.04.004 – volume: 105 start-page: 2174 year: 2015 ident: 4124_CR22 publication-title: Bull Seismol Soc Am doi: 10.1785/0120140256 – ident: 4124_CR599 – ident: 4124_CR390 – volume: 123 start-page: 225 year: 2011 ident: 4124_CR347 publication-title: Eng Geol doi: 10.1016/j.enggeo.2011.09.006 – volume: 32 start-page: 3315 year: 2017 ident: 4124_CR145 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2016.2631895 – ident: 4124_CR405 doi: 10.1109/ICC.2019.8761575 – volume: 26 start-page: 133 year: 2011 ident: 4124_CR234 publication-title: Transport doi: 10.3846/16484142.2011.584959 – volume: 68 start-page: 65 year: 2016 ident: 4124_CR105 publication-title: Autom Construct doi: 10.1016/j.autcon.2016.03.015 – volume: 36 start-page: 2059 year: 2018 ident: 4124_CR318 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2018.2864373 |
| SSID | ssj0011629 |
| Score | 2.638521 |
| SecondaryResourceType | review_article |
| Snippet | Natural hazards have the potential to cause catastrophic damage and significant socioeconomic loss. The actual damage and loss observed in the recent decades... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2631 |
| SubjectTerms | Artificial intelligence Civil Engineering Damage Disaster management Disasters Earth and Environmental Science Earth Sciences Emergency preparedness Environmental Management Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydrogeology Mitigation Natural Hazards Review Article Socioeconomic factors |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aBb34FqtVcvCmwd1kmyanUsTiQYrgg96WbJJiQdvarYL_3kw2262CvXje3WHJzGRmMpPvQ-icCQEodIo0pTYkUcyQTMeKOKd0wTvmkfRch893rV5P9PvyPhy45WGsstwT_UZtxhrOyK9oArAllAvZnrwTYI2C7mqg0FhFa4CSQP3o3sO8ixBzWmDtURgbivrh0kxxdc7VQpJA8eQJmAn7GZiqbPNXg9THne72f_94B22FjBN3ChPZRSt2tIc2Avn5y9c-ancWmth4PMBgTQWwBB4uIHZil99iM8wVYCvgt_nczAF66t48Xt-SwKtAtHO4GYHurDEytpFLrV39Y6QLSsIwCj1AxjNXFVNrnAoVFZHmkquoKQaaJ8J5O1DTH6LaaDyyRwhLYaGGack4c0JtpnSibKQE04PYMC7qKC4XNdUBdBy4L17TCi4ZFJE6RaReESmro4v5N5MCcmPp241y9dPgfnlaLX0dXZb6qx7_Le14ubQTtEm9ycCMWQPVZtMPe4rW9edsmE_PvPF9Azei2ww priority: 102 providerName: ProQuest |
| Title | Applications of artificial intelligence for disaster management |
| URI | https://link.springer.com/article/10.1007/s11069-020-04124-3 https://www.proquest.com/docview/2438802689 |
| Volume | 103 |
| WOSCitedRecordID | wos000545205200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0840 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011629 issn: 0921-030X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5sK-jFt1itJQdvGthNtmlykiotHrSUVktvSzZJsaCtdKvgvzfZR7eKCnrZyybDMo-dGWbmG4AzyrlDoZO4IZTGgaQaR8qX2Bqldd4-80Sy63B42-x2-WgketlQWJx3u-clyeRPXQy72exFYJfuJCuTMS1Bxbo77syxPxguawc-IynCHnHNQt4oG5X5nsZnd1TEmF_Koom36Wz_7zt3YCuLLlErVYddWDPTPdjIFp0_vu_DZWulYI1mY-Q0JwWRQJMVdE5kY1mkJ7F0OAroedkjcwAPnfb99Q3OdihgZY1rgV0lVmvhG8-G0TbX0cI6IK4pcfU-yiKbAROjrbgk4Z5igkmvwceKBdxatltDfwjl6WxqjgAJbly-0hR-ZImaSKpAGk9yqsa-poxXwc9ZGaoMYNztuXgKC2hkx5rQsiZMWBPSKpwv77yk8Bq_nq7lEgozU4tDEjg8G8K4qMJFLpHi9c_Ujv92_AQ2SSJU119Wg_Ji_mpOYV29LSbxvA6Vq3a3169D6Y703LM5qCdq-QF1rdRL |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ4gmujFtxFF7UFP2rjbXZb2YIzxEQ1ITETDbS1tiSQKCKjhT_kb7ewD0ERuHDzv7mSX-TqdYabfB7DvcY4sdJIWhNLUl56mdeVKahel3bzdwBGR1uFjuVip8FpN3GXgKz0Lg2OVaUyMArVuK_yP_Jj5SFvCAi5OO28UVaOwu5pKaMSwKJnBpy3Zeic3F9a_B4xdXVbPr2miKkCVhVufYm9Sa-EaxyaWNvvXwoZkrj2GHTAvqNuakBltP0Ay7qhABNIp8IYKfG6xjsLs1u4MzPoY_aNRwfth18INWMztx3BMyaklh3Tio3q29hIUi7VI8Jl6PzfCUXb7qyEb7XNXS__tF1qGxSSjJmfxEliBjGmtwnwi7v48WIPTs7EmPWk3CK6WmDiDNMcYSYnN34lu9iRyR5DX4VzQOjxM5f03INtqt8wmEMEN1mhF4datUVOXypfGkdxTDVd7Ac-BmzoxVAmpOmp7vIQjOmh0fGgdH0aOD70cHA6f6cSUIhPvzqfeDpPw0gtHrs7BUYqX0eW_rW1NtrYH89fV23JYvqmUtmGBRXDFebo8ZPvdd7MDc-qj3-x1dyPgE3iaNo6-Aek_Mfo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB2FgKAXWlpQU2i7h3KiK-x1WHYPCIVA1ChRFKFS5eaudzciEk0oTlvx1_rrOuOPOEUqNw492x7ZmTezO5nZ9wA-REoRC53hR9o63jSR44kNDcegxMU7lIHOtA6_9I8HAzUa6WENfpdnYWisssyJWaJ2M0v_kR-KJtGWCKn04bgYixied05vv3NSkKJOaymnkUOk5-9_YfmWnnTP0df7QnQuPrc_8UJhgFuE3pxTn9I5HfoAN5lYCTiN6Vm5SFA3LJIJ1ofCO_wYI1RgpZYmOFJjK5sKcU8i7Wh3BVaVxLipw-qwfda6XPQwQilypj9BQ0vBqDiykx_cw0pMcyrdMvlnHv29LFZ73Qft2WzV6zz_n3-vF7BZ7LVZKw-OLaj56UvYKGTfr-9fwWlrqX3PZmNGcZRTarDJElcpw509c5PUEKsE-7aYGNqGqyd5_x2oT2dT_xqYVp6qt2MdJmjUJ8Y2jQ-Miuw4dJFUDQhLh8a2oFsn1Y-buCKKJhDECII4A0EcNeBg8cxtTjby6N17pefjIvGkceX2BnwssVNd_re1N49bew_rCJ-43x30duGZyJBLg3Z7UJ_f_fBvYc3-nE_Su3dFFDD4-tRA-gPxHzvq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+artificial+intelligence+for+disaster+management&rft.jtitle=Natural+hazards+%28Dordrecht%29&rft.au=Sun%2C+Wenjuan&rft.au=Bocchini%2C+Paolo&rft.au=Davison%2C+Brian+D.&rft.date=2020-09-01&rft.pub=Springer+Netherlands&rft.issn=0921-030X&rft.eissn=1573-0840&rft.volume=103&rft.issue=3&rft.spage=2631&rft.epage=2689&rft_id=info:doi/10.1007%2Fs11069-020-04124-3&rft.externalDocID=10_1007_s11069_020_04124_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-030X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-030X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-030X&client=summon |