Applications of artificial intelligence for disaster management

Natural hazards have the potential to cause catastrophic damage and significant socioeconomic loss. The actual damage and loss observed in the recent decades has shown an increasing trend. As a result, disaster managers need to take a growing responsibility to proactively protect their communities b...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Natural hazards (Dordrecht) Ročník 103; číslo 3; s. 2631 - 2689
Hlavní autori: Sun, Wenjuan, Bocchini, Paolo, Davison, Brian D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.09.2020
Springer Nature B.V
Predmet:
ISSN:0921-030X, 1573-0840
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Natural hazards have the potential to cause catastrophic damage and significant socioeconomic loss. The actual damage and loss observed in the recent decades has shown an increasing trend. As a result, disaster managers need to take a growing responsibility to proactively protect their communities by developing efficient management strategies. A number of research studies apply artificial intelligence (AI) techniques to process disaster-related data for supporting informed disaster management. This study provides an overview of current applications of AI in disaster management during its four phases: mitigation, preparedness, response, and recovery. It presents example applications of different AI techniques and their benefits for supporting disaster management at different phases, as well as some practical AI-based decision support tools. We find that the majority of AI applications focus on the disaster response phase. This study also identifies challenges to inspire the professional community to advance AI techniques for addressing them in future research.
AbstractList Natural hazards have the potential to cause catastrophic damage and significant socioeconomic loss. The actual damage and loss observed in the recent decades has shown an increasing trend. As a result, disaster managers need to take a growing responsibility to proactively protect their communities by developing efficient management strategies. A number of research studies apply artificial intelligence (AI) techniques to process disaster-related data for supporting informed disaster management. This study provides an overview of current applications of AI in disaster management during its four phases: mitigation, preparedness, response, and recovery. It presents example applications of different AI techniques and their benefits for supporting disaster management at different phases, as well as some practical AI-based decision support tools. We find that the majority of AI applications focus on the disaster response phase. This study also identifies challenges to inspire the professional community to advance AI techniques for addressing them in future research.
Author Sun, Wenjuan
Bocchini, Paolo
Davison, Brian D.
Author_xml – sequence: 1
  givenname: Wenjuan
  orcidid: 0000-0003-0546-2389
  surname: Sun
  fullname: Sun, Wenjuan
  email: wes316@lehigh.edu
  organization: Department of Civil and Environmental Engineering, Lehigh University
– sequence: 2
  givenname: Paolo
  orcidid: 0000-0002-5685-2283
  surname: Bocchini
  fullname: Bocchini, Paolo
  organization: Department of Civil and Environmental Engineering, Lehigh University
– sequence: 3
  givenname: Brian D.
  orcidid: 0000-0002-9326-3648
  surname: Davison
  fullname: Davison, Brian D.
  organization: Department of Computer Science and Engineering, Lehigh University
BookMark eNp9kE1LAzEQhoMo2Fb_gKcFz9HJJM0mJynFLyh4UfAWYjZbUrbZmqQH_71rVxA89DSX93ln5pmS09hHT8gVgxsGUN9mxkBqCggUBENB-QmZsHnNKSgBp2QCGhkFDu_nZJrzBoAxiXpC7ha7XRecLaGPuerbyqYS2uCC7aoQi--6sPbR-artU9WEbHPxqdraaNd-62O5IGet7bK__J0z8vZw_7p8oquXx-flYkUdZ7pQrAU2jWYe6holzhstUKuGowalufyolULfaJQWFTippYW5ap0USijFGOMzcj327lL_ufe5mE2_T3FYaVBwpQDlUDQjaky51OecfGtcKIffSrKhMwzMjy4z6jKDLnPQZfiA4j90l8LWpq_jEB-hPITj2qe_q45Q316ffNU
CitedBy_id crossref_primary_10_1007_s42001_024_00330_2
crossref_primary_10_7232_JKIIE_2022_48_6_626
crossref_primary_10_1016_j_ijdrr_2024_104975
crossref_primary_10_1007_s43621_024_00500_2
crossref_primary_10_1016_j_marpolbul_2024_117446
crossref_primary_10_1038_s44304_025_00104_4
crossref_primary_10_1109_ACCESS_2025_3574451
crossref_primary_10_3390_su13168952
crossref_primary_10_3390_rs14174279
crossref_primary_10_3390_ijgi10030119
crossref_primary_10_1109_JPROC_2022_3223186
crossref_primary_10_1016_j_ijdrr_2024_104619
crossref_primary_10_1017_dmp_2025_63
crossref_primary_10_1016_j_heliyon_2024_e33116
crossref_primary_10_1017_S1816383122000261
crossref_primary_10_1007_s12040_024_02281_8
crossref_primary_10_1017_dmp_2023_3
crossref_primary_10_1109_MIS_2022_3220061
crossref_primary_10_1080_02681102_2025_2502418
crossref_primary_10_3390_bioengineering11040337
crossref_primary_10_1177_11786302231217808
crossref_primary_10_3390_su142013519
crossref_primary_10_1145_3555163
crossref_primary_10_1002_aisy_202500436
crossref_primary_10_3390_geosciences13120384
crossref_primary_10_1007_s00521_023_09218_0
crossref_primary_10_3390_buildings11090411
crossref_primary_10_1007_s11227_023_05795_y
crossref_primary_10_1016_j_ijdrr_2024_104287
crossref_primary_10_1061_JPSEA2_PSENG_1830
crossref_primary_10_4018_JGIM_296725
crossref_primary_10_33131_24222208_402
crossref_primary_10_1111_poms_14018
crossref_primary_10_3390_su132212560
crossref_primary_10_1061__ASCE_NH_1527_6996_0000535
crossref_primary_10_1016_j_cej_2020_128070
crossref_primary_10_1007_s11069_021_05190_x
crossref_primary_10_3390_s23031699
crossref_primary_10_1109_TGRS_2023_3264811
crossref_primary_10_1002_ieam_4892
crossref_primary_10_1016_j_pdisas_2023_100300
crossref_primary_10_1080_21681015_2024_2426639
crossref_primary_10_1016_j_grets_2025_100202
crossref_primary_10_3390_su162310730
crossref_primary_10_1016_j_eswa_2023_122010
crossref_primary_10_1080_17538947_2024_2403619
crossref_primary_10_3389_fbuil_2022_811460
crossref_primary_10_3390_s23063065
crossref_primary_10_3390_buildings12010080
crossref_primary_10_1139_dsa_2023_0079
crossref_primary_10_4102_jamba_v16i1_1706
crossref_primary_10_1109_ACCESS_2025_3539346
crossref_primary_10_1007_s11356_024_32606_5
crossref_primary_10_1155_2022_2878257
crossref_primary_10_1155_2022_8715028
crossref_primary_10_1016_j_ijdrr_2025_105441
crossref_primary_10_1016_j_ijdrr_2025_105562
crossref_primary_10_3390_app14177823
crossref_primary_10_3390_smartcities4020042
crossref_primary_10_1109_TASE_2022_3213820
crossref_primary_10_1080_24751839_2025_2509452
crossref_primary_10_3390_w12102788
crossref_primary_10_1007_s43681_023_00309_1
crossref_primary_10_1097_MD_0000000000040777
crossref_primary_10_3390_su12208548
crossref_primary_10_1016_j_pdisas_2024_100392
crossref_primary_10_1111_risa_14038
crossref_primary_10_1371_journal_pone_0301255
crossref_primary_10_1016_j_ijdrr_2024_104743
crossref_primary_10_1038_s43017_023_00409_w
crossref_primary_10_3390_buildings15132289
crossref_primary_10_1142_S0219877025500087
crossref_primary_10_1007_s11227_024_06188_5
crossref_primary_10_3233_IDT_240041
crossref_primary_10_1016_j_ijdrr_2025_105690
crossref_primary_10_1016_j_ijpe_2022_108642
crossref_primary_10_3389_feart_2021_659296
crossref_primary_10_1088_2634_4505_ac7251
crossref_primary_10_1007_s11042_023_16711_0
crossref_primary_10_1016_j_ress_2023_109358
crossref_primary_10_1007_s11269_021_02782_x
crossref_primary_10_1016_j_isprsjprs_2025_06_028
crossref_primary_10_2478_picbe_2024_0237
crossref_primary_10_3390_app132111866
crossref_primary_10_1007_s10669_022_09855_1
crossref_primary_10_1109_TEM_2022_3222235
crossref_primary_10_1007_s10489_025_06259_x
crossref_primary_10_1109_EMR_2023_3288432
crossref_primary_10_1007_s10479_023_05247_z
crossref_primary_10_1016_j_ijdrr_2024_104536
crossref_primary_10_1007_s42979_021_00971_4
crossref_primary_10_1016_j_enggeo_2022_106837
crossref_primary_10_1145_3690829
crossref_primary_10_3390_jsan12030041
crossref_primary_10_3390_su151310543
crossref_primary_10_3390_systems13090803
crossref_primary_10_1016_j_ijdrr_2023_104094
crossref_primary_10_3390_wevj16060310
crossref_primary_10_3390_bdcc7030157
crossref_primary_10_3390_smartcities7060147
crossref_primary_10_1007_s42524_025_5019_9
crossref_primary_10_1080_00207543_2022_2127961
crossref_primary_10_1016_j_pdisas_2023_100292
crossref_primary_10_3390_s21144942
crossref_primary_10_4102_jamba_v17i1_1776
crossref_primary_10_1186_s43065_023_00072_x
crossref_primary_10_1109_ACCESS_2025_3594091
crossref_primary_10_1109_ACCESS_2025_3573207
crossref_primary_10_1126_scirobotics_adj2767
crossref_primary_10_3390_w14050823
crossref_primary_10_1016_j_landusepol_2024_107459
crossref_primary_10_3390_buildings13051143
crossref_primary_10_1016_j_foreco_2023_121274
crossref_primary_10_1007_s00146_025_02573_7
crossref_primary_10_1007_s13753_023_00528_4
crossref_primary_10_1016_j_ijdrr_2025_105639
crossref_primary_10_1038_s41746_025_01859_w
crossref_primary_10_1016_j_engappai_2024_108855
crossref_primary_10_1080_10429247_2024_2345526
crossref_primary_10_1007_s11356_025_36566_2
crossref_primary_10_1016_j_ijdrr_2022_103276
crossref_primary_10_1007_s12652_023_04594_w
crossref_primary_10_1007_s11356_022_21475_5
crossref_primary_10_1016_j_iot_2024_101273
crossref_primary_10_3390_rs15164112
crossref_primary_10_1007_s42979_024_02788_3
crossref_primary_10_1016_j_comcom_2025_108216
crossref_primary_10_1016_j_ijdrr_2024_104809
crossref_primary_10_11616_asbi_1218853
crossref_primary_10_3390_knowledge5030021
crossref_primary_10_1007_s10676_024_09750_0
crossref_primary_10_1016_j_ecolind_2024_112554
crossref_primary_10_1016_j_treng_2025_100385
crossref_primary_10_1007_s41060_023_00393_w
crossref_primary_10_1016_j_techsoc_2025_103057
crossref_primary_10_3390_su152416760
crossref_primary_10_3390_w17152269
crossref_primary_10_1111_1468_5973_12436
crossref_primary_10_3390_make4020020
crossref_primary_10_3390_app12105106
crossref_primary_10_1007_s10115_023_01969_5
crossref_primary_10_2196_51785
crossref_primary_10_3390_f15010201
crossref_primary_10_1061_JENMDT_EMENG_6992
crossref_primary_10_1080_1553118X_2024_2435494
crossref_primary_10_3390_ijerph191811183
crossref_primary_10_3390_su15020964
crossref_primary_10_1016_j_spc_2024_12_012
crossref_primary_10_1016_j_techfore_2022_121662
crossref_primary_10_1080_10106049_2022_2087006
crossref_primary_10_3390_rs13214302
crossref_primary_10_1007_s11269_023_03725_4
crossref_primary_10_1007_s13753_024_00541_1
crossref_primary_10_1016_j_nhres_2025_09_005
crossref_primary_10_1016_j_geomat_2024_100026
crossref_primary_10_1016_j_ijdrr_2023_104123
crossref_primary_10_1016_j_ijdrr_2024_104785
crossref_primary_10_1109_JRFID_2023_3279329
crossref_primary_10_3390_su13147925
crossref_primary_10_1080_01446193_2024_2419413
crossref_primary_10_1007_s00146_025_02423_6
crossref_primary_10_1016_j_ijdrr_2023_104120
crossref_primary_10_1108_IJM_03_2021_0178
crossref_primary_10_1109_MITP_2024_3421944
crossref_primary_10_3390_ijerph18062918
crossref_primary_10_1016_j_tele_2021_101729
crossref_primary_10_3390_su151512036
crossref_primary_10_1080_13669877_2025_2485034
crossref_primary_10_1186_s13690_025_01712_2
crossref_primary_10_1080_15228835_2025_2470150
crossref_primary_10_3390_ijerph20054542
Cites_doi 10.23919/OCEANS.2009.5422201
10.1016/j.neucom.2019.08.021
10.1016/j.inffus.2019.12.012
10.1016/j.robot.2014.03.003
10.1016/j.ssci.2019.01.007
10.1016/j.engstruct.2014.05.016
10.1111/jori.12106
10.1109/ICASSP.2013.6638947
10.1109/IAS.2009.313
10.1016/j.apgeog.2016.01.005
10.1109/VAST.2011.6102456
10.1007/s11269-019-02342-4
10.1061/(ASCE)UP.1943-5444.0000404
10.1007/s11783-014-0632-6
10.1016/j.cageo.2015.04.007
10.1007/s10479-011-1052-7
10.1080/01431161003727671
10.1145/2567948.2577034
10.1016/j.jpsychires.2014.08.017
10.1109/TPAMI.2013.29
10.1016/j.ijdrr.2019.101251
10.1016/j.probengmech.2013.09.003
10.1080/17538947.2020.1729879
10.1007/978-3-030-32029-4_18
10.1186/s40677-016-0060-y
10.1007/s11063-017-9778-0
10.1061/(ASCE)IS.1943-555X.0000229
10.1016/j.neucom.2019.06.099
10.1016/j.aei.2019.100974
10.17077/48vt-m4t2
10.1111/j.1467-7717.2008.01054.x
10.1016/j.tele.2019.101326
10.1016/j.ress.2011.10.011
10.1111/risa.12131
10.1177/1088868310367640
10.1145/2911451.2911460
10.23919/ChiCC.2017.8027884
10.1016/j.jhydrol.2019.123929
10.1016/j.engstruct.2018.01.053
10.1109/TPAMI.2002.1114856
10.1080/17538947.2018.1523956
10.1016/j.firesaf.2019.04.008
10.1109/SmartGridComm.2018.8587476
10.1177/1475921717717311
10.1016/j.jhydrol.2015.10.038
10.1016/j.measurement.2019.05.067
10.1186/s40677-017-0073-1
10.1111/mice.12122
10.1109/STARTUP.2016.7583959
10.1177/1077546316674544
10.1109/ICCCE.2018.8539253
10.1016/j.jhydrol.2013.05.038
10.1109/IROS.2016.7759215
10.1111/mice.12493
10.1016/S0957-4174(99)00061-5
10.1587/transfun.E96.A.649
10.1016/j.cageo.2017.11.019
10.1109/IEMBS.2009.5332498
10.1142/S0219455417500730
10.1109/TITS.2010.2050200
10.1016/j.tre.2017.07.001
10.1109/COASE.2018.8560473
10.1109/TEM.2018.2794146
10.1145/3047273.3047379
10.1016/j.eswa.2007.08.008
10.1016/j.geomorph.2020.107125
10.3390/ijgi8070297
10.1109/IRI.2018.00071
10.1260/1369-4332.16.1.207
10.1109/ICT-DM.2016.7857214
10.1016/j.scitotenv.2019.135161
10.1007/978-3-319-32034-2_13
10.1109/GHTC.2014.6970316
10.1175/2007WAF2006027.1
10.1007/s13762-013-0281-5
10.1145/3150226
10.1080/17538947.2018.1545878
10.14358/PERS.80.12.1161
10.1177/1550147719856492
10.1109/THS.2010.5655061
10.1109/ICCCNT45670.2019.8944493
10.1371/journal.pone.0017680
10.1029/2010JB007476
10.3923/itj.2011.648.655
10.1067/mem.2001.118999
10.1109/ITSC.2019.8917180
10.1109/TBDATA.2019.2941887
10.1007/s11069-017-2951-y
10.1017/S0033291713000561
10.1016/j.engstruct.2018.11.081
10.1109/THS.2018.8574145
10.1111/j.1553-2712.2007.00032.x
10.1016/S0925-7535(00)00021-7
10.1016/j.isprsjprs.2017.03.001
10.1016/j.aap.2017.06.003
10.1016/j.eswa.2006.12.019
10.1109/IROS40897.2019.8967633
10.1016/j.jweia.2007.04.002
10.1007/s10287-013-0174-6
10.1007/978-981-10-0300-4_7
10.3390/rs70303372
10.1080/15732479.2017.1330891
10.1016/j.tre.2006.04.004
10.1109/MIS.2013.126
10.1109/IJCNN.2018.8489600
10.1007/s00254-007-0649-2
10.1016/j.geomorph.2009.02.026
10.1002/j.1681-4835.2010.tb00300.x
10.1007/s12403-014-0119-5
10.1109/CarpathianCC.2017.7970400
10.1016/j.dss.2019.113234
10.1186/1475-2875-8-287
10.1109/TITS.2010.2040276
10.1109/MIS.2012.6
10.1193/1.3636416
10.12989/sss.2010.6.4.405
10.1007/978-3-319-98446-9_19
10.1109/LGRS.2017.2772349
10.1080/17477891.2012.761593
10.1002/eqe.2991
10.3390/ijerph110808475
10.1016/j.isprsjprs.2015.09.011
10.1109/INCOS.2010.24
10.1109/GHTC.2015.7343981
10.1111/j.1559-1816.1999.tb00132.x
10.1109/GCWkshps45667.2019.9024648
10.2166/wcc.2019.321
10.1109/RIISS.2014.7009173
10.1109/ICACCP.2019.8882877
10.1080/17538947.2019.1574316
10.1139/cjfr-2014-0347
10.1145/2983323.2983355
10.1016/j.ymssp.2016.06.007
10.1108/DPM-12-2012-0148
10.1098/rsta.2011.0244
10.1193/1.4000019
10.1061/(ASCE)CP.1943-5487.0000770
10.1061/(ASCE)CP.1943-5487.0000680
10.23919/EUSIPCO.2019.8903067
10.1109/PERCOMW.2017.7917529
10.1111/mice.12359
10.1109/CERMA.2009.17
10.1080/00207543.2018.1509392
10.3390/su11020516
10.1109/CDC.2016.7799189
10.1016/j.cageo.2013.04.006
10.1007/s10668-018-0086-2
10.1109/ICCE.2017.7889305
10.1145/276305.276312
10.20965/jdr.2018.p0928
10.1016/S1464-2859(14)70322-0
10.1177/1369433218789191
10.1007/978-3-030-03828-1_6
10.1193/1.2798241
10.3390/ijgi8010029
10.1186/s12888-015-0399-8
10.5055/jem.2016.0302
10.1016/j.future.2013.12.018
10.1504/IJSSC.2017.10008038
10.1145/1342327.1342340
10.1109/CCGrid49817.2020.00-15
10.1364/JOCN.7.000B81
10.1109/ICCES45898.2019.9002400
10.1016/j.jhydrol.2017.01.057
10.1126/sciadv.1500779
10.24963/ijcai.2018/78
10.1080/13682199.2019.1600254
10.1016/j.tre.2011.11.003
10.1109/TASL.2011.2134090
10.1016/j.ijrmms.2008.12.003
10.1109/ACCESS.2019.2902558
10.1109/SSRR.2014.7017679
10.1016/j.ijinfomgt.2019.03.004
10.1109/ICASSP.2009.4959870
10.1109/TSMC.2020.2967936
10.1007/s00254-007-0887-3
10.1109/IWCMC.2019.8766625
10.1007/s11069-017-3081-2
10.1007/978-3-030-19562-5_18
10.1111/mice.12346
10.1007/s10694-009-0106-8
10.1061/(ASCE)CP.1943-5487.0000333
10.1016/j.chb.2015.04.020
10.1145/2020408.2020457
10.1109/ICAwST.2019.8923362
10.5194/gmd-8-1955-2015
10.1145/3371158.3371168
10.1109/TSG.2020.2967430
10.1007/s12205-017-1329-8
10.1371/journal.pmed.1001083
10.1038/s41586-018-0438-y
10.2166/nh.2012.032
10.1089/big.2014.0064
10.1145/3065386
10.1109/RAST.2017.8003001
10.1007/s11069-016-2579-3
10.3390/rs11202427
10.1145/2396761.2398732
10.5194/nhess-18-383-2018
10.1007/s10518-016-9894-7
10.1016/j.ipm.2016.09.002
10.3390/ijerph14101267
10.1007/s11069-013-0617-y
10.3390/rs9020100
10.1016/j.coldregions.2017.09.013
10.1016/j.ijdrr.2019.101212
10.1016/j.asoc.2017.02.028
10.3390/geosciences8050165
10.1061/(asce)be.1943-5592.0000201
10.1007/s11069-017-2959-3
10.1002/stc.401
10.1016/j.agee.2003.08.003
10.1109/MIS.2019.2918245
10.1016/j.eswa.2017.12.037
10.1016/j.apgeog.2017.12.017
10.1111/mice.12425
10.1016/j.coldregions.2011.08.011
10.1016/j.pce.2016.04.003
10.5194/nhess-15-2725-2015
10.1007/s12665-016-6374-y
10.1016/j.watres.2009.09.036
10.1109/EEEIC-2.2013.6737884
10.1117/1.OE.51.7.070901
10.1016/j.enggeo.2018.08.010
10.1016/j.image.2019.02.002
10.1080/1369118X.2012.678878
10.1109/ICMA.2009.5246026
10.3390/ijgi8120578
10.1016/j.jhydrol.2017.06.020
10.1155/2018/7258156
10.1145/2480362.2480511
10.1007/978-1-4614-5885-2_11
10.1109/TPAMI.2011.108
10.1109/IGARSS.2017.8127747
10.1186/s13673-019-0187-4
10.1007/s11069-016-2414-x
10.6028/NIST.IR.8231
10.1175/WAF-D-17-0006.1
10.1007/s10064-018-1256-z
10.3390/app7080846
10.1109/ASONAM.2018.8508695
10.1177/0309133313515293
10.1002/eqe.623
10.1109/TGRS.2006.882264
10.1016/j.enggeo.2017.05.009
10.3990/2.369
10.1016/j.ress.2017.08.018
10.1016/j.ijdrr.2016.12.011
10.1016/j.procs.2016.07.144
10.5194/isprs-archives-XLII-4-W18-955-2019
10.1061/9780784482445.063
10.1016/j.strusafe.2017.12.001
10.1080/13683500.2019.1711029
10.1109/GHTC.2018.8601911
10.5194/nhess-13-53-2013
10.1080/23789689.2016.1179529
10.1142/S1469026813500120
10.1016/j.eswa.2017.08.030
10.1145/2020408.2020485
10.1007/s11069-012-0359-2
10.1371/journal.pone.0150989
10.1016/j.cag.2013.10.008
10.1007/s12524-017-0660-3
10.1016/j.ymssp.2008.01.004
10.1109/TEVC.2013.2281396
10.3390/app8112173
10.1080/15230406.2017.1370391
10.1504/IJEM.2013.059879
10.1162/0034653053970339
10.1016/j.future.2018.07.048
10.1016/j.jhydrol.2019.05.066
10.1016/j.jhydrol.2018.11.060
10.1109/BigData.2017.8258464
10.5194/nhess-9-1149-2009
10.1061/(ASCE)IS.1943-555X.0000246
10.1111/j.1540-5915.2011.00319.x
10.1016/j.tre.2009.07.005
10.1016/j.ijinfomgt.2018.09.005
10.1007/s11069-016-2425-7
10.1109/DSAA.2017.11
10.1007/s10479-020-03514-x
10.1016/j.neunet.2019.03.005
10.1109/BigData47090.2019.9006385
10.1007/s11069-018-3413-x
10.1016/j.jhydrol.2014.06.013
10.1257/pol.20140296
10.1080/15732470601185638
10.1007/s00366-019-00798-x
10.1177/1550147718801703
10.1109/ICSSA.2018.8535606
10.1126/sciadv.1700578
10.1111/mice.12064
10.1145/3297280.3297481
10.1002/dac.2716
10.1145/2806416.2806651
10.1007/s11069-014-1565-x
10.1109/5289.863909
10.1016/j.trd.2019.03.002
10.1088/1755-1315/426/1/012156
10.1061/(ASCE)CP.1943-5487.0000334
10.1088/1755-1315/169/1/012056
10.1109/ACCESS.2019.2940822
10.1007/978-3-319-14011-7_12
10.1016/j.soildyn.2017.05.013
10.1109/ACCESS.2019.2946659
10.1037/0735-7028.36.3.246
10.1109/CIG.2008.5035649
10.1016/j.scs.2019.101768
10.1007/s10796-014-9515-4
10.1007/s11069-014-1508-6
10.1061/(ASCE)CP.1943-5487.0000483
10.1613/jair.5098
10.1785/0220160188
10.1002/cpe.4910
10.1109/TIFS.2016.2607701
10.5772/54379
10.1109/CCNC.2018.8319233
10.1007/s13675-015-0058-3
10.1007/s00500-019-03878-8
10.5194/nhess-2017-74
10.14358/PERS.77.9.943
10.1109/ICCCE.2016.72
10.1609/aaai.v33i01.3301702
10.1016/j.neucom.2017.04.083
10.1145/3057280
10.1109/ICCSP.2015.7322851
10.1007/s13753-013-0018-6
10.1016/j.ijdrr.2020.101645
10.1016/j.envsoft.2004.03.006
10.1016/j.engstruct.2016.03.038
10.1061/9780784415894.ch4
10.1007/s10846-010-9514-8
10.1609/aaai.v29i1.9237
10.1016/j.ijdrr.2017.01.004
10.1109/GCWkshps45667.2019.9024679
10.1109/BigMM.2017.30
10.1016/j.iatssr.2016.06.001
10.1007/s11069-018-3325-9
10.1038/s41598-019-45748-1
10.1080/00207543.2016.1174344
10.1016/j.ress.2014.12.007
10.7551/mitpress/9407.001.0001
10.1109/MRA.2009.932521
10.1109/IROS.2014.6942626
10.1016/j.procs.2019.09.291
10.3390/rs8100868
10.1061/(ASCE)ME.1943-5479.0000024
10.1109/IS3C.2018.00067
10.1109/TPWRS.2018.2860904
10.1016/j.geomorph.2009.09.025
10.1109/SmartTechCon.2017.8358367
10.1002/eqe.988
10.1007/s11069-015-1908-2
10.1145/3110025.3110164
10.1145/2740908.2741722
10.1002/tee.22806
10.1088/1757-899X/712/1/012032
10.1007/s11069-018-3264-5
10.1007/s10846-018-0891-8
10.21437/Interspeech.2016-354
10.1016/j.ress.2007.03.038
10.1109/ELEKTRO.2018.8398359
10.1007/s10551-009-0067-3
10.1061/(ASCE)NH.1527-6996.0000193
10.3390/s19071746
10.1007/s13753-016-0087-4
10.1016/j.ecolmodel.2006.04.017
10.4028/www.scientific.net/AMM.147.266
10.1016/j.ijinfomgt.2019.102049
10.1109/ICT-DM.2015.7402056
10.1109/WCNC.2017.7925654
10.1007/s11069-008-9222-x
10.1080/17538947.2019.1645894
10.1016/j.compenvurbsys.2011.01.003
10.1177/1550147718784482
10.1016/j.jhydrol.2015.04.017
10.1038/nature.2013.14186
10.1016/j.ijsrc.2016.02.002
10.3390/s18093017
10.1016/j.future.2020.01.005
10.1016/j.gsf.2017.10.008
10.1109/100.388296
10.1016/j.firesaf.2015.11.015
10.1145/3161603
10.1002/sam.10128
10.1007/978-981-13-0992-2_5
10.1201/9781315207681-171
10.1371/journal.pone.0214367
10.1007/978-981-13-0992-2_3
10.1109/ICPPW.2014.52
10.1080/13658816.2019.1673397
10.1007/s10584-011-0331-2
10.1061/(ASCE)IS.1943-555X.0000569
10.4108/icst.collaboratecom.2012.250525
10.1016/j.geoforum.2014.01.006
10.1177/1369433219861728
10.1016/j.jhydrol.2010.02.028
10.1016/j.apgeog.2019.05.001
10.1016/j.strusafe.2018.12.004
10.1016/j.catena.2016.09.007
10.1016/j.eswa.2009.11.039
10.1193/121812EQS350M
10.4401/ag-5324
10.1016/j.scitotenv.2018.01.124
10.1080/17538941003759255
10.1016/j.engstruct.2011.07.005
10.1016/j.autcon.2010.12.005
10.1007/s00254-007-0788-5
10.1559/152304010790588043
10.1002/rhc3.12047
10.1109/LRA.2018.2792701
10.1111/deci.12103
10.1080/1206212X.2019.1706812
10.1016/j.geomorph.2006.10.035
10.1145/1964858.1964869
10.1051/shsconf/20184400068
10.1145/3095713.3095726
10.1007/s12665-015-4047-x
10.1504/IJWBC.2011.041206
10.1016/j.eswa.2008.08.074
10.1016/j.jocs.2019.02.002
10.1080/01431161.2012.705443
10.1016/j.strusafe.2019.04.003
10.1109/TKDE.2012.29
10.1111/risa.12829
10.1109/ICT-DM.2018.8636373
10.1145/3110025.3110109
10.1016/j.pmcj.2019.04.009
10.14716/ijtech.v10i7.3709
10.1145/3005745.3005750
10.1007/s11069-015-1799-2
10.1016/j.ocecoaman.2015.06.026
10.1007/s12652-014-0227-x
10.5194/nhess-18-65-2018
10.3390/w7041437
10.1109/GHTC.2013.6713678
10.1016/j.procs.2017.11.187
10.5194/nhess-18-3253-2018
10.1016/j.engstruct.2019.109785
10.1080/15732479.2014.995676
10.1109/ICIAICT.2019.8784782
10.1016/j.measurement.2017.05.032
10.1126/scirobotics.aay7120
10.1145/2600428.2609550
10.1109/ICDE.2015.7113322
10.1109/COMST.2016.2540004
10.3141/2459-13
10.1007/978-3-319-51929-6_2
10.1145/2623330.2623628
10.1080/01446190600953805
10.1016/j.eswa.2019.01.042
10.1111/mice.12141
10.1193/1.1585998
10.1007/978-981-13-0992-2_8
10.1371/journal.pone.0047203
10.1016/S1001-6279(10)60033-9
10.1016/j.ijdrr.2015.09.002
10.1016/j.jpsychires.2017.09.010
10.1109/LRA.2015.2509024
10.1016/j.knosys.2016.06.017
10.1109/ICDCS.2019.00123
10.1109/ITSC.2018.8569443
10.1016/j.eswa.2008.03.012
10.1126/sciadv.1501055
10.1145/2641190.2641198
10.1145/2970819
10.1007/s11633-010-0560-2
10.1007/s10115-016-1014-0
10.1145/3194452.3194475
10.1061/(ASCE)UP.1943-5444.0000349
10.1007/s00477-018-1530-4
10.1109/TDSC.2017.2751478
10.1016/j.pdisas.2019.100033
10.1007/s11069-017-2755-0
10.4031/MTSJ.45.3.1
10.1109/MIS.2016.27
10.1016/j.trc.2015.03.014
10.1109/TGRS.2017.2707528
10.1007/s12665-009-0381-1
10.1016/j.agrformet.2017.02.011
10.1109/MIS.2018.043741317
10.1016/j.jseaes.2012.12.014
10.1016/j.iot.2019.100076
10.1007/s11814-015-0042-x
10.1109/TCSS.2019.2914179
10.1080/01431161.2015.1117684
10.1038/nature06958
10.1007/s12517-012-0610-x
10.1016/j.isprsjprs.2009.03.002
10.1016/j.scs.2020.102115
10.1007/s10586-018-1783-1
10.1193/1.2098937
10.1109/THMS.2013.2281762
10.1007/978-3-030-38040-3_87
10.1029/2018GL077870
10.1007/978-1-4939-2602-2_9
10.1007/s12083-015-0386-3
10.1016/j.trc.2014.04.013
10.1109/ICIEA.2019.8833977
10.1109/CCECE.2011.6030716
10.3130/jaabe.17.307
10.1109/IGARSS.2018.8517946
10.1016/j.trc.2014.04.003
10.1080/09709274.2014.11906743
10.1016/j.cageo.2013.04.018
10.1109/WCNC.2019.8885893
10.1260/1369-4332.17.3.303
10.1016/j.knosys.2011.01.014
10.1007/s10551-012-1589-7
10.1007/s11069-016-2477-8
10.3390/rs11101174
10.1109/ICTS.2016.7910295
10.1109/ISDEA.2010.404
10.1049/iet-stg.2018.0043
10.1007/s11069-018-3427-4
10.1145/2623330.2623358
10.1177/1475921714522847
10.1145/3163080.3163113
10.1145/2187980.2188190
10.3115/v1/P14-2009
10.1109/SPAWC.2018.8445768
10.1016/j.ress.2019.106721
10.1002/isaf.326
10.1109/TGRS.2012.2236683
10.1002/rob.20207
10.1080/23789689.2016.1255000
10.1007/s10708-014-9597-z
10.12989/sem.2015.54.2.221
10.5194/nhess-2019-420
10.1109/ICNSC.2007.372797
10.1016/j.asej.2015.11.005
10.1007/978-3-319-15702-3_20
10.1061/AJRUA6.0000831
10.1061/(ASCE)CP.1943-5487.0000456
10.1109/ICINFA.2006.374152
10.1007/s10479-018-3037-2
10.1080/17538947.2019.1633425
10.1109/BigMM.2017.31
10.1007/s13753-018-0189-2
10.1109/ACCESS.2019.2904457
10.1016/j.jom.2012.08.003
10.1145/2996357
10.1109/TVT.2019.2922849
10.1111/mice.12263
10.1002/rob.21502
10.1007/978-981-10-3773-3_55
10.1007/s11069-017-3122-x
10.1371/currents.dis.d073fbece328e4c39087bc086d694b5c
10.1109/MGRS.2016.2540798
10.1016/j.crm.2019.100193
10.1080/01944360903294556
10.1109/SIS.2007.367956
10.1007/s11069-013-0566-5
10.1080/17538947.2018.1535000
10.1111/j.1468-5973.2007.00522.x
10.1007/s11069-017-2934-z
10.1016/j.geomorph.2011.12.040
10.1007/s12665-009-0394-9
10.1109/MCC.2014.71
10.1080/23789689.2018.1448663
10.1109/TETC.2017.2699169
10.1109/SSRR.2018.8468643
10.1061/(ASCE)IS.1943-555X.0000353
10.1016/j.pdisas.2019.100030
10.1108/TG-09-2019-0088
10.1111/1468-5973.12194
10.1007/s11069-018-3256-5
10.1016/j.ijdrr.2015.04.004
10.1785/0120140256
10.1016/j.enggeo.2011.09.006
10.1109/TPWRS.2016.2631895
10.1109/ICC.2019.8761575
10.3846/16484142.2011.584959
10.1016/j.autcon.2016.03.015
10.1109/JSAC.2018.2864373
ContentType Journal Article
Copyright Springer Nature B.V. 2020
Springer Nature B.V. 2020.
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: Springer Nature B.V. 2020.
DBID AAYXX
CITATION
3V.
7ST
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M2P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
DOI 10.1007/s11069-020-04124-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1573-0840
EndPage 2689
ExternalDocumentID 10_1007_s11069_020_04124_3
GrantInformation_xml – fundername: National Science Foundation
  grantid: CMMI-1541177
  funderid: http://dx.doi.org/10.13039/501100008982
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67M
67Z
6KP
6NX
78A
7XC
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDH
EIOEI
EIS
EJD
EPAXT
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FIL
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
ZY4
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7ST
7TG
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KL.
KR7
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
ID FETCH-LOGICAL-c319t-2742dd91e0772625d94298d32908936b7882ed926a280c696a058fc6484881113
IEDL.DBID RSV
ISICitedReferencesCount 215
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545205200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-030X
IngestDate Wed Nov 05 08:09:55 EST 2025
Sat Nov 29 04:00:08 EST 2025
Tue Nov 18 22:43:48 EST 2025
Fri Feb 21 02:32:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Artificial intelligence
Disaster management
Disaster resilience
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2742dd91e0772625d94298d32908936b7882ed926a280c696a058fc6484881113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5685-2283
0000-0003-0546-2389
0000-0002-9326-3648
PQID 2438802689
PQPubID 54179
PageCount 59
ParticipantIDs proquest_journals_2438802689
crossref_citationtrail_10_1007_s11069_020_04124_3
crossref_primary_10_1007_s11069_020_04124_3
springer_journals_10_1007_s11069_020_04124_3
PublicationCentury 2000
PublicationDate 20200900
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 9
  year: 2020
  text: 20200900
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Natural hazards (Dordrecht)
PublicationTitleAbbrev Nat Hazards
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References BenítezMCRamírezJSeguraJCIbáñezJMAlmendrosJGarcía-YeguasACortésGContinuous HMM-based seismic-event classification at Deception Island, AntarcticaIEEE Trans Geosci Remote Sens200745138146
Imran M, Castillo C, Lucas J, Meier P, Vieweg S (2014) AIDR: artificial intelligence for disaster response. In: Proceedings of the 23rd international conference on world wide web. ACM, pp 159–162
TunusluogluMCGokceogluCNefesliogluHASonmezHExtraction of potential debris source areas by logistic regression technique: a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey)Environ Geol200754922
Morito T, Sugiyama O, Kojima R, Nakadai K (2016) Partially shared deep neural network in sound source separation and identification using a UAV-embedded microphone array. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1299–1304. https://doi.org/10.1109/IROS.2016.7759215
Yamaguchi K, Shirota Y (2019) Pattern classification of disasters impact on companies stock prices. In: The 10th international conference on awareness science and technology (iCAST). IEEE. https://doi.org/10.1109/ICAwST.2019.8923362
ChengLZhangJIs tourism development a catalyst of economic recovery following natural disaster? An analysis of economic resilience and spatial variabilityCurr Issues Tour202010.1080/13683500.2019.1711029
ChouJSThedjaJPPMetaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problemsAutom Construct2016686580
MaliszewskiPJLarsonEKPerringsCEnvironmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, ArizonaReliab Eng Syst Saf201299161171
KochCPaalSGRashidiAZhuZKönigMBrilakisIAchievements and challenges in machine vision-based inspection of large concrete structuresAdv Struct Eng201617303318
ZubiagaALiakataMProcterRHoiGWSTolmiePAnalysing how people orient to and spread rumours in social media by looking at conversational threadsPLoS One201611129
Galatzer-LevyIRKarstoftKIStatnikovAQuantitative forecasting of PTSD from early trauma responses: a machine learning applicationJ Psychiatr Res2014596876
LiTXieNZengCZhouWZhengLJiangYYangYHaHYXueWHuangYChenSCNavlakhaJIyengarSSData-driven techniques in disaster information managementACM Comput Surv201750145
NoymaneeJNikitinNOKalyuzhnayaAVUrban pluvial flood forecasting using open data with machine learning techniques in Pattani BasinProc Comput Sci2017119288297
Stojadinovic Z, Kovacevic M, Marinkovic D, Stojadinovic B (2017) Data-driven housing damage and repair cost prediction framework based on the 2010 Kraljevo earthquake data. In: Proceedings of the 16th world conference on earthquake engineering (16WCEE), p 4987
Yang Y, Lu W, Domack J, Li T, Chen SC, Luis S, Navlakha JK (2012) MADIS: a multimedia-aided disaster information integration system for emergency management. In: Proceedings of the 8th international conference on collaborative computing: networking, applications and worksharing (CollaborateCom). IEEE. https://doi.org/10.4108/icst.collaboratecom.2012.250525
KhadrMForecasting of meteorological drought using Hidden Markov Model (case study: the upper Blue Nile river basin, Ethiopia)Ain Shams Eng J201674756
GermanSJeonJSZhuZBearmanCBrilakisIDesRochesRLowesLMachine vision-enhanced postearthquake inspectionJ Comput Civ Eng201327622634
JonesSSThomasAEvansRSWelchSJHaugPJSnowGLForecasting daily patient volumes in the emergency departmentAcad Emerg Med200815159170
Moustapha AI, Selmic RR (2007) Wireless sensor network modeling using modified recurrent neural networks: application to fault detection. In: 2007 IEEE international conference on networking, sensing and control. IEEE, pp 313–318. https://doi.org/10.1109/ICNSC.2007.372797
TrugmanDTShearerPMGrowClust: A hierarchical clustering algorithm for relative earthquake relocation, with application to the Spanish Springs and Sheldon, Nevada, earthquake sequencesSeismol Res Lett201788379391
Hong L, Yin D, Guo J, Davison BD (2011) Tracking trends: incorporating term volume into temporal topic models. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp 484–492
KellermannPSchröterKThiekenAHHaubrockSNKreibichHThe object-specific flood damage database HOWAS21Nat Hazards Earth Syst Sci202010.5194/nhess-2019-420
ChenWYanXZhaoZHongHBuiDTPradhanBSpatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naïve Bayes and RBFNetwork models for the Long County area (China)Bull Eng Geol Environ201978247266
WangKShiXGohAPXQianSA machine learning based study on pedestrian movement dynamics under emergency evacuationFire Saf J2019106163176
MuhammadKAhmadJBaikSWEarly fire detection using convolutional neural networks during surveillance for effective disaster managementNeurocomputing20182883042
WangZNChenJChenWCArulrajahAHorpibulsukSInvestigation into the tempo-spatial distribution of recent fire hazards in ChinaNat Hazards20189218891907
AfandizadehSJahangiriAKalantariNDetermination of the optimal network configuration for emergency evacuation by simulated annealing algorithmNat Hazards20136913151335
Zhao Z, Wu Y (2016) Attention-based convolutional neural networks for sentence classification. In: The 17th annual conference of the international speech communication association, pp 705–709
BromleyEEisenmanDPMaganaAWilliamsMKimBMcCrearyMChandraAWellsKBHow do communities use a participatory public health approach to build resilience? The Los Angeles county community disaster resilience projectInt J Environ Res Public Health20171410126710.3390/ijerph14101267
Adeel A, Gogate M, Farooq S, Ieracitano C, Dashtipour K, Larijani H, Hussain A (2018) A survey on the role of wireless sensor networks and IoT in disaster management. In: Geological disaster monitoring based on sensor networks. Springer, pp 57–66
Sun H, Tian X, Li Z, Chen E, Wang W (2017) Remotely sensed monitoring forest changes-a case study in the Jinhe town of Inner Mongolia. In: 2017 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE. https://doi.org/10.1109/IGARSS.2017.8127747
FEMA (2019) Federal insurance and mitigation administration national flood insurance program (FIMA NFIP) redacted claims dataset. https://www.fema.gov/media-library/assets/documents/180374
Tian H, Chen SC (2017b) A video-aided semantic analytics system for disaster information integration. In: The 3rd IEEE international conference on multimedia big data. IEEE, pp 242–243. https://doi.org/10.1109/BigMM.2017.31
Hochgraf C, Nygate J, Bazdresch M, Indelicato M, Johnson WP, Espinos R (2018) Providing first responders with real-time status of cellular networks during a disaster. In: The 2018 IEEE international symposium on technologies for homeland security (HST). IEEE. https://doi.org/10.1109/THS.2018.8574145
HolgadoPVollagráVAVázquesLReal-time multistep attack prediction based on hidden Markov modelsIEEE Trans Dependable Secure Comput201717134147
HuangZZhouJSongLLuYZhangYFlood disaster loss comprehensive evaluation model based on optimization support vector machineExpert Syst Appl20103738103814
Nolasco-JavierDKumarLDeriving the rainfall threshold for shallow landslide early warning during tropical cyclones: a case study in northern PhilippinesNat Hazards201890921941
Suriya M, Sumithra MG (2019) Enhancing cooperative spectrum sensing in flying cell towers for disaster management using convolutional neural networks. In: Proceedings of the EAI international conference on big data innovation for sustainable cognitive computing, pp 181–190
USGS (2016a) ShakeCast. https://earthquake.usgs.gov/research/software/shakecast.php
GhaffarianSKerleNPasolliEArsanjaniJJPost-disaster building database updating using automated deep learning: an integration of pre-disaster OpenStreetMap and multi-temporal satellite dataRemote Sens2019112427
Parra J, Fuentes O, Anthony EY, Kreinovich V (2016) Use of machine learning to analyze and—hopefully—predict volcano activity. Technical Report UTEP-CS-16-80a, University of Texas at El Paso. http://digitalcommons.utep.edu/cs_techrep/1053
Zhang G, Li B, Li Z, Wang C, Zhang H, Shang H, Hu W, Zhang T (2014) Development of robotic spreader for earthquake rescue. In: Proceedings of the 2014 IEEE international symposium on safety, security, and rescue robotics. IEEE. https://doi.org/10.1109/SSRR.2014.7017679
EidMSEl-adawayIHIntegrating the social vulnerability of host communities and the objective functions of associated stakeholders during disaster recovery processes using agent-based modelingJ Comput Civ Eng20173104017030
CortezBCarreraBKimYJJungJYAn architecture for emergency event prediction using LSTM recurrent neural networksExpert Syst Appl201897315324
ConnerAJShaoYCampbellJBDetection of urban damage using remote sensing and machine learning algorithms: revisiting the 2010 Haiti earthquakeRemote Sens20168868
Socher R, Lin CC, Manning C, Ng AY (2011) Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the international conference on machine learning. Omnipress, pp 129–136
DevaultJERobotic system for underwater inspection of bridge piersIEEE Instrum Measur Magaz200033237
SalmaneHKhoudourLRuicheckYA video-analysis-based railway-road safety system for detecting hazard situations at level crossingsIEEE Trans Intell Transp Syst201516596609
ReschBUsländerFHavasCCombining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessmentJ Artif Intell Res201845362376
Huang W, Wang Y, Yi X (2017) Deep Q-learning to preserve connectivity in multi-robot systems. In: Proceedings of the 9th international conference on signal processing systems (ICSPS2017). ACM, pp 45–50
GuoJWuJGuoJJiangZA damage identification approach for offshore jacket platforms using partial modal results and artificial neural networksAppl Sci201882173
Romlay MRM, Rashid MM, Toha SF (2016) Development of particle swarm optimizatio
S Seydi (4124_CR483) 2019; 42
VDC Heß (4124_CR203) 2017
J Yang (4124_CR608) 2011; 147
WT Lin (4124_CR314) 2008; 47
C Melchiorre (4124_CR355) 2008; 94
S Zahran (4124_CR633) 2008; 32
MS Eid (4124_CR139) 2017; 143
UH Atasever (4124_CR28) 2017; 26
VK Neppalli (4124_CR387) 2017; 21
S Su (4124_CR513) 2015; 116
S Li (4124_CR302) 2018; 283
SE Chang (4124_CR86) 2018; 91
S Pezanowski (4124_CR419) 2018; 45
S Yu (4124_CR629) 2014; 137
S Sachdeva (4124_CR467) 2018; 92
Z Wang (4124_CR586) 2019; 108
R Eskandarpour (4124_CR145) 2017; 32
Y Lin (4124_CR315) 2017; 37
LMK Sriram (4124_CR507) 2019; 7
K Noda (4124_CR397) 2014; 62
BW Robertson (4124_CR454) 2019; 2
JH Ruan (4124_CR461) 2016; 54
RR Murphy (4124_CR378) 2007; 25
Y Shibuya (4124_CR492) 2019; 34
L Zou (4124_CR667) 2019; 12
Y Bai (4124_CR38) 2018; 15
M Khadr (4124_CR251) 2016; 7
M Ladds (4124_CR284) 2017; 21
I Mitsopoulos (4124_CR364) 2017; 88
O Günay (4124_CR188) 2010; 46
H Mao (4124_CR346) 2019; 12
A Vetrivel (4124_CR563) 2018; 140
Y Qiang (4124_CR431) 2020; 57
NJ Liang (4124_CR309) 2001; 38
AM Wahab (4124_CR566) 2018; 169
AB Arrieta (4124_CR24) 2020; 58
KI Karstoft (4124_CR249) 2015; 15
CM Yeum (4124_CR617) 2015; 30
A McGovern (4124_CR353) 2011; 4
JG Victores (4124_CR564) 2011; 20
J Guo (4124_CR190) 2018; 8
T Ghosh (4124_CR173) 2018; 33
S German (4124_CR169) 2013; 27
H Liu (4124_CR319) 2008; 93
GF Gomes (4124_CR178) 2019; 181
R Zhang (4124_CR644) 2010; 91
J Lee (4124_CR291) 2016; 12
N Xu (4124_CR600) 2007; 36
Q Zhao (4124_CR650) 2019; 31
Y Zhang (4124_CR647) 2018; 72
JK Riad (4124_CR452) 2006; 29
L Yu (4124_CR625) 2016; 16
D Reynard (4124_CR450) 2019; 77
KM Simmons (4124_CR497) 2008; 23
RB Duffey (4124_CR131) 2019; 10
V Yadollahnejad (4124_CR603) 2017; 143
F Cavalieri (4124_CR78) 2014; 29
S Yang (4124_CR611) 2019; 579
C Koch (4124_CR270) 2016; 17
SG Kong (4124_CR274) 2016; 79
B Takahashi (4124_CR525) 2015; 50
Y Luo (4124_CR331) 2013; 42
BT Pham (4124_CR420) 2017; 149
X Song (4124_CR506) 2017; 35
C Yuan (4124_CR631) 2015; 45
B Resch (4124_CR449) 2018; 45
R Greifeneder (4124_CR186) 2011; 15
S Ettinger (4124_CR147) 2016; 541
ZM Yaseen (4124_CR616) 2015; 530
M Jamali (4124_CR235) 2019; 44
T Yabe (4124_CR602) 2019; 32
L Nguyen (4124_CR392) 2019
L Wang (4124_CR579) 2019; 122
J Wang (4124_CR574) 2018; 18
P Bocchini (4124_CR64) 2012; 17
M Hashemipour (4124_CR199) 2017; 32
SD Ramchurn (4124_CR439) 2016; 57
J Noymanee (4124_CR400) 2017; 119
MR Rasouli (4124_CR441) 2018; 57
X Song (4124_CR505) 2016; 8
PR Bagde (4124_CR33) 2016; 7
Y Zhang (4124_CR645) 2019; 78
Q Kong (4124_CR273) 2016; 2
Q Wu (4124_CR595) 2008; 54
J Chae (4124_CR83) 2014; 38
Q Feng (4124_CR153) 2019; 7
S Zheng (4124_CR656) 2019; 7
M Karamouz (4124_CR248) 2014; 6
G Ireland (4124_CR230) 2015; 7
J Wang (4124_CR571) 2010; 11
JM Kim (4124_CR262) 2015; 76
B Cortez (4124_CR109) 2018; 97
Y Liu (4124_CR323) 2016; 91
4124_CR7
H Aghamohammadi (4124_CR10) 2013; 10
Z Yao (4124_CR615) 2019; 366
M Basu (4124_CR49) 2019; 6
M Aljehani (4124_CR19) 2018; 14
Z Muda (4124_CR375) 2011; 10
H Shi (4124_CR491) 2015; 32
4124_CR2
MAU Khan (4124_CR253) 2012; 12
4124_CR1
K Crawford (4124_CR110) 2015; 80
RT Eguchi (4124_CR135) 1998; 14
4124_CR4
M Rakgase (4124_CR437) 2014; 47
J Fohringer (4124_CR156) 2015; 15
S Hasan (4124_CR198) 2014; 44
4124_CR5
YR Lin (4124_CR316) 2015
C Ma (4124_CR332) 2015; 7
Y Liu (4124_CR324) 2013; 10
H Zhang (4124_CR639) 2016; 84
AJ Rosellini (4124_CR458) 2018; 96
R Suganya (4124_CR515) 2018; 22
C Yuan (4124_CR630) 2019
M Bejiga (4124_CR53) 2017; 9
JN Goetz (4124_CR177) 2015; 81
R Chen (4124_CR92) 2008; 51
A Jaech (4124_CR233) 2019; 34
K Mori (4124_CR369) 2013; E96–A
D Gunning (4124_CR189) 2019; 4
W Li (4124_CR307) 2019
J Hackl (4124_CR194) 2018; 33
JB Sheu (4124_CR488) 2010; 46
L Cheng (4124_CR101) 2020
I Zidi (4124_CR664) 2019; 159
YJ Zheng (4124_CR657) 2013; 18
F Laylavi (4124_CR290) 2017; 53
4124_CR52
Q Li (4124_CR301) 2016; 107
J Alfaiate (4124_CR17) 2007; 348–349
SM Hosseini-Moghari (4124_CR212) 2015; 74
PA Chen (4124_CR90) 2013; 497
IM Cavalcante (4124_CR77) 2019; 49
SF Pilkington (4124_CR422) 2016; 1
4124_CR520
4124_CR641
T Li (4124_CR306) 2019; 14
4124_CR402
4124_CR523
4124_CR643
MC Tunusluoglu (4124_CR548) 2007; 54
4124_CR529
4124_CR409
4124_CR59
4124_CR403
4124_CR527
4124_CR648
4124_CR405
4124_CR526
L Uunk (4124_CR555) 2010; 57
JP Wang (4124_CR576) 2013; 58
4124_CR62
D Mitsova (4124_CR366) 2019; 11
Y Yang (4124_CR614) 2019; 196
W Chen (4124_CR96) 2018; 626
SE Middleton (4124_CR360) 2014; 29
H Saito (4124_CR471) 2009; 109
4124_CR510
4124_CR511
W Sun (4124_CR519) 2020; 5
DW Kim (4124_CR260) 2017; 89
J Reilly (4124_CR446) 2013; 10
T Shelton (4124_CR486) 2014; 52
K Muhammad (4124_CR376) 2018; 288
H Zhang (4124_CR638) 2016; 83
A Zubiaga (4124_CR669) 2018; 51
4124_CR69
4124_CR516
4124_CR637
H Sharma (4124_CR484) 2020
4124_CR636
4124_CR76
4124_CR75
4124_CR72
4124_CR73
4124_CR71
RR Murphy (4124_CR379) 2009; 16
S Ghaffarian (4124_CR170) 2019; 11
P Kellermann (4124_CR250) 2020
TC Hutchinson (4124_CR224) 2005; 21
4124_CR543
B Wang (4124_CR568) 2020
MS Eid (4124_CR138) 2017; 31
4124_CR542
4124_CR303
L Mabon (4124_CR334) 2016; 7
4124_CR424
4124_CR660
IR Galatzer-Levy (4124_CR159) 2014; 59
4124_CR540
H Moskowitz (4124_CR371) 2011; 42
4124_CR429
M Ren (4124_CR447) 2010; 25
4124_CR547
NSN Lam (4124_CR286) 2016; 17
KC Hung (4124_CR223) 2016; 68
J Holguín-Veras (4124_CR208) 2012; 30
V Grasic (4124_CR184) 2018; 14
X Liang (4124_CR310) 2018; 34
D Lattanzi (4124_CR287) 2017; 23
JS Bevington (4124_CR60) 2015
S Naito (4124_CR385) 2018; 13
4124_CR411
P Peduzzi (4124_CR414) 2009; 9
4124_CR532
4124_CR653
DF D’Amico (4124_CR116) 2019; 25
DI Dogaru (4124_CR127) 2019; 21
4124_CR410
4124_CR534
4124_CR412
4124_CR654
A Strauss (4124_CR512) 2009; 5
4124_CR651
4124_CR418
A Shirzadi (4124_CR493) 2017; 76
I Yilmaz (4124_CR618) 2010; 61
4124_CR536
4124_CR535
4124_CR538
Q Wang (4124_CR582) 2020; 8
P Holgado (4124_CR207) 2017; 17
4124_CR537
4124_CR658
A Hernandez-Suarez (4124_CR202) 2019; 19
4124_CR609
K Chung (4124_CR107) 2016; 9
A Moradi (4124_CR368) 2019; 15
S Bellaire (4124_CR54) 2017; 144
I Dutta (4124_CR133) 2017; 90
N Xu (4124_CR601) 2019; 51
J Ghosh (4124_CR171) 2013; 34
N Chaudhuri (4124_CR88) 2020; 130
S Sharma (4124_CR485) 2015; 22
SE McCaslin (4124_CR350) 2005; 36
Y Zhao (4124_CR652) 2020; 359
S Chen (4124_CR94) 2020; 47
MY Cheng (4124_CR102) 2014; 30
JP Bagrow (4124_CR35) 2011; 6
4124_CR607
A Curtis (4124_CR114) 2010; 37
W Orabi (4124_CR404) 2010; 26
L Wang (4124_CR578) 2013; 57
4124_CR604
PJ Maliszewski (4124_CR340) 2012; 99
P Hoeppe (4124_CR206) 2016; 11
S Kameshwar (4124_CR244) 2014; 78
M Memarzadeh (4124_CR356) 2019; 80
GE Dahl (4124_CR115) 2012; 20
M Dou (4124_CR130) 2014; 37
FI Sadiq (4124_CR470) 2018; 77
J Sánchez-García (4124_CR475) 2019; 90
R Kovordányi (4124_CR276) 2009; 64
JA Pual (4124_CR428) 2012; 196
AT Zagorecki (4124_CR632) 2013; 9
T Balz (4124_CR41) 2010; 31
FS Hosseini (4124_CR211) 2019; 711
Y Kim (4124_CR268) 2018; 33
YJ Cha (4124_CR82) 2015; 30
S da Silva (4124_CR495) 2008; 22
C Zhou (4124_CR659) 2018; 112
SH Khan (4124_CR254) 2017; 55
C Wan (4124_CR567) 2010; 17
AB Smith (4124_CR500) 2013; 67
JH Wang (4124_CR575) 2019; 33
F Ofli (4124_CR401) 2016; 4
E Bromley (4124_CR67) 2017; 14
H Eicken (4124_CR137) 2011; 45
A Karamlou (4124_CR246) 2016; 117
SS Jones (4124_CR241) 2008; 15
MH Rafiei (4124_CR434) 2017; 100
L Zhao (4124_CR649) 2012; 70
A Giusti (4124_CR176) 2015; 1
ZN Wang (4124_CR587) 2018; 92
F Khoshnoudian (4124_CR256) 2017; 17
JB Sheu (4124_CR487) 2007; 43
4124_CR501
R Arridha (4124_CR23) 2017; 7
MF Goodchild (4124_CR182) 2010; 3
4124_CR621
D Bunker (4124_CR68) 2015; 17
PS Crawford (4124_CR111) 2018
4124_CR509
4124_CR503
4124_CR624
Y Zhang (4124_CR646) 2009; 76
YL Zhou (4124_CR662) 2018; 24
4124_CR502
4124_CR504
Y Sun (4124_CR521) 2016; 115
A Lucieer (4124_CR330) 2014; 38
J Wang (4124_CR573) 2016; 18
S Valkaniotis (4124_CR556) 2018; 245
MC Gonzalez (4124_CR181) 2009; 453
VQ Nguyen (4124_CR393) 2019
C Rudin (4124_CR462) 2012; 34
SV Ukkusuri (4124_CR550) 2014; 2459
S Chen (4124_CR93) 2009; 36
C Axel (4124_CR30) 2017; 4
B Tomaszewski (4124_CR541) 2011; 35
DT Trugman (4124_CR546) 2017; 88
LC Chang (4124_CR85) 2010; 385
S Afandizadeh (4124_CR8) 2013; 69
4124_CR619
MM Torok (4124_CR544) 2014; 28
A Zubiaga (4124_CR668) 2016; 11
4124_CR613
O Badmus (4124_CR32) 2020
Y Xiao (4124_CR596) 2018; 94
C Kousky (4124_CR275) 2015; 84
A Barabadi (4124_CR44) 2018; 169
A Krizhevsky (4124_CR277) 2017; 60
4124_CR370
JF Rosser (4124_CR459) 2017; 87
D Hu (4124_CR215) 2019; 42
X Huang (4124_CR219) 2019
Z Liu (4124_CR325) 2018; 22
4124_CR125
4124_CR124
4124_CR245
JE Devault (4124_CR122) 2000; 3
4124_CR126
C Gomez (4124_CR179) 2016; 3
4124_CR247
N Jayaram (4124_CR236) 2010; 39
4124_CR242
TB Trafalis (4124_CR545) 2014; 11
D Nolasco-Javier (4124_CR398) 2018; 90
SA Bagloee (4124_CR34) 2019; 124
Z Wang (4124_CR585) 2018; 93
4124_CR128
U Maulik (4124_CR349) 2002; 24
D Reed (4124_CR445) 2008; 96
N Casagli (4124_CR74) 2017; 4
S Kuang (4124_CR279) 2017; 7
4124_CR482
4124_CR481
4124_CR477
SM Mousavi (4124_CR372) 2019; 9
4124_CR479
4124_CR357
4124_CR478
4124_CR599
4124_CR352
4124_CR594
TC Hou (4124_CR214) 2017; 108
J Li (4124_CR299) 2010; 42
4124_CR351
4124_CR112
G Datt (4124_CR117) 2015; 4
4124_CR474
SN Mahmoudi (4124_CR338) 2016; 14
M Huang (4124_CR217) 2019; 22
F Fiedrich (4124_CR155) 2000; 35
4124_CR239
TH Lin (4124_CR313) 2015; 76
4124_CR119
Y Gao (4124_CR163) 2006; 15
H Li (4124_CR297) 2014; 45
L Zheng (4124_CR655) 2013; 43
Y Peng (4124_CR416) 2019; 365
4124_CR391
4124_CR152
4124_CR394
B Pradhan (4124_CR427) 2009; 9
E Wlwood (4124_CR592) 2015; 1
4124_CR151
4124_CR272
T Yang (4124_CR612) 2019; 8
4124_CR390
H Salmane (4124_CR473) 2015; 16
4124_CR389
YL Zhou (4124_CR661) 2017; 16
4124_CR146
4124_CR267
4124_CR388
4124_CR148
4124_CR143
SH Moon (4124_CR367) 2018; 568
4124_CR144
K Ahmad (4124_CR12) 2019; 74
S Basu (4124_CR50) 2019; 66
AS Pillai (4124_CR423) 2019
M Yu (4124_CR626) 2018; 8
EM Ali (4124_CR18) 2019; 119
X Guo (4124_CR192) 2009; 36
AD Malawani (4124_CR339) 2020
K Kochersberger (4124_CR271) 2014; 31
J Yin (4124_CR620) 2012; 27
A Ansari (4124_CR22) 2015; 105
J Xiong (4124_CR597) 2019; 8
S Kim (4124_CR266) 2016; 31
S Mangalathu (4124_CR343) 2018; 162
4124_CR382
MC Benítez (4124_CR56) 2007; 45
JM Kim (4124_CR263) 2016; 84
M Bakhshipour (4124_CR39) 2017; 57
4124_CR136
4124_CR257
4124_CR377
4124_CR498
K Liu (4124_CR320) 2016; 31
4124_CR132
References_xml – reference: Ngiam J, Khosla A, Kim M, Nam J, Nam H, Ng AY (2011) Multimodal deep learning. In: Proceedings of the 28th international conference on machine learning. ACM, pp 689–696
– reference: YuSKimSWOhCWAnHKimJMQuantitative assessment of disaster resilience: an empirical study on the importance of post-disaster recovery costsReliab Eng Syst Saf2014137617
– reference: TatemAJQiuYSmithDLSabotOAliASMoonenBThe use of mobile phone data for the estimation of the travel patterns and imported Plasmodium falciparum rates among Zanzibar residentsMalar J20098287
– reference: DouJYamagishiHPourghasemiHRYunusAPSongXXuYZhuZAn integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, JapanNat Hazards20157817491776
– reference: ChouJSThedjaJPPMetaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problemsAutom Construct2016686580
– reference: QiangYHuangQXuJObserving community resilience from space: using nighttime lights to model economic disturbance and recovery pattern in natural disasterSustain Cities Soc202057102115
– reference: Abdullahi SI, Habaebi MH, Malik NA (2018) Flood disaster warning system on the go. In: Proceedings of the 2018 7th international conference on computer and communication engineering (ICCCE). IEEE, pp 258–263. https://doi.org/10.1109/ICCCE.2018.8539253
– reference: MurphyRRStoverSRescue robots for mudslides: a descriptive study of the 2005 La Conchita mudslide responseJ Field Robot200725316
– reference: Sadhu V, Salles-Loustau G, Pompili D, Zonouz S, Sritapan V (2017) Argus: smartphone-enabled human cooperation for disaster situational awareness via MARL. In: Proceedings of the 2017 IEEE international conference on pervasive computing and communications demonstrations. IEEE. https://doi.org/10.1109/PERCOMW.2017.7917529
– reference: Lin SY, Chao KM, Lo CC, Godwin N (2013) Distributed dynamic data driven prediction based on reinforcement learning approach. In: Proceedings of the 28th annual ACM symposium on applied computing. ACM, pp 779–784
– reference: ZubiagaAAkerABontchevaKLiakataMProcterRDetection and resolution of rumours in social media: a surveyACM Comput Surv20185132
– reference: Dekanová M, Duchoň F, Dekan M, Kyzek F, Biskupič M (2018) Avalanche forecasting using neural network. In: Proceedings of the 2018 ELEKTRO. IEEE. https://doi.org/10.1109/ELEKTRO.2018.8398359
– reference: SuSPiJWanCLiHXiaoRLiBCategorizing social vulnerability patterns in Chinese coastal citiesOcean Coast Manag201511618
– reference: van AardtJAMcKeownDFaulringJRaqueñoNCasterlineMRenschlerCEguchiRMessingerDKrzaczekRCavilliaSAntalovichJJrPhilipsNBartlettBSalvaggioCOntiverosEGillSGeospatial disaster response during the Haiti Earthquake: a case study spanning airborne deployment, data collection, transfer, processing, and disseminationPhotogramm Eng Remote Sens20119943952
– reference: BakhshipourMGhadiMJNamdariFSwarm robotics search and rescue: a novel artificial intelligence-inspired optimization approachAppl Soft Comput201757708726
– reference: WanCMitaAEarly warning of hazard for pipelines by acoustic recognition using principal component analysis and one-class support vector machinesSmart Struct Syst201017405421
– reference: MaulikUBandyopadhyaySPerformance evaluation of some clustering algorithms and validity indicesIEEE Trans Pattern Anal Mach Intell20022416501654
– reference: PhamBTBuiDTPrakashIDholakiaMBHybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GISCATENA20171495263
– reference: Bayerlein H, Kerret PD, Gesbert D (2018) Trajectory optimization for autonomous flying base station via reinforcement learning. In: Proceedings of the 2018 IEEE 19th international workshop on signal processing advances in wireless communications (SPAWC). IEEE. https://doi.org/10.1109/SPAWC.2018.8445768
– reference: AghamohammadiHMesgariMSMansourianAMolaeiDSeismic human loss estimation for an earthquake disaster using neural networkInt J Environ Sci Technol201310931939
– reference: Ashktorab Z, Brown C, Nandi M, Culotta A (2014) Tweedr: mining Twitter to inform disaster response. In: Proceedings of the 11th international conference on information systems for crisis response and management (ISCRAM2014). ISCRAM, pp 354–358. http://idl.iscram.org/files/ashktorab/2014/275_Ashktorab_etal2014.pdf
– reference: Yang J, Chesbrough H, Hurmelinna-Laukkanen P (2019a) The rise, fall, and resurrection of IBM Watson Health. Technical Report, Haas School of Business, University of California. http://jultika.oulu.fi/files/nbnfi-fe2020050424858.pdf
– reference: RamchurnSDHuynhTDWuFIkunoYFlannJMoreauLFischerJEJiangWRoddenTSimpsonEReeceSRobertsSJenningsNRA disaster response system based on human-agent collectivesJ Artif Intell Res20165766170810.1613/jair.5098
– reference: YadollahnejadVBozorgi-AmiriAJabalameliMAllocation and vehicle routing for evacuation operations: a model and a simulated annealing heuristicJ Urban Plan Dev201714304017018
– reference: Zhao Y, Zheng Z, Zhang X, Liu Y (2017) Q-learning algorithm based UAV path learning and obstacle avoidance approach. In: Proceedings of the 36th Chinese control conference. https://doi.org/10.23919/ChiCC.2017.8027884
– reference: KongSGJinDLiSKimHFast fire flame detection in surveillance video using logistic regression and temporal smoothingFire Saf J2016793743
– reference: ZobelCWQuantitatively representing nonlinear disaster recoveryDecis Sci20144510531082
– reference: ChenYNiuZBaiJWangYSeismic vulnerability assessment of water supply network in Tianjin, ChinaFront Environ Sci Eng20148767775
– reference: CrawfordPSAl-ZarradMAGraettingerAJHainenAMBackEPowellLRapid disaster data dissemination and vulnerability assessment through synthesis of a web-based extreme event viewer and deep learningAdv Civ Eng201810.1155/2018/7258156
– reference: EttingerSMounaudLMagillCYao-LafourcadeAFThouretJCManvilleVNegulescuCZuccaroGGregorioDDNardoneSUchuchoqueJALArguedasAMacedoLLlerenaNMBuilding vulnerability to hydro-geomorphic hazards: Estimating damage probability from qualitative vulnerability assessment using logistic regressionJ Hydrol2016541563581
– reference: KryvasheyeuYChenHObradovichNMoroEHentenryckPVFowlerJCebrianMRapid assessment of disaster damage using social media activitySci Adv201623e150077910.1126/sciadv.1500779
– reference: DuffeyRBPower restoration prediction following extreme events and disastersInt J Disaster Risk Sci201910134148
– reference: Joo S, Ogawa Y, Sekimoto Y (2019) Decision-making system for road-recovery considering human mobility by applying deep Q-network. In: The 2019 IEEE international conference on big data. IEEE. https://doi.org/10.1109/BigData47090.2019.9006385
– reference: SalmaneHKhoudourLRuicheckYA video-analysis-based railway-road safety system for detecting hazard situations at level crossingsIEEE Trans Intell Transp Syst201516596609
– reference: Song X, Zhang Q, Sekimoto Y, Shibasaki R (2014) Prediction of human emergency behavior and their mobility following large-scale disaster. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 5–14
– reference: ArridhaRSukaridhotoSPramadihantoDFunabikiNClassification extension based on IoT-big data analytic for smart environment monitoring and analytic in real-time systemInt J Space Based Situat Comput20177829310.1504/IJSSC.2017.10008038
– reference: Hosseini-MoghariSMAraghinejadSMonthly and seasonal drought forecasting using statistical neural networksEnviron Earth Sci201574397412
– reference: RobinsonSMurphyHBiesAStructured to partner: school district collaboration with nonprofit organizations in disaster responseRisk Hazards Crisis201451779510.1002/rhc3.12047
– reference: WanikDWAnagnostouENHartmanBMFredianiMEBAstithaMStorm outage modeling for an electric distribution network in Northeastern USANat Hazards20157913591384
– reference: BoydDCrawfordKCritical questions for big dataJ Inf Commun Soc201215662679
– reference: WangZWuJChengLLiuKWeiYRegional flood risk assessment via coupled fuzzy c-means clustering methods: an empirical analysis from China’s Huaihe River BasinNat Hazards201893803822
– reference: ChenWYanXZhaoZHongHBuiDTPradhanBSpatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naïve Bayes and RBFNetwork models for the Long County area (China)Bull Eng Geol Environ201978247266
– reference: HosseiniFSChoubinBMosaviANabipourNShamshirbandSDarabiHHaghighihATFlash-flood hazard assessment using ensembles and bayesian-based machine learning models: application of the simulated annealing feature selection methodSci Total Environ201971113516110.1016/j.scitotenv.2019.135161
– reference: LiSTeoKLPost-disaster multi-period road network repair: work scheduling and relief logistics optimizationAnn Oper Res201828313451385
– reference: Kamilaris A, Boldú FXP (2017) Disaster monitoring using unmanned aerial vehicles and deep learning. In: Disaster management for resilience and public safety workshop
– reference: IzadiMMohammadzadeAHaghighattalabAA new neuro-fuzzy approach for post-earthquake road damage assessment using GA and SVM classification from Quickbird satellite imagesJ Indian Soc Remote Sens201745965977
– reference: BocchiniPFrangopolDMOptimal resilience- and cost-based postdisaster intervention prioritization for bridges along a highway segmentJ Bridge Eng20121711712910.1061/(asce)be.1943-5592.0000201
– reference: BagloeeSAJohanssonKHAsadiMA hybrid machine-learning and optimization method for contraflow design in post-disaster cases and traffic management scenariosExpert Syst Appl20191246781
– reference: Rizk Y, Jomaa H, Award M, Castillo C (2019) A computationally efficient multi-modal classification approach of disaster-related Twitter images. In: The 34th ACM/SIGAPP symposium on applied computing (SAC ’19). ACM. https://doi.org/10.1145/3297280.3297481
– reference: HolgadoPVollagráVAVázquesLReal-time multistep attack prediction based on hidden Markov modelsIEEE Trans Dependable Secure Comput201717134147
– reference: MarjanovićMKovačevićMBajatBVoženílekVLandslide susceptibility assessment using SVM machine learning algorithmEng Geol2011123225234
– reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale visual recognition. https://arxiv.org/abs/1409.1556
– reference: FiedrichFGehbauerFRickersUOptimized resource allocation for emergency response after earthquake disastersSaf Sci2000354157
– reference: PilkingtonSFMahmoudHNUsing artificial neural networks to forecast economic impact of multi-hazard hurricane-based eventsSustain Resil Infrastruct201616383
– reference: Verma S, Vieweg S, Corvey WJ, Palen L, Martin JH, PAlmer M, Anderson KM (2011) Natural language processing to the rescue? extracting “situational awareness” tweets during mass emergency. In: Proceedings of the fifth international conference on weblogs and social media (ICWSM2011). AAAI, pp 385–392. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2834
– reference: MurphyRRSteimleEHallMLindemuthMTrejoDHurlebausSMedina-CetinaZSlocumDRobotics-assisted bridge inspectionJ Intell Robot Syst2011647795
– reference: ZubiagaALiakataMProcterRHoiGWSTolmiePAnalysing how people orient to and spread rumours in social media by looking at conversational threadsPLoS One201611129
– reference: KimYGhorpadeAZhaoFPereiraFCZegrasPCBen-AkivaMActivity recognition for a smartphone and web-based human mobility sensing systemIEEE Intell Syst201833523
– reference: AsimKMMartínez-ÁlvarezFBasitAIqbalTEarthquake magnitude prediction in Hindukush region using machine learning techniquesNat Hazards201785471486
– reference: BalzTLiaoMBuilding-damage detection using post-seismic high-resolution SAR satellite dataInt J Remote Sens20103133693391
– reference: Li T, Zhou W, Zeng C, Wang Q, Zhou Q, Wang D, Xue J, Huang Y, Wang W, Zhang M, Luis S, Chen SC, Rishe N (2016b) DI-DAP: an efficient disaster information delivery and analysis platform in disaster management. In: Proceedings of the 25th ACM international on conference on information and knowledge management, pp 1593–1602
– reference: USGS (2016b) ShakeMap. https://earthquake.usgs.gov/data/shakemap/
– reference: The PRAISys Team (2018) Probabilistic resilience assessment of interdependent systems (PRAISys). http://praisys.org
– reference: ChengLZhangJIs tourism development a catalyst of economic recovery following natural disaster? An analysis of economic resilience and spatial variabilityCurr Issues Tour202010.1080/13683500.2019.1711029
– reference: GengBTraffic prediction and transmission scheduling of artificial intelligence-driven cognitive wireless networksInt J Comput Appl201910.1080/1206212X.2019.1706812
– reference: LiTZengCZhouWXueWHuangYLiuZZhouQXiaBWangQWangWZhuXFIU-Miner (a fast, integrated, and user-friendly system for data mining) and its applicationsKnowl Inf Syst201752411443
– reference: Zhao Z, Wu Y (2016) Attention-based convolutional neural networks for sentence classification. In: The 17th annual conference of the international speech communication association, pp 705–709
– reference: EllenbergABrancoLKrickABartoliIKontsosAUse of unmanned aerial vehicle for quantitative infrastructure evaluationJ Infrastruct Syst20152104014054
– reference: ZengYYanYWengSSunYTianWYuHFuzzy clustering of time-series model to damage identification of structuresAdv Struct Eng201822868881
– reference: BhavarajuSKTBeyneyCNicholsonCQuantitative analysis of social media sensitivity to natural disastersInt J Disaster Risk Reduct201939101251
– reference: ChangTCChienYHThe application of genetic algorithm in debris flows predictionEnviron Geol200753339347
– reference: HaraokaTOjimaTMurataCHayasakaSFactors influencing collaborative activities between non-professional disaster volunteers and victims of earthquake disastersPLoS One20127e47203
– reference: McConnon A (2018) AI helps cities predict natural disasters. https://www.wsj.com/articles/ai-helps-cities-predict-natural-disasters-1530065100
– reference: AndoHAmbeYIshiiAKonyoMTadakumaKMaruyamaSTadokoroSAerial hose type robot by water jet for fire fightingIEEE Robot Autom2018311281135
– reference: MuhammadKAhmadJBaikSWEarly fire detection using convolutional neural networks during surveillance for effective disaster managementNeurocomputing20182883042
– reference: SheltonTPoorthuisAGrahamMZookMMapping the data shadows of Hurricane Sandy: uncovering the sociospatial dimensions of ‘big data’Geoforum201452167179
– reference: YaseenZMEl-shafieAJaafarOAfanHASaylaKNArtificial intelligence based models for stream-flow forecasting: 2000–2015J Hydrol2015530829844
– reference: Cauffman SA, Dillard MK, Helgeson JF (2018) Implementation of the NIST community resilience planning guide for buildings and infrastructure systems. Technical Report NISTIR 8231, National Institute of Standards and Technology. https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8231.pdf
– reference: Gemici MC, Savena A (2014) Learning haptic representation for manipulating deformable food objects. In: Proceedings of the 2014 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 638–645. https://doi.org/10.1109/IROS.2014.6942626
– reference: SheykhmousaMKerleNKufferMGhaffarianSPost-disaster recovery assessment with machine learning-derived land cover and land use informationRemote Sens2019111174
– reference: ZhengLShenCTangLZengCLiTLuisSChenSCData mining meets the needs of disaster information managementIEEE Trans Hum Mach Syst201343451464
– reference: Abdalla R, Esmall M (2018) Artificial intelligence and WebGIS for disaster and emergency management. In: WebGIS for disaster management and emergency response. Springer, pp 57–62
– reference: ChaYJBuyukozturkOStructural damage detection using modal strain energy and hybrid multi-objective optimizationComput Aided Civ Infrastruct Eng201530347358
– reference: Vetrivel A, Kerle N, Gerke M, Nex G, Vosselman G (2016) Towards automated satellite image segmentation and classification for assessing disaster damage using data-specific features with incremental learning. In: Kerle N, Gerke M, Lefevre S (eds) Proceedings of the GEOBIA2016: solutions and synergies, Enschede: University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), pp 1–5. https://doi.org/10.3990/2.369
– reference: KimJMWoodPKParkYJSonKEstimating the Texas Windstorm Insurance Association claim payout of commercial buildings from Hurricane IkeNat Hazards201684405424
– reference: LeśniakAIsakowZSpace–time clustering of seismic events and hazard assessment in the Zabrze-Bielszowice coal mine, PolandInt J Rock Mech Min Sci200946918928
– reference: MeruaneVHeylenWStructural damage assessment with antiresonances versus mode shapes using parallel genetic algorithmsStruct Control Health Monit201118825839
– reference: Xu JX, Lu W, Li Z, Khaitan P, Zaytseva V (2019a) Building damage detection in satellite imagery using convolutional neural networks. In: Proceedings of the 33rd conference on neural information processing systems (NeurIPS 2019). arXiv:1910.06444
– reference: GeoPlatform (2016) Geoplatform.gov. https://www.Disasters.GeoPlatform.gov/
– reference: HeßVDCWeigh(t)ing the dimensions of social vulnerability based on a regression analysis of disaster damagesNat Hazards Earth Syst Sci201710.5194/nhess-2017-74
– reference: ZagoreckiATJohnsonDERistvejJData mining and machine learning in the context of disaster and crisis managementInt J Emerg Manag20139351365
– reference: LucieerAde JongSMTurnerDMapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photographyProg Phys Geogr Earth Environ20143897116
– reference: LiHCarageaDCarageaCHerndonNDisaster response aided by tweet classification with a domain adaptation approachJ Contingencies Crisis Manag2018261627
– reference: CrawfordKFinnMThe limits of crisis data: analytical and ethical challenges of using social and mobile data to understand disastersGeoJournal201580491502
– reference: HashemipourMStubanSMFDeverJRA community-based disaster coordination framework for effective disaster preparedness and responseAust J Emerg Manag2017324146
– reference: LiTWangQXieZDisaster response knowledge and its social determinants: a cross-sectional study in Beijing, ChinaPLoS One201914e0214367
– reference: SuZJiangJLiangCZhangGPath selection in disaster response management based on Q-learningInt J Autom Comput20118100106
– reference: MaXTaoZWangYYuHWangYLong short-term memory neural network for traffic speed prediction using remote microwave sensor dataTransp Res Part C201554187197
– reference: Pau J, Baker J, Houston N (2017) Artificial intelligence in Asia: preparedness and resilience. https://www.asiabusinesscouncil.org/docs/AI_briefing.pdf
– reference: WahabAMLudinANMFlood vulnerability assessment using artificial neural networks in Muar Region, Johor MalaysiaIOP Conf Ser Earth Environ Sci2018169012056
– reference: Zhang G, Li B, Li Z, Wang C, Zhang H, Shang H, Hu W, Zhang T (2014) Development of robotic spreader for earthquake rescue. In: Proceedings of the 2014 IEEE international symposium on safety, security, and rescue robotics. IEEE. https://doi.org/10.1109/SSRR.2014.7017679
– reference: WangJHLinGFChangMJHuangIHChenYRReal-time water-level forecasting using dilated causal convolutional neural networksWater Resour Manag20193337593780
– reference: GongQLiLTogninSWuQPettersson-YeoWLuiSHuangXMarquandAFMechelliAUsing structural neuroanatomy to identify trauma survivors with and without post-traumatic stress disorder at the individual levelPsychol Med201344195203
– reference: Socher R, Huval B, Bhat B, Manning CD, Ng AY (2008) Convolutional-recursive deep learning for 3D object classification. In: Proceedings of the 25th international conference on neural information processing systems, volume 1, pp 656–664
– reference: XuNGuikemaSDDavidsonRANozickLKÇağnanZVaziriKOptimizing scheduling of post-earthquake electric power restoration tasksEarthq Eng Struct Dyn200736265284
– reference: MerzBKreibichHLallUMulti-variate flood damage assessment: a tree-based data-mining approachNat Hazards Earth Syst Sci2013135364
– reference: WangJPHuangDChangSCBrantLOn-site earthquake early warning with multiple regression analysis: featuring two user-friendly applications for ExcelComput Geosci20135817
– reference: Kundu S, Srijith P, Desarkar MS (2018) Classification of short-texts generated during disasters: a deep neural network based approach. In: Proceedings of the 2018 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM). IEEE, pp 790–793, https://doi.org/10.1109/ASONAM.2018.8508695
– reference: LiuHDavidsonRAApanasovichTVSpatial generalized linear mixed models of electric power outages due to hurricanes and ice stormsReliab Eng Syst Saf200893897912
– reference: GomezCPurdieHUAV-based photogrammetry and geocomputing for hazards and disaster risk monitoring—a reviewGeoenviron Disasters2016323
– reference: EidMSEl-adawayIHIntegrating the social vulnerability of host communities and the objective functions of associated stakeholders during disaster recovery processes using agent-based modelingJ Comput Civ Eng20173104017030
– reference: SinghNRoyNGangopadhyayAAnalyzing the emotions of crowd for improving the emergency response servicesPervasive Mobile Comput201958101018
– reference: SachdevaSBhatiaTVermaAKGIS-based evolutionary optimized gradient boosted decision trees for forest fire susceptibility mappingNat Hazards20189213991418
– reference: Hochgraf C, Nygate J, Bazdresch M, Indelicato M, Johnson WP, Espinos R (2018) Providing first responders with real-time status of cellular networks during a disaster. In: The 2018 IEEE international symposium on technologies for homeland security (HST). IEEE. https://doi.org/10.1109/THS.2018.8574145
– reference: AxelCvan AardtJANBuilding damage assessment using airborne LiDARJ Appl Remote Sens20174046024
– reference: Steimle ET, Murphy RR, Lindemuth M, Hall ML (2009) Unmanned marine vehicle use at Hurricanes Wilma and Ike. In: OCEANS 2009. IEEE, pp 1–6. https://doi.org/10.23919/OCEANS.2009.5422201
– reference: WuQXuHPangWGIS and ANN coupling model: an innovative approach to evaluate vulnerability of karst water inrush in coalmines of north ChinaEnviron Geol200854937943
– reference: GaoXNayeemMKHezamIMA robust two-stage transit-based evacuation model for large-scale disaster responseMeasurement2019145713723
– reference: HuangLXiangLMethod for meteorological early warning of precipitation-induced landslides based on deep neural networkNeural Process Lett20184811431260
– reference: Zhang D, Zhang Y, Li Q, Plummer T, Wang D (2019a) CrowdLearn: A crowd-AI hybrid system for deep learning-based damage assessment applications. In: Proceedings of the IEEE 39th international conference on distributed computing systems (ICDCS). IEEE, pp 1221–1232. https://doi.org/10.1109/ICDCS.2019.00123
– reference: AljehaniMInoueMSafe map generation after a disaster, assisted by an unmanned aerial vehicle tracking systemTrans Electr Electron Eng201814271282
– reference: PerolTGharbiMDenolleMConvolutional neural network for earthquake detection and locationSci Adv20184e1700578
– reference: TakahashiBTandocECJrCarmichaelCCommunicating on Twitter during a disaster: an analysis of tweets during Typhoon Haiyan in the PhilippinesComput Hum Behav201550392398
– reference: Samir M, Chraiti M, Assi C, Ghrayeb A (2019) Joint optimization of UAV trajectory and radio resource allocation for drive-thru vehicular networks. In: Proceedings of the 2019 IEEE wireless communications and networking conference (WCNC). IEEE. https://doi.org/10.1109/WCNC.2019.8885893
– reference: WuDYanDYangGWangXXiaoWZhangHAssessment on agricultural drought vulnerability in the Yellow River basin based on a fuzzy clustering iterative modelNat Hazards201367919936
– reference: MiddletonSEMiddletonLModafferiSReal-time crisis mapping of natural disasters using social mediaIEEE Intell Syst201429917
– reference: SunWBocchiniPDavisonBDModel for estimating the impact of interdependencies on system recoveryJ Infrast Syst20202630402003110.1061/(ASCE)IS.1943-555X.0000569
– reference: ZahranSBrodySDPeacockWGVedlitzAGroverHSocial vulnerability and the natural and built environment: a model of flood casualties in TexasDisasters200832537560
– reference: Song X, Zhang Q, Sekimoto Y, Shibasaki R, Yuan NJ, Xie X (2015) A simulator of human emergency mobility following disasters: Knowledge transfer from big disaster data. In: Twenty-Ninth AAAI conference on artificial intelligence. AAAI, pp 730–736
– reference: GeißCTaubenböckHTyagunovSTischAPostJLakesTAssessment of seismic building vulnerability from spaceEarthq Spectra20143015531583
– reference: Holguín-VerasJJallerMWassenhoveLNVPérezNWachtendorfTOn the unique features of post-disaster humanitarian logisticsJ Oper Manag201230494506
– reference: GoetzJNBrenningAPetschkoHLeopoldPEvaluating machine learning and statistical prediction techniques for landslide susceptibility modelingComput Geosci201581111
– reference: KaramouzMNazifMKNazifSPrediction of sea level using a hybrid data-driven model: new challenges after Hurricane SandyWater Qual Expo Health201466371
– reference: Qiao L, Luo J (2012) Research on Q-learning algorithm with sharing experience in learning process. Computer Science, vol 39. http://en.cnki.com.cn/Article_en/CJFDTotal-JSJA201205053.htm
– reference: FengQLiuJGongJUrban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier—a case of Yuyao, ChinaWater2019714371455
– reference: GhoshTKrishnamurtiTNImprovements in hurricane intensity forecasts from a multimodel superensemble utilizing a generalized neural network techniqueWeather Forecast201833387388510.1175/WAF-D-17-0006.1
– reference: YuLZhuJHNonlinear damage detection using higher statistical moments of structural responsesStruct Eng Mech201454222123710.12989/sem.2015.54.2.221
– reference: Saxena A, Wong LLS, Ng AY (2008) Learning grasp strategies with partial shape information. In: Proceedings of the 23rd national conference on artificial intelligence - volume 3, pp 1491–1494
– reference: FohringerJDranschDKreibichHSchröterKSocial media as an information source for rapid flood inundation mappingNat Hazards Earth Syst Sci20151527252738
– reference: Oktarina R, Bahagia SN, Diawati L, Pribadi KS (2019) Artificial neural network for predicting earthquake casualties and damages in Indonesia. In: The 3rd international conference on eco engineering. IOPscience, p 012156
– reference: PradhanBFlood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensingJ Spat Hydrol20099118
– reference: KahnMEThe death toll from natural disasters: the role of income, geography, and institutionsRev Econ Stat200687271284
– reference: YoonHShiftehfarRChoSSpencerBFJNelsonMEAghaGVictim localization and assessment system for emergency respondersJ Comput Civ Eng20163004015011
– reference: HasanSUkkusuriSVUrban activity pattern classification using topic models from online geo-location dataTransp Res Part C Emerg Technol20144436338110.1016/j.trc.2014.04.003
– reference: Graves A, Mohamed A-R, Hinton G (2013) Speech recognition with deep recurrent neural networks. https://arxiv.org/abs/1303.5778
– reference: Tan D, Qu W, Tu J (2010) The damage detection based on the fuzzy clustering and support vector machine. In: The 2010 international conference on intelligent system design and engineering application, pp 598–601. https://doi.org/10.1109/ISDEA.2010.404
– reference: RossiFBuilding trust in artificial intelligenceJ Int Aff2019721127134
– reference: KhoshnoudianFTalaeiSFallahianMStructural damage detection using FRF data, 2D-PCA, artificial neural networks and imperialist competitive algorithm simultaneouslyInt J Struct Stab Dyn2017171750073
– reference: MaliszewskiPJLarsonEKPerringsCEnvironmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, ArizonaReliab Eng Syst Saf201299161171
– reference: Bande S, Shete VV (2017) Smart flood disaster prediction system using IoT and neural networks. In: 2017 international conference on smart technologies for smart nation (SmartTechCon). IEEE. https://doi.org/10.1109/SmartTechCon.2017.8358367
– reference: TomaszewskiBBlanfordJRossKPezanowskiSMacEachrenAMSupporting geographically-aware web document foraging and sensemakingComput Environ Urban Syst201135192207
– reference: SuganyaRJayashreeLSFuzzy rough set inspired rate adaptation and resource allocation using Hidden Markov Model (FRSIRA-HMM) in mobile ad hoc networksClust Comput20182298759888
– reference: ReedDElectric utility distribution analysis for extreme windsJ Wind Eng Ind Aerodyn200896123140
– reference: GreifenederRBlessHPhamMWhen do people rely on affective and cognitive feelings in judgment? A reviewPers Soc Psychol Rev201115107141
– reference: Lee W, Kim S, Lee YT, Lee HW, Choi M (2017) Deep neural networks for wild fire detection with unmanned aerial vehicle. In: Proceedings of the 2017 IEEE international conference on consumer electronics (ICCE). IEEE. https://doi.org/10.1109/ICCE.2017.7889305
– reference: McCreadie R, Macdonald C, Ounis I (2016) EAIMS: emergency analysis identification and management system. In: Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 1101–1104.https://doi.org/10.1145/2911451.2911460
– reference: LagarosNDFragiadakisMFragility assessment of steel frames using neural networksEarthq Spectra200723735752
– reference: Djordjevich DD, Xavier PG, Bernard ML, Whetzel JH, Glickman MR, Verzi SJ (2008) Preparing for the aftermath: using emotional agents in game-based training for disaster response. In: The 2008 IEEE symposium on computational intelligence and games. IEEE, pp 266–275
– reference: Rodriguez-RamosASampedroCBavleHde la PuentePCampoyPA deep reinforcement learning strategy for UAV autonomous landing on a moving platformJ Intell Robot Syst201993351366
– reference: ZhouYLMaiaNMMSampaioRPCStructural damage detection using transmissibility together with hierarchical clustering analysis and similarity measureStruct Health Monit20171671173110.1016/j.cag.2013.10.008
– reference: Sun W, Bocchini P, Davison BD (2021) Quantitative models for interdependent functionality and recovery of critical infrastructure systems. In: Objective resilience: manual of practice. ASCE, Under Review
– reference: Padmawar PM, Shinde AS, Sayyed TZ, Shinde SK, Moholkar K (2019) Disaster prediction system using convolution neural network. In: The 2019 international conference on communication and electronics systems (ICCES). IEEE, pp 808–812. https://doi.org/10.1109/ICCES45898.2019.9002400
– reference: Yamaguchi K, Shirota Y (2019) Pattern classification of disasters impact on companies stock prices. In: The 10th international conference on awareness science and technology (iCAST). IEEE. https://doi.org/10.1109/ICAwST.2019.8923362
– reference: Nguyen DT, Ofli F, Imran M, Mitra P (2017) Damage assessment from social media imagery data during disasters. In: Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining 2017. ACM, pp 569–576
– reference: ChangFJChenPALuYRHuangEChangKYReal-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood controlJ Hydrol2014517836846
– reference: Tian H, Pouyanfar S, Chen J, Chen SC, Iyengar SS (2018) Automatic convolutional neural network selection for image classification using genetic algorithms. In: 2018 IEEE international conference on information reuse and integration (IRI), pp 444–451. https://doi.org/10.1109/IRI.2018.00071
– reference: Imran M, Elbassuoni S, Castillo C, Diaz F (2013) Extracting information nuggets from disaster-related messages in social media. In: The 10th international conference on information systems for crisis response and management (ISCRAM). https://pdfs.semanticscholar.org/ba89/77eb5d737d643f38d84d0c1476211bb88986.pdf
– reference: Oh J, Hwang JE, Smith SF (2006) Agent technologies for post-disaster urban planning. In: First international AAMAS workshop on agent technology for disaster management, pp 24–31
– reference: Layek AK, Poddar S, Mandal S (2019) Detection of flood images posted on online social media for disaster response. In: Proceedings of the 2019 second international conference on advanced computational and communication paradigms (ICACCP). https://doi.org/10.1109/ICACCP.2019.8882877
– reference: UkkusuriSVZhanXSadriAMYeQUse of social media data to explore crisis informatics: study of 2013 Oklahoma TornadoTransp Res Rec J Transp Res Board20142459110118
– reference: ZhangRRezaeeZZhuJCorporate philanthropic disaster response and ownership type: evidence from Chinese firms’ response to the Sichuan EarthquakeJ Bus Ethics2010915163
– reference: ChenWPengJHongHShahabiHPradhanBLiuJZhuAXPeiXDuanZLandslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, ChinaSci Total Environ201862611211135
– reference: GuoXYuanZTianBSupplier selection based on hierarchical potential support vector machineExpert Syst Appl20093669786985
– reference: LinGFChangMJHuangYCHoJYAssessment of susceptibility to rainfall-induced landslides using improved self-organizing linear output map, support vector machine, and logistic regressionEng Geol20172246274
– reference: Otoum S, Kantarci B, Mouftah H (2019) Empowering reinforcement learning on big sensed data for intrusion detection. In: Proceedings of the 2019 IEEE international conference on communications (ICC2019). IEEE. https://doi.org/10.1109/ICC.2019.8761575
– reference: HeckMHammerCvan HerwijnenASchweizerJFähDAutomatic detection of snow avalanches in continuous seismic data using hidden Markov modelsNat Hazards Earth Syst Sci201018383396
– reference: LiuKLiZYaoCChenJZhangKSaifullahMCoupling the k-nearest neighbor procedure with the Kalman filter for real-time updating of the hydraulic model in flood forecastingInt J Sedim Res201631149158
– reference: OfliFMeierPCastilloCTuisaDBriantJMilletPReinhardFParkanMJoostSCombining human computing and machine learning to make sense of Big (aerial) Data for disaster responseBig Data201644759
– reference: WangJZhangWIpWAn integrated road construction and resource planning approach to the evacuation of victims from single source to multiple destinationsIEEE Trans Intell Transp Syst201011277289
– reference: RafieiMHAdeliHNEEWS: A novel earthquake early warning model using neural dynamic classification and neural dynamic optimizationSoil Dyn Earthq Eng2017100417427
– reference: Wang W (2018) Human detection based on radar sensor network in natural disaster. In: Geological disaster monitoring based on sensor networks. Springer, pp 109–134
– reference: NodaKArieHSugaYOgataTMultimodal integration learning of robot behavior using deep neural networksRobot Auton Syst201462721736
– reference: RenwickNChina’s approach to disaster risk reduction: human security challenges in a time of climate changeJ Asian Secur Int Aff201742649
– reference: WangLSawadaKMoriguchiSLandslide susceptibility analysis with logistic regression model based on FCM sampling strategyComput Geosci2013578192
– reference: YeumCMDykeSJVision-based automated crack detection for bridge inspectionComput Aided Civ Infrastruct Eng201530759770
– reference: Galatzer-LevyIRKarstoftKIStatnikovAQuantitative forecasting of PTSD from early trauma responses: a machine learning applicationJ Psychiatr Res2014596876
– reference: YangSYangDChenJZhaoBReal-time reservoir operation using recurrent neural networks and inflow forecast from a distributed hydrological modelJ Hydrol2019579142229
– reference: Zheng L, Shen C, Tang L, Li T, Luis S, Chen SC (2011) Applying data mining techniques to address disaster information management challenges on mobile devices. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 283–291
– reference: DattGBhattAKKumarSDisaster management information system framework using feed forward back propagation neural networkInt J Adv Res Comput Commun Eng20154510514
– reference: KhanMAUSayemMAUnderstanding recovery of small enterprises from natural disasterEnviron Hazards201212218239
– reference: KrizhevskyASutskeverIHintonGEImageNet classification with deep convolutional neural networksCommun ACM20176010971105
– reference: KovordányiRRoyCCyclone track forecasting based on satellite images using artificial neural networksISPRS J Photogramm Remote Sens200964513521
– reference: MoriKYamaneAHayakawaYWadaTOhtsukiKOkadaHDevelopment of emergency rescue evacuation support system (ERESS) in panic-type disasters: disaster recognition algorithm by support vector machineIEICE Trans Fundam Electron Commun Comput Sci2013E96–A64965710.1587/transfun.E96.A.649
– reference: Khan TA, Alam M, Kadir K, Shahid Z, Mazliham M (2018) A novel approach for the investigation of flash floods using soil flux and CO2: an implementation of MLP with less false alarm rate. In: Proceedings of the 2nd international conference on smart sensors and application (ICSSA). IEEE, pp 130–134. https://doi.org/10.1109/ICSSA.2018.8535606
– reference: KimJSulSHChoiJBDevelopment of unmanned remote smart rescue platform applying Internet of Things technologyInt J Distrib Sens Netw201810.1177/1550147718784482
– reference: Nguyen C, Han F, Schlesinger KJ, Gür I, Carlson JM (2016) Collective decision dynamics in group evacuation: behavioral experiment and machine learning models. https://arxiv.org/abs/1606.05647
– reference: Mendoza M, Poblete B, Castillo C (2010) Twitter under crisis: Can we trust what we RT? In: The 1st workshop on social media analytics (SOMA ’10). ACM, pp 71–79
– reference: SrivastavaMAbdelzaherTSzymanskiBHuman-centric sensingPhilos Trans R Soc A Math Phys Eng Sci2012370176197
– reference: KimJMSonKKimYJAssessing regional typhoon risk of disaster management by clustering typhoon pathsEnviron Dev Sustain20192120832096
– reference: Caragea C, Squicciarini A, Stehle S, Neppalli K, Tapia A (2014) Mapping moods: geo-mapped sentiment analysis during Hurricane Sandy. In: Proceedings of the 11th international conference on information systems for crisis response and management (ISCRAM 2014). ISCRAM, pp 642–651
– reference: de MorsierFTuiaDBorgeaudMGassVThiranJPSemi-supervised novelty detection using SVM entire solution pathIEEE Trans Geosci Remote Sens20135119391950
– reference: LaddsMKeatingAHandmerKMageeLHow much do disasters cost? A comparison of disaster cost estimates in AustraliaInt J Disaster Risk Reduct201721419429
– reference: WangKShiXGohAPXQianSA machine learning based study on pedestrian movement dynamics under emergency evacuationFire Saf J2019106163176
– reference: ZidiIAl-OmaniMAldhafeeriKA new approach based on the hybridization of simulated annealing algorithm and Tabu search to solve the static ambulance routing problemProc Comput Sci201915912161228
– reference: KouskyCMichel-KerjanEExamining flood insurance claims in the United States: six key findingsJ Risk Insur201584819850
– reference: ZornCRShamsedinAYPost-disaster infrastructure restoration: a comparison of events for future planningInt J Disaster Risk Reduct201513158166
– reference: MaoHThakurGSparksKSanyalJBhaduriBMapping near-real-time power outages from social mediaInt J Digit Earth20191212851299
– reference: TanakaGYamaneTHérouxJBNakaneRKanazawaNTakedaSNumataHNakanoDHiroseARecent advances in physical reservoir computing: a reviewNeural Netw2019115100123
– reference: JiangSFriedlandCJAutomatic urban debris zone extraction from post-hurricane very high-resolution satellite and aerial imageryJ Geomat Nat Hazards Risk20167120
– reference: KimSKimHNamkoongYOrdinal classification of imbalanced data with application in emergency and disaster information servicesIEEE Intell Syst2016315056
– reference: McCaslinSEJacobsGAMeyerDLJohnson-JimenezEMetzlerTJMarmarCRHow does negative life change following disaster response impact distress among Red Cross responders?Prof Psychol Res Pract200536324625310.1037/0735-7028.36.3.246
– reference: Yang Y, Lu W, Domack J, Li T, Chen SC, Luis S, Navlakha JK (2012) MADIS: a multimedia-aided disaster information integration system for emergency management. In: Proceedings of the 8th international conference on collaborative computing: networking, applications and worksharing (CollaborateCom). IEEE. https://doi.org/10.4108/icst.collaboratecom.2012.250525
– reference: RudinCWaltzDAndersonRNBoulangerASalleb-AouissiAChowMDuttaHGrossPHuangBIeromeSIsaacDKressnerAPassonneauRJRadevaAWuLMachine learning for the New York City power gridIEEE Trans Pattern Anal Mach Intell201234328345
– reference: KarstoftKIGalatzer-LevyIRStatnikovALiZShalevAYBridging a translational gap: using machine learning to improve the prediction of PTSDBMC Psychiatry20151530
– reference: YuanCLiuZLiuZA survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniquesCan J For Res201545783792
– reference: Bahrepour M, Meratnia N, Poel M, Taghikhaki Z, Havinga PJ (2010) Distributed event detection in wireless sensor networks for disaster management. In: 2nd international conference on intelligent networking and collaborative systems. IEEE, pp 507–512. https://doi.org/10.1109/INCOS.2010.24
– reference: TapiaCPadgettJEMulti-objective optimisation of bridge retrofit and post-event repair selection to enhance sustainabilityStruct Infrastruct Eng20151293107
– reference: YilmazIComparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machineEnviron Earth Sci201061821836
– reference: Gupta R, Hosfelt R, Sajeev S, Patel N, Goodman B, Doshi J, Heim E, Choset H, Gaston M (2019) xBD: A dataset for assessing building damage from satellite imagery. In: Proceedings of the CVPR workshops 2019. arXiv: 1911.09296v1
– reference: BaiSBWangJLüGNZhouPGHouSSXuSNGIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, ChinaGeomorphology20101152331
– reference: NeppalliVKCarageaCSquicciariniATapiaAStehleSSentiment analysis during Hurricane Sandy in emergency responseInt J Disaster Risk Reduct201721213222
– reference: Cresci S, Tesconi M, Cimino A, Dell’Orletta F (2015) A linguistically-driven approach to cross-event damage assessment of natural disasters from social media messages. In: Proceedings of the 24th international conference on world wide web. ACM, pp 1195–1200
– reference: PyaytALMokhovIILangBKrzhizhanovskayaVVMeijerRJMachine learning methods for environmental monitoring and flood protectionInt J Comput Electr Autom Control Inf Eng20115549554
– reference: WangFJinZQianXRenQHuoZFuzzy clustering analysis in determining sub-faults of large earthquakes based on aftershock distributionActa Seismol Sin201234793803in Chinese
– reference: AfandizadehSJahangiriAKalantariNDetermination of the optimal network configuration for emergency evacuation by simulated annealing algorithmNat Hazards20136913151335
– reference: ShiHGaoQQiYLiuJHuYWind erosion hazard assessment of the mongolian plateau using FCM and GIS techniquesEnviron Earth Sci201061689697
– reference: KimDWDeoRCLeeJSYeomJMMapping heatwave vulnerability in KoreaNat Hazards2017893555
– reference: GhoshSHuyckCKGreeneMGillSPBevingtonJSveklaWDesRochesREguchiRTCrowdsourcing for rapid damage assessment: the global earth observation catastrophe assessment network (GEO-CAN)Earthq Spectra201127S179S198
– reference: BromleyEEisenmanDPMaganaAWilliamsMKimBMcCrearyMChandraAWellsKBHow do communities use a participatory public health approach to build resilience? The Los Angeles county community disaster resilience projectInt J Environ Res Public Health20171410126710.3390/ijerph14101267
– reference: KimJMKimTYuYJSonKDevelopment of a maintenance and repair cost estimation model for educational buildings using regression analysisJ Archit Build Eng201817307312
– reference: LiuZZhangZArtificial neural network based method for seismic fragility analysis of steel framesKSCE J Civ Eng201822708717
– reference: Leon F, Atanasiu GM (2006) Data mining methods for GIS analysis of seismic vulnerability. In: Proceedings of the first international conference on software and data technologies (ICSOFT 2006), vol 2, pp 153–156
– reference: AcarAMurakiYTwitter for crisis communication: lessons learned from Japan’s tsunami disasterInt J Web Based Communities20117392402
– reference: YinJLampertACameronMRobinsonBPowerRUsing social media to enhance emergency situation awarenessIEEE Intell Syst2012275259
– reference: FotovatikhahFHerreraMShamshirbandSChaueKArdabiliSFPiranMJSurvey of computational intelligence as basis to big flood management: challenges, research directions and future workEng Appl Comput Fluid Mech201812411437
– reference: FEMA (2018) Hazard mitigation grant program. https://www.fema.gov/hazard-mitigation-grant-program
– reference: WangQGuoYYuLLiPEarthquake prediction based on spatio-temporal data mining: an LSTM network approachIEEE Trans Emerg Top Comput2020814815810.1109/TETC.2017.2699169
– reference: XuCDaiFXuXLeeYHGIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, ChinaGeomorphology2012145–1467080
– reference: BejigaMZeggadaANouffidjAMelganiFA convolutional neural network approach for assisting avalanche search and rescue operations with UAV imageryRemote Sens20179100
– reference: EllingwoodBRCutlerHGardoniPPeacockWGvan de LindtJWWangNThe Centerville virtual community: a fully integrated decision model of interacting physical and social infrastructure systemsSustain Resilient Infrastruct2016195107
– reference: Ahmad K, Riegler M, Pogorelov K, Conci N, Halvorsen P, De Natale F (2017) JORD: a system for collecting information and monitoring natural disasters by linking social media with satellite imagery. In: Proceedings of the 15th international workshop on content-based multimedia indexing. ACM, Article No. 12
– reference: RoselliniAJDussailantFZubizarretaJRKesslerRCRoseSPredicting posttraumatic stress disorder following a natural disasterJ Psychiatr Res2018961522
– reference: YangTXieJLiGMouNLiZTianCZhaoJSocial media big data mining and spatio-temporal analysis on public emotions for disaster mitigationISPRS Int J Geo-Inf2019829
– reference: Schneider FE, Wildermuth D (2017) Using robots for firefighters and first responders: scenario specification and exemplary system description. In: Proceedings of the 18th carpathian control conference, pp 216–221
– reference: Wilts A (2018) Natural disaster damage cost America $306 billion in 2017. https://www.independent.co.uk/news/world/americas/natural-disasters-us-damage-cost-money-2017-a8148771.html
– reference: VictoresJGMartínezSBalaguerAJCRobot-aided tunnel inspection and maintenance system by vision and proximity sensor integrationAutom Constr201120629636
– reference: Park YS, Kim J, Kim A (2019) Radar localization and mapping for indoor disaster environments via multi-modal registration to prior LiDAR map. In: 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 407–419. https://doi.org/10.1109/IROS40897.2019.8967633
– reference: SharmaHAndersonPAGranmoOCGoodwinMDeep Q-learning with Q-matrix transfer learning for novel fire evacuationIEEE Trans Syst Man Cybern Syst202010.1109/TSMC.2020.2967936
– reference: LiuYWuLGeological disaster recognition on optical remote sensing images using deep learningProc Comput Sci201691566575
– reference: GunningDStefikMChoiJMillerTStumpfSYangGZXAI—explainable artificial intelligenceSci Robot20194eaay7120
– reference: YangLCervoneGAnalysis of remote sensing imagery for disaster assessment using deep learning: a case study of flooding eventSoft Comput2019231339313408
– reference: VetrivelAGerkeMKerleNNexFVosselmanGDisaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learningISPRS J Photogramm Remote Sens20181404559
– reference: Hou MC, Deng DJ, Wu CL (2019) Optimum aerial base station deployment for UAV networks: a reinforcement learning approach. In: 2019 IEEE Globecom workshops. IEEE. https://doi.org/10.1109/GCWkshps45667.2019.9024648
– reference: WangJWuYYenNGuoSChengZBig data analytics for emergency communication networks: a surveyIEEE Commun Surv Tutor20161817581778
– reference: YanJHeHZhongXTangYQ-learning-based vulnerability analysis of smart grid against sequential topology attacksIEEE Trans Inf Forensics Secur201612200210
– reference: DuttaIDuttaSRaahemiBDetecting financial restatements using data mining techniquesExpert Syst Appl201790374393
– reference: PadilKHBakharyNHaoHThe use of a nonprobabilistic artificial neural network to consider uncertainties in vibration-based-damage detectionMech Syst Signal Process201783194209
– reference: HuDLiSChenJKamatVRDetecting, locating, and characterizing voids in disaster rubble for search and rescueAdv Eng Inform201942100974
– reference: Besaleva LI, Weaver AC (2013) CrowdHelp: a crowdsourcing application for improving disaster management. In: Proceedings of the 2013 IEEE global humanitarian technology conference. IEEE. https://doi.org/10.1109/GHTC.2013.6713678
– reference: BevingtonJSEguchiRTGillSGhoshSHuyckCKLippittCStowDCoulterLA comprehensive analysis of building damage in the 2010 Haiti earthquake using high-resolution imagery and crowdsourcingsTime-sensitive remote sensing2015New YorkSpringer131145
– reference: Sadiq FI, Selamat A, Ibrahim R (2015) Human activity recognition prediction for crowd disaster mitigation. In: Asian conference on intelligent information and database systems (ACIID). Springer, pp 200–210
– reference: MacEachren AM, Jaiswal A, Robinson AC, Pezanowski S, Savelyev A, Mitra P, Zhang X, Blanford J (2011) Senseplace2: Geotwitter analytics support for situational awareness. In: Proceedings of the IEEE conference on visual analytics science and technology 2011. IEEE, pp 181–190
– reference: Sarabakha A, Kayacan E (2016) Y6 tricopter autonomous evacuation in an indoor environment using Q-learning algorithm. In: The 2016 IEEE 55th conference on decision and control (CDC). IEEE, pp 5992–5997. https://doi.org/10.1109/CDC.2016.7799189
– reference: MihunovVVLamNSNZouLWangZWangKUse of Twitter in disaster rescue: lessons learned from Hurricane HarveyInt J Digit Earth202010.1080/17538947.2020.1729879
– reference: Maciel-Pearson BG, Marchegiani L, Akcay S, Atapour-Abarghouei A, Garforth J, Breckon TP (2019) Online deep reinforcement learning for autonomous UAV navigation and exploration of outdoor environments. https://arxiv.org/abs/1912.05684
– reference: Schwartz J (2018) How can AI help to prepare for floods in a climate-changed world? https://www.scientificamerican.com/article/former-fema-chief-uses-ai-to-prepare-for-hurricanes-and-rising-seas/
– reference: HoeppePTrends in weather related disasters—consequences for insurers and societyWeather Extreme Events2016117079
– reference: MangalathuSHwangSHChoiEJong-SuJeonRapid seismic damage evaluation of bridge portfolios using machine learning techniquesEng Struct2019201109785
– reference: KumarASinghJPDwivediYKRanaNPA deep multi-modal neural network for informative Twitter content classification during emergenciesAnn Oper Res202010.1007/s10479-020-03514-x
– reference: Watson D, Clark L (1994) The PANAS-X: manual for the positive and negative affect schedule—expanded form. Technical Report, The University of Iowa. https://ntrs.nasa.gov/search.jsp?R=20150003831
– reference: PouyanfarSSadiqSTianHTaoYReyesMPShyuMLChenSCIyengarSSA survey on deep learning: algorithms, techniques, and applicationsACM Comput Surv201851136
– reference: GamaMSantosBFScaparraMPA multi-period shelter location-allocation model with evacuation orders for flood disastersEURO J Comput Optim20164299323
– reference: SunWBocchiniPDavisonBDResilience metrics and measurement methods for transportation infrastructure: the state of the artSustain Resil Infrastruct20205316819910.1080/23789689.2018.1448663
– reference: BengtssonLLuXThorsonAGarfieldRvon SchreebJImproved response to disasters and outbreaks by tracking population movements with mobile phone network data: a post-earthquake geospatial study in HaitiPLoS Med20118e1001083
– reference: WangJZhuSGongYDriving safety monitoring using semi-supervised learning on time series dataIEEE Trans Intell Transp Syst201011728737
– reference: ZhouCYinKCaoYAhmedBLiYCataniFPourghasemiHRLandslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges reservoir area, ChinaComput Geosci20181122337
– reference: DogaruDIDumitracheICyber attack of a power grid analysis using a deep neural networks approachJ Control Eng Appl Inform2019214250
– reference: LinTHLiawDCDevelopment of an intelligent disaster information-integrated platform for radiation monitoringNat Hazards20157617111725
– reference: GhoshJPadgettJDueñas-OsorioLDSurrogate modeling and failure surface visualization for efficient seismic vulnerability assessment of highway bridgesProbab Eng Mech201334189199
– reference: Castellanos CL, Marti JR, Sarkaria S (2018) Distributed reinforcement learning framework for resource allocation in disaster response. In: 2018 IEEE global humanitarian technology conference (GHTC). IEEE. https://doi.org/10.1109/GHTC.2018.8601911
– reference: Wang Y, Wang Q, Shi S, He X, Tang Z, Zhao K, Chu X (2019f) Benchmarking the performance and power of AI accelerators for AI training. https://arxiv.org/abs/1910.10045
– reference: Aydin ME, Fellows R (2018) Building collaboration in multi-agent systems using reinforcement learning. In: International conference on computational collective intelligence (ICCCI 2018). Springer, pp 201–212
– reference: Avvenuti M, Cresci S, Marchetti A, Meletti C, Tesconi M (2014) EARS (earthquake alert and report system): a real time decision support system for earthquake crisis management. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1749–1758
– reference: ZhaoLHicksFEFayekARApplicability of multilayer feed-forward neural networks to model the onset of river breakupCold Reg Sci Technol2012703242
– reference: PourrahmaniEDelavarMRMostafaviMAOptimization of an evacuation plan with uncertain demands using fuzzy credibility theory and genetic algorithmInt J Disaster Risk Reduct201514357372
– reference: DahlGEYuDDengLAceroAContext-dependent pre-trained deep neural networks for large-vocabulary speech recognitionIEEE Trans Audio Speech Lang Process2012203042
– reference: YaoZZhangGLuDLiuHData-driven crowd evacuation: a reinforcement learning methodNeurocomputing2019366314327
– reference: EickenHJonesJMeyerFMahoneyADruckenmillerMLRohithMKambhamettuCEnvironmental security in Arctic ice-covered seas: from strategy to tactics of hazard identification and emergency responseMar Technol Soc J2011453748
– reference: Hong L, Yin D, Guo J, Davison BD (2011) Tracking trends: incorporating term volume into temporal topic models. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp 484–492
– reference: PengYLiSWHuZZA self-learning dynamic path planning method for evacuation in large public buildings based on neural networksNeurocomputing20193657185
– reference: LattanziDMillerGR3D scene reconstruction for robotic bridge inspectionJ Infrastruct Syst20152104014041
– reference: Yin J, Karimi S, Robinson B, Cameron M (2012a) ESA: emergency situation awareness via microbloggers. In: The 21st ACM international conference on information and knowledge management. ACM, pp 2701–2703
– reference: PillaiASChandraprasadGSKhwajaASAnpalaganAA service oriented IoT architecture for disaster preparedness and forecasting systemInternet Things201910.1016/j.iot.2019.100076
– reference: Murphy R (2014) Introduction. In: Disaster robotics. The MIT Press, pp 1–20
– reference: Ilyas A (2014) MicroFilters: harnessing Twitter for disaster management. In: Proceedings of the IEEE global humanitarian technology conference (GHTC 2014). IEEE, pp 417–424. https://doi.org/10.1109/GHTC.2014.6970316
– reference: LiuZDuYYiJLiangFMaTPeiTQuantitative estimates of collective geo-tagged human activities in response to typhoon Hato using location-aware big dataInt J Digit Earth201910.1080/17538947.2019.1645894
– reference: BadmusOWhen the storm is over: sentiments, communities and information flow in the aftermath of Hurricane DorianInt J Disaster Risk Reduct202010.1016/j.ijdrr.2020.101645
– reference: YuPSYangTCChenSYKuoCMTsengHWComparison of random forests and support vector machine for real-time radar-derived rainfall forecastingJ Hydrol201755292104
– reference: KhadrMForecasting of meteorological drought using Hidden Markov Model (case study: the upper Blue Nile river basin, Ethiopia)Ain Shams Eng J201674756
– reference: ZhengSLiuHImproved multi-agent deep deterministic policy gradient for path planning-based crowd simulationIEEE Access2019714775547770
– reference: Takeda T, Mori Y, Kubota N, Arai Y (2014) A route planning for disaster waste disposal based on robot technology. In: 2014 IEEE symposium on robotic intelligence in informationally structured space (RiiSS). IEEE. https://doi.org/10.1109/RIISS.2014.7009173
– reference: XuNZhangQZhangHHongMAkerkardRLiangYGlobal optimization for multi-stage construction of rescue units in disaster responseSustain Cities Soc201951101768
– reference: KellermannPSchröterKThiekenAHHaubrockSNKreibichHThe object-specific flood damage database HOWAS21Nat Hazards Earth Syst Sci202010.5194/nhess-2019-420
– reference: RenMWangBFuQLGClassified real-time flood forecasting by coupling fuzzy clustering and neural networkInt J Sedim Res201025134148
– reference: WangZNChenJChenWCArulrajahAHorpibulsukSInvestigation into the tempo-spatial distribution of recent fire hazards in ChinaNat Hazards20189218891907
– reference: CervoneGSavaEHuangQSchnebeleEHarrisonJWatersNUsing Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case studyInt J Remote Sens201637100124
– reference: ChenSMaoJLiGMaCCaoYUncovering sentiment and retweet patterns of disaster-related tweets from a spatiotemporal perspective—a case study of Hurricane HarveyTelemat Inform202047101326
– reference: MoonSHKimYHLeeYHMoonBRApplication of machine learning to an early warning system for very short-term heavy rainfallJ Hydrol201856810421054
– reference: IzumiTShawRDjalanteRIshiwatariMKominoTDisaster risk reduction and innovationsProg Disaster Sci20192100033
– reference: PeduzziPDaoHHeroldCMoutonFAssessing global exposure and vulnerability towards natural hazards: the Disaster Risk IndexNat Hazards Earth Syst Sci2009911491159
– reference: KimDjoo LeeHChoSResponse modeling with support vector regressionExpert Syst Appl20083411021108
– reference: BartoliGFantacciRGeiFMarabissiDMicciulloLA novel emergency management platform for smart public safetyInt J Commun Syst201328928943
– reference: LiWBattyMGoodchildMFReal-time GIS for smart citiesInt J Geogra Inf Sci201910.1080/13658816.2019.1673397
– reference: JamaliMNejatAGhoshSJinFCaoGSocial media data and post-disaster recoveryInt J Inf Manag2019442537
– reference: HanWTianZHuangZHuangDJiaYQuantitative assessment of wireless connected intelligent robot swarms network security situationIEEE Access20197134293134300
– reference: MahmoudiSNChouinardLSeismic fragility assessment of highway bridges using support vector machinesBull Earthq Eng20161415711587
– reference: CavalcanteIMFrazzonEMForcelliniFAIvanovDA supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturingInt J Inf Manag2019498697
– reference: BellaireSHerwijnenAMittererCSchweizerJOn forecasting wet-snow avalanche activity using simulated snow cover dataCold Reg Sci Technol20171442838
– reference: ZhangYBurtonHVSunHShokrabadiMA machine learning framework for assessing post-earthquake structural safetyStruct Saf201872116
– reference: Tomin N, Kurbatsky V, Rehtanz C (2013) An intelligent security alert system for power system pre-emergency control. In: The 13th international conference on environment and electrical engineering (EEEIC). IEEE. https://doi.org/10.1109/EEEIC-2.2013.6737884
– reference: GhaffarianSKerleNPasolliEArsanjaniJJPost-disaster building database updating using automated deep learning: an integration of pre-disaster OpenStreetMap and multi-temporal satellite dataRemote Sens2019112427
– reference: McGovernAGagneDJIITroutmanNBrownRABasaraJWilliamsJKUsing spatiotemporal relational random forests to improve our understanding of severe weather processesStat Anal Data Min20114407429
– reference: OrabiWSenouciABEl-RayesKAl-DerhamHOptimizing resource utilization during the recovery of civil infrastructure systemsJ Manag Eng201026237246
– reference: MutluBNefesliogluHASezerEAAkcayolMAGokceogluCAn experimental research on the use of recurrent neural networks in landslide susceptibility mappingInt J Geo-Inf20198578
– reference: XiongJLiJChengWWangNGuoLA gis-based support vector machine model for flash flood vulnerability assessment and mapping in ChinaInt J Geo-Inf20198297
– reference: RheeJImJMeteorological drought forecasting for ungauged areas based on machine learning: using long-range climate forecast and remote sensing dataAgric For Meteorol2017237–238105122
– reference: GünayOTaşdemirKTöreyinBUÇetinAEFire detection in video using LMS based active learningFire Technol201046551577
– reference: FEMA (2019) Federal insurance and mitigation administration national flood insurance program (FIMA NFIP) redacted claims dataset. https://www.fema.gov/media-library/assets/documents/180374
– reference: BasuMShandilyaAKhoslaPGhoshKGhoshSExtracting resource needs and availabilities from microblogs for aiding post-disaster relief operationsIEEE Trans Comput Soc Syst20196604618
– reference: Yu L, Wang N, Meng X (2005) Real-time forest fire detection with wireless sensor networks. In: International conference on wireless communications, networking and mobile computing. IEEE, pp 1214–1217
– reference: Akhtar N, Siddique B (2017) On hierarchical visualization of event detection in Twitter. In: Advances in computer and computational sciences, pp 571–579
– reference: HuangXLiZWangCNingHIdentifying disaster related social media for rapid response: a visual-textual fused CNN architectureInt J Digit Earth201910.1080/17538947.2019.1633425
– reference: GrasicVKosAMileva-BoshkoskaBClassification of incoming calls for the capital city of Solvenia smart city 112 public safety system using open Internet of Things dataInt J Distrib Sens Netw201814911210.1177/1550147718801703
– reference: Nabian MA, Meidani H (2018a) Accelerating stochastic assessment of post-earthquake transportation network connectivity via machine-learning-based surrogates. In: The 97th annual meeting of transportation research board (TRB). TRB
– reference: PhamTTHApparicioPGomezCWeberCMathonDTowards a rapid automatic detection of building damage using remote sensing for disaster management: the 2010 Haiti EarthquakeDisaster Prev Manag2014235366
– reference: RasouliMRIntelligent process-aware information systems to support agility in disaster relief operations: a survey of emerging approachesInt J Prod Res20185718571872
– reference: BerkhahnSFuchsLNeuweilerIAn ensemble neural network model for real-time prediction of urban floodsJ Hydrol2019575743754
– reference: RiadJKNorrisFHRubackRBPredicting evacuation in two major disasters: risk perception, social influence, and access to resourcesJ Appl Soc Psychol200629918934
– reference: The Rockefeller Foundation (2019) 100 Resilient Cities (100RC). http://www.100resilientcities.org
– reference: Velev D, Zlateva P, Zong X (2018) Challenges of 5G usability in disaster management. In: Proceedings of the 2018 international conference on computing and artificial intelligence (ICCAI 2018). ACM, pp 71–75
– reference: QiuMMingZWangJYangLTXiangYEnabling cloud computing in emergency management systemsIEEE Cloud Comput201416067
– reference: EguchiRTGoltzJDTaylorCEChangSEFloresPJJohnsonLASeligsonHABlaisNCDirect economic lossed in the Northridge Earthquake: a three-year post-event perspectiveEarthq Spectra199814245264
– reference: ConnerAJShaoYCampbellJBDetection of urban damage using remote sensing and machine learning algorithms: revisiting the 2010 Haiti earthquakeRemote Sens20168868
– reference: TrugmanDTShearerPMGrowClust: A hierarchical clustering algorithm for relative earthquake relocation, with application to the Spanish Springs and Sheldon, Nevada, earthquake sequencesSeismol Res Lett201788379391
– reference: KoBKwakSSurvey of computer vision-based natural disaster warning systemsOpt Eng201251070901
– reference: Neppalli VK, Caragea C, Caragea D (2018) Deep neural networks versus Naïve Bayes classifiers for identifying informative tweets during disasters. In: Boersma K, Tomaszewski B (eds) Proceedings of the 15th international conference on information systems for crisis response and management (ISCRAM 2018). ACM. http://idl.iscram.org/files/venkatakishoreneppalli/2018/2141_VenkataKishoreNeppalli_etal2018.pdf
– reference: SchempfHChemelBEverettNNeptune: above-ground storage tank inspection robot systemIEEE Robot Autom Soc Mag19952615
– reference: ChenWCutterSLEmrichCTShiPMeasuring social vulnerability to natural hazards in the Yangtze River Delta region, ChinaInt J Disaster Risk Sci20144169181
– reference: Kim S, Lee W, Park Y, Lee H, Lee Y (2016c) Forest fire monitoring system based on aerial image. In: Proceedings of the 3rd international conference on information and communication technologies for disaster management (ICT-DM). IEEE, pp 1–6
– reference: MaharjanLDitsworthMNiraulaMNarvaezCCFahimiBMachine learning based energy management system for grid disaster mitigationIET Smart Grid20182172182
– reference: LinYMargolinDWenXTracking and analyzing individual distress following terrorist attacks using social media streamsRisk Anal20173715801605
– reference: ZouLLamNSNShamsSCaiHMeyerMAYangSSocial and geographical disparities in Twitter use during Hurricane HarveyInt Journal Digit Earth20191213001318
– reference: AgarwalSKachrooPRegentovaEA hybrid model using logistic regression and wavelet transformation to detect traffic incidentsIATSS Res2016405663
– reference: KhalooALattanziDCunninghamKDell’AndreaRRileyMUnmanned aerial vehicle inspection of the Placer River trail bridge through image-based 3D modellingStruct Infrastruct Eng201714124136
– reference: Wu K, Yang S, Zhu KQ (2015) False rumors detection on Sina Weibo by propagation structures. In: The IEEE 31st international conference on data engineering. IEEE, pp 651–662
– reference: UddinMNIslamAKMSBalaSKIslamGMTAdhikarySSahaDHaqueSFahadMGRAkterRMapping of climate vulnerability of the coastal region of Bangladesh using principal component analysisAppl Geol20191024757
– reference: ZhangHLiNZhangWPeiXExperiments to automatically monitor drought variation using simulated annealing algorithmNat Hazards201684175184
– reference: LaylaviFRajabifardAKalantariMEvent relatedness assessment of Twitter messages for emergency responseInf Process Manag201753266280
– reference: BenítezMCRamírezJSeguraJCIbáñezJMAlmendrosJGarcía-YeguasACortésGContinuous HMM-based seismic-event classification at Deception Island, AntarcticaIEEE Trans Geosci Remote Sens200745138146
– reference: BagrowJPWangDBarabásiALCollective response of human populations to large-scale emergenciesPLoS One20116e1768010.1371/journal.pone.0017680
– reference: NateghiRGuikemaSDQuiringSMPower outage estimation for tropical cyclones: improved accuracy with simpler modelsRisk Anal20143410691078
– reference: Tatsubori M, Watanabe H, Shibayama A, Sato S, Imamura F (2012) Social web in disaster archives. In: The proceedings of the 21st international conference companion on world wide web—WWW’12 Companion. ACM, pp 715–716. https://doi.org/10.1145/2187980.2188190
– reference: KhanSHHeXPorikliFBennamounMForest change detection in incomplete satellite images with deep neural networksIEEE Trans Geosci Remote Sens20175554075423
– reference: TunusluogluMCGokceogluCNefesliogluHASonmezHExtraction of potential debris source areas by logistic regression technique: a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey)Environ Geol200754922
– reference: KameshwarSPadgettJEMulti-hazard risk assessment of highway bridges subjected to earthquake and hurricane hazardsEng Sturct201478154166
– reference: JaechAZhangBOstendorfMKirschenDSReal-time prediction of the duration of distribution system outagesIEEE Trans Power Syst201934773781
– reference: TorokMMGolparvar-FardMKochersbergerKBImage-based automated 3D crack detection for post-disaster building assessmentJ Comput Civ Eng201428A4014004
– reference: EPA (2016) Incident waste decision support tool (I-WASTE DST). http://www2.ergweb.com/bdrtool/login.asp
– reference: LiQJinZWanCZengDDMining opinion summarizations using convolutional neural networks in Chinese microblogging systemsKnowl Based Syst2016107289300
– reference: MitsovaDEsnardAMSapatALaiBSSocioeconomic vulnerability and electric power restoration timelines in Florida: the case of Hurricane IrmaNat Hazards201894689709
– reference: Parra J, Fuentes O, Anthony EY, Kreinovich V (2016) Use of machine learning to analyze and—hopefully—predict volcano activity. Technical Report UTEP-CS-16-80a, University of Texas at El Paso. http://digitalcommons.utep.edu/cs_techrep/1053
– reference: Ramchurn SD, Huynh TD, Ikuno Y, Flann J, Wu F, Moreau L, Jennings NR, Fischer J, Jiang W, Rodden T, Simpson E, Reece S, Roberts SJ (2015) HAC-ER: a disaster response system based on human-agent collectives. In: Proceedings of the 2015 international conference on autonomous agents and multiagent systems (AAMAS 2015), pp 533–541
– reference: Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy gradient algorithms. In: Proceedings of the 31st international conference on machine learning (ICML-14). ACM, pp 387–395
– reference: Ganesan P, Sathish BS, Sajiv G (2016) A comparative approach of identification and segmentation of forest fire region in high resolution satellite images. In: 2016 world conference on futuristic trends in research and innovation for social welfare (startup conclave). IEEE. https://doi.org/10.1109/STARTUP.2016.7583959
– reference: D’AmicoDFQuiringSMMaderiaCMMcRobertsDBImproving the hurricane outage prediction model by including tree speciesClim Risk Manag201925100193
– reference: RakgaseMNorrisDFactors that influence choice of drought coping strategies in Limpopo Province, South AfricaJ Hum Ecol201447111116
– reference: JhongBCWangJHLinGFAn integreated two-stage support vector machine approach to forecast inundation maps during typhoonsJ Hydrol2017547236252
– reference: NguyenVQAnhTNYangHJReal-time event detection using recurrent neural network in social sensorsInt J Distrib Sens Netw201910.1177/1550147719856492
– reference: SakakiTOkazakiMMatsuoYTweet analysis for real-time event detection and earthquake reporting system developmentIEEE Trans Knowl Data Eng201225919931
– reference: EisenmanDPChandraAFoglemanSMaganaAHendricksAWellsKBWilliamsMTangJPloughAThe Los Angeles county community disaster resilience project—a community-level, public health initiative to build community disaster resilienceInt J Environ Res Public Health20141184758490
– reference: MehrjooMKhajiNMoharramiHBahreininejadADamage detection of truss bridge joints using artificial neural networksExpert Syst Appl20083511221131
– reference: Canon MJ, Satuito A, Sy C (2018) Determining disaster risk management priorities through a neural network-based text classifier. In: Proceedings of the 2018 international symposium on computer, consumer and control (IS3C). IEEE, pp 237–241. https://doi.org/10.1109/IS3C.2018.00067
– reference: NabianMAMeidaniHDeep learning for accelerated seismic reliability analysis of transportation networksJ Comput Aided Civ Infrastruct Eng201833443458
– reference: JonesSSThomasAEvansRSWelchSJHaugPJSnowGLForecasting daily patient volumes in the emergency departmentAcad Emerg Med200815159170
– reference: GilmourPMThe application of photography in investigating fraudImaging Sci J201967421522310.1080/13682199.2019.1600254
– reference: UN (2015) Sendai framework for disaster risk reduction: 2015–2030. https://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf
– reference: CerraiDWanikDWBhuiyanMAEZhangXYangJFredianiMEBAnagnostouENPredicting storm outages through new representations of weather and vegetationIEEE Access201972963929654
– reference: MitsovaDEscalerasMSapatAEsnardAMLamadridAJThe effects of infrastructure service disruptions and socio-economic vulnerability on hurricane recoverySustainability201911516
– reference: LiangXImage-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimizationComput Aided Civ Infrastruct Eng201834415430
– reference: Suriya M, Sumithra MG (2019) Enhancing cooperative spectrum sensing in flying cell towers for disaster management using convolutional neural networks. In: Proceedings of the EAI international conference on big data innovation for sustainable cognitive computing, pp 181–190
– reference: ZhangYBurtonHVPattern recognition approach to assess the residual structural capacity of damaged tall buildingsStruct Saf2019781222
– reference: ShibuyaYTanakaHUsing social media to detect socio-economic disaster recoveryIEEE Intell Syst2019342937
– reference: EskandarpourRKhodaeiAMachine learning based power grid outage prediction in response to extreme eventsIEEE Trans Power Syst20173233153316
– reference: ZhuCWuJHybrid of genetic algorithm and simulated annealing for support vector regression optimization in rainfall forecastingInt J Comput Intell Appl2013121350012
– reference: Stojadinovic Z, Kovacevic M, Marinkovic D, Stojadinovic B (2017) Data-driven housing damage and repair cost prediction framework based on the 2010 Kraljevo earthquake data. In: Proceedings of the 16th world conference on earthquake engineering (16WCEE), p 4987
– reference: VanschorenJvan RijnJNBischlBTorgoLOpenML: networked science in machine learningACM SIGKDD Explor Newsl2014154960
– reference: YuLZhuJHYuLLStructural damage detection in a truss bridge model using fuzzy clustering and measured FRF data reduced by principal component projectionAdv Struct Eng201616207217
– reference: ChangLCShenHYWangYFHuangJYLinYTClustering-based hybrid inundation model for forecasting flood inundation depthsJ Hydrol2010385257268
– reference: ChenSWangWDecision tree learning for freeway automatic incident detectionExpert Syst Appl20093641014105
– reference: Ifrim G, Shi B, Brigadir I (2014) Event detection in Twitter using aggressive filtering and hierarchical tweet clustering. In: The second workshop on social news on the web (SNOW). http://hdl.handle.net/10197/7546
– reference: NaitoSTomozawaHMoriYNakamuraHFujiwaraHDamage detection method for buildings with machine-learning techniques utilizing images of automobile running surveys aftermath of the 2016 Kumamoto EarthquakeJ Disaster Res201813928942
– reference: Sarkale Y, Nozhati S, Chong EKP, Ellingwood BR, Mahmoud H (2018) Solving Markov decision processes for network-level post-hazard recovery via simulation optimization and rollout. In: The IEEE 14th international conference on automation science and engineering (CASE). IEEE, pp 906–912
– reference: CurtisAMillsJWKennedyBFotheringhamSMcCarthyTUnderstanding the geography of post-traumatic stress: an academic justification for using a spatial video acquisition system in the response to Hurricane KatrinaJ Conting Crisis Manag200715208219
– reference: LeeJEoGChoiCJungJKimHDevelopment of rainfall-flood damage estimation function using nonlinear regression equationJ Soc Disaster Inf2016127488
– reference: YuMYangCLiYBig data in natural disaster management: a reviewGeosciences20188165
– reference: ChangSEYipJZKCongerTOulahenGMarteleiraMCommunity vulnerability to coastal hazards: developing a typology for disaster risk reductionAppl Geogr2018918188
– reference: USGS (2016a) ShakeCast. https://earthquake.usgs.gov/research/software/shakecast.php
– reference: SankaranarayananSPrabhakarMSatishSJainPRamprasadAKrishnanAFlood prediction based on weather parameters using deep learningJ Water Clim Change201910.2166/wcc.2019.321
– reference: BasuSRoySDasbitSA post-disaster demand forecasting system using principal component regression analysis and case-based reasoning over smartphone-based DTNIEEE Trans Eng Manag201966224239
– reference: WangBLiYMingWWangSDeep reinforcement learning method for demand response management of interruptible loadIEEE Trans Smart Grid202010.1109/TSG.2020.2967430
– reference: GermanSJeonJSZhuZBearmanCBrilakisIDesRochesRLowesLMachine vision-enhanced postearthquake inspectionJ Comput Civ Eng201327622634
– reference: HuangZZhouJSongLLuYZhangYFlood disaster loss comprehensive evaluation model based on optimization support vector machineExpert Syst Appl20103738103814
– reference: Cheng X, Zhang R, Zhou J, Xu W (2017) DeepTransport: learning spatial-temporal dependency for traffic condition forecasting. https://arxiv.org/abs/1709.09585
– reference: ZhangHHousehold vulnerability and economic status during disaster recovery and its determinants: a case study after the Wenchuan earthquakeNat Hazards20168315051526
– reference: HungKCKalantariMRajabifardAMethods for assessing the credibility of volunteered geographic information in flood response: a case study in Brisbane, AustraliaAppl Geogr201668374710.1016/j.apgeog.2016.01.005
– reference: CasagliNFrodellaWMorelliSTofaniVCiampaliniAIntrieriERaspiniFRossiGTanteriLLuPSpaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warningGeoenviron Disasters201749
– reference: Higuchi H, Fujimura J, Nakamura T, Kogo K, Tsudaka K, Wada T (2014) Disaster detection by statistics and SVM for emergency rescue evacuation support system. In: The 43rd international conference on parallel processing workshops. IEEE. https://doi.org/10.1109/ICPPW.2014.52
– reference: LiJRaoHTwitter as a rapid response news service: an exploration in the context of the 2008 China earthquakeElectron J Inf Syst Develop Ctries201042122
– reference: Guha S, Rastogi R, Shim K (1998) CURE: an efficient clustering algorithm for large databases. In: Proceeedings of the 1998 ACM SIGMOD international conference on management of data. ACM, pp 73–84
– reference: ChenWTHuangYHApproximately predicting the cost and duration of school reconstruction projects in TaiwanConstruct Manag Econ20062412311239
– reference: BunkerDLevineLWoodyCRepertoires of collaboration for common operating pictures of disasters and extreme eventsInf Syst Front2015175165
– reference: Hernandez-SuarezASanchez-PerezGToscano-MedinaKPerez-MeanaHPortillo-PortilloJSanchezVVillalbaLJGUsing Twitter data to monitor natural disaster social dynamics: a recurrent neural network approach with word embeddings and kernel density estimationSensors2019191746
– reference: MudaZYassinWSulaimanMNUdzirNIA K-means and Naïve Bayes learning approach for better intrusion detectionInf Technol J201110648655
– reference: NguyenLYangZLiJPanZCaoGJinFForecasting people’s needs in hurricane events from social networkIEEE Trans Big Data201910.1109/TBDATA.2019.2941887
– reference: ReillyJDashtiSErvastiMBrayJDGlaserSDBayenAMMobile phones as seismologic sensors: automating data extraction for the iShake systemIEEE Robot Autom Soc201310242251
– reference: LattanziDMillerGReview of robotic infrastructure inspection systemsJ Infrastruct Syst20172304017004
– reference: Mason AJ (2013) Simulation and real-time optimised relocation for improving ambulance operations. In: Handbook of healthcare operations management. Springer, pp 289–317
– reference: LiuYYangJZhengYWuZYaoMMulti-robot coordination in complex environment with task and communication constraintsInt J Adv Rob Syst201310229
– reference: Hernández E, Sanchez-Anguix V, Julian V, Palanca J, Duque N (2016) Rainfall prediction: a deep learning approach. In: Proceedings of the international conference on hybrid artificial intelligence systems (HASI2016), pp 151–162
– reference: Toreyin BU, Cetin AE (2009) Wildfire detection using LMS based active learning. In: Proceedings of the 2009 IEEE international conference on acoustics, speech and signal processing, pp 1461–1464
– reference: LamNSNReamsMLiKLiCMataLPMeasuring community resilience to coastal hazards along the Northern Gulf of MexicoNat Hazards Rev20161704015013
– reference: PeirisRHHalléCBudmanHMoresoliCPeldszusSHuckPMLeggeRLIdentifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matricesWater Res201044185194
– reference: MabonLCharting disaster recovery via Google Street View: a social science perspective on challenges raised by the Fukushima nuclear disasterInt J Disaster Risk Sci20167175185
– reference: Tapia AH, Bajpai K, Jansen BJ, Yen J (2011) Seeking the trustworthy tweet: Can microblogged data fit the information needs of disaster response and humanitarian relief organizations. In: The 8th international conference on information systems for crisis response and management: from early-warning systems to preparedness and training (ISCRAM 2011), pp 1–10
– reference: YangJYuMA model for seismic vulnerability score assignment of road infrastructure using linear regression techniqueAppl Mech Mater2011147266269
– reference: ZhangYPeacockWGPlanning for housing recovery? Lessons learned from Hurricane AndrewJ Am Plan Assoc200976524
– reference: Nolasco-JavierDKumarLDeriving the rainfall threshold for shallow landslide early warning during tropical cyclones: a case study in northern PhilippinesNat Hazards201890921941
– reference: WangZLamNSObradovichNYeXAre vulnerable communities digitally left behind in social responses to natural disasters? an evidence from Hurricane Sandy with Twitter dataAppl Geogr201910818
– reference: ZhengYJLingHFXueJYChenSYPopulation classification in fire evacuation: a multiobjective particle swarm optimization approachIEEE Trans Evol Comput2013187081
– reference: ZhaoQChenZLiuCLuoNExtracting and classifying typhoon disaster information based on volunteered geographic information from chinese sina microblogConcurr Comput Pract Exp201931e4910
– reference: Lohumi K, Roy S (2018) Automatic detection of flood severity level from flood videos using deep learning models. In: Proceedings of the 2018 5th international conference on information and communication technologies for disaster management (ICT-DM). IEEE. https://doi.org/10.1109/ICT-DM.2018.8636373
– reference: ESRI (2016) Disaster response program. https://www.esri.com/en-us/disaster-response/overview
– reference: HacklJAdeyBTLethanhNDetermination of near-optimal restoration programs for transportation networks following natural hazard events using simulated annealingComput Aided Civ Infrastruct Eng201833618637
– reference: ChoiJYeumCDykeSJahanshahiMComputer-aided approach for rapid post-event visual evaluation of a building façadeSensors2018183017
– reference: AsgaryANainiASModelling the adaptation of business continuity planning by business using neural networksIntell Syst Acc Finance Manag20111889104
– reference: LuoYLiuLHuangWQad Jie DengYNYYinCHRenHWangXYA disaster response and management competency mapping of community nurses in ChinaIran J Public Health2013429941949
– reference: DeryuginaTThe fiscal cost of hurricanes: disaster aid versus social insuranceAm Econ J Econ Policy20179168198
– reference: GiustiAGuzziJCireşanDCHeFLRodríguezJPFontanaFFaesslerMForsterCSchmidhuberJCaroGDScaramuzzaDGambardellaLMA machine learning approach to visual perception of forest trails for mobile robotsIEEE Robot Autom Lett2015166166710.1109/LRA.2015.2509024
– reference: LenjaniAYeumCMDykeSJBilionisIAutomated building image extraction from 360∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} panoramas for postdisaster evaluationComput Aided Civ Infrastruct Eng201910.1111/mice.12493
– reference: LiTXieNZengCZhouWZhengLJiangYYangYHaHYXueWHuangYChenSCNavlakhaJIyengarSSData-driven techniques in disaster information managementACM Comput Surv201750145
– reference: Kusumawardani RP, Hafidz I, Putra SF (2016) BencanaVis visualization and clustering of disaster readiness using K Means with R shiny a case study for disaster, medical personnel and health facilities data at province level in Indonesia. In: Proceedings of the 2016 international conference on information and communication technology and systems (ICTS). IEEE, pp 178–186. https://doi.org/10.1109/ICTS.2016.7910295
– reference: MurphyRRKravitzJStoverSLShoureshiRMobile robotics in mine rescue and recoveryIEEE Robot Autom Mag20091691103
– reference: TinocoJCorreiaAGCortezPTollDGData-driven model for stability condition prediction of soil embankments based on visual data featuresJ Comput Civ Eng20183204018027
– reference: Tian H, Chen SC (2017a) MCA-NN: Multiple correspondence analysis based neural network for disaster information detection. In: The 3rd IEEE international conference on multimedia big data. IEEE. https://doi.org/10.1109/BigMM.2017.30
– reference: Acuna V, Kumbhar A, Vattapparamban E, Rajabli F, Guvenc I (2017) Localization of WiFi devices using probe requests captured at unmanned aerial vehicles. In: Proceedings of the 2017 IEEE wireless communications and networking conference (WCNC). IEEE. https://doi.org/10.1109/WCNC.2017.7925654
– reference: ZhouYLMaiaNMMWahabMADamage detection using transmissibility compressed by principal component analysis enhanced with distance measureJ Vib Control20182420012019
– reference: LongZWangPLinZZhuJResearch on system of marine situation information analysis and early warning based on artificial intelligenceAdv Eng Res2018164362368
– reference: HouTCLiuJWLiuYWAlgorithmic clustering of LiDAR point cloud data for textural damage identifications of structural elementsMeasurement20171087790
– reference: Wang LC, Lai CC, Shuai HH, Lin HP, Li CY, Cheng TH, Chen CH (2019d) Communications and networking technologies for intelligent drone cruisers. In: Proceedings of the 2019 IEEE GLOBECOM workshops on space-ground integrated networks. IEEE. https://doi.org/10.1109/GCWkshps45667.2019.9024679
– reference: Zhao J, Zhu L, Liu GF, Liu G, Han Z (2009) A modified genetic algorithm for global path planning of searching robot in mine disasters. In: 2009 international conference on mechatronics and automation. IEEE, pp 4936–4940. https://doi.org/10.1109/ICMA.2009.5246026
– reference: RosserJFLeiboviciDGJacksonMJRapid flood inundation mapping using social media, remote sensing and topographic dataNat Hazards201787103120
– reference: FanCZhangCYahjaAMostafaviADisaster City Digital Twin: a vision for integrating artificial and human intelligence for disaster managementInt J Inf Manag201910.1016/j.ijinfomgt.2019.102049
– reference: WangLAbdel-AtyMLeeJShiQAnalysis of real-time crash risk for expressway ramps using traffic, geometric, trip generation, and socio-demographic predictorsAccid Anal Prev2019122378384
– reference: BawonoASAliMIKusumadewiSRamliNIMethodological study to classification of damage state immediately subsequent to the Banjarnegara Indonesia Earthquake on 2018IOP Conf Ser Mater Sci Eng2020712012032
– reference: Moustapha AI, Selmic RR (2007) Wireless sensor network modeling using modified recurrent neural networks: application to fault detection. In: 2007 IEEE international conference on networking, sensing and control. IEEE, pp 313–318. https://doi.org/10.1109/ICNSC.2007.372797
– reference: HuangYJinLZhaoHHuangXFuzzy neural network and LLE algorithm for forecasting precipitation in tropical cyclones: comparisons with interpolation method by ECMWF and stepwise regression methodNat Hazards201891201220
– reference: Lenz I (2016) Deep learning for robotics. PhD dissertation, Cornell University
– reference: SriramLMKUlakMBOzguvenEEArghandehRMulti-network vulnerability causal model for infrastructure co-resilienceIEEE Access20197353443535810.1109/ACCESS.2019.2904457
– reference: ArrietaABDíaz-RodríguezNSerJDBennetotATabikSBarbadoAGarcíaSGil-LópezSMolinaDBenjaminsRChatilaRHerreraFExplainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AIInf Fusion20205882115510.1016/j.inffus.2019.12.012
– reference: BocchiniPFrangopolDMRestoration of bridge networks after an earthquake: multicriteria intervention optimizationEarthq Spectra20122842745510.1193/1.4000019
– reference: Andersson M, Rydell J, St-Laurent L, Prévost D, Gustafsson F (2012) Crowd analysis with target tracking, K-means clustering and hidden Markov models. In: The 15th international conference on information fusion. IEEE, pp 1903–1910
– reference: Jiang FZ, Zhong L, Thilakarathna K, Seneviratne A, Takano K, Yamada S, Ji Y (2017) Supercharging crowd dynamics estimation in disasters via spatio-temporal deep neural network. In: The 2017 IEEE international conference on data science and advanced analytics (DSAA). IEEE. https://doi.org/10.1109/DSAA.2017.11
– reference: SunYLiSReal-time collaborative GIS: a technological reviewISPRS J Photogramm Remote Sens2016115143152
– reference: KochersbergerKKroegerKKrawiecBBrewerEWeberTPost-disaster remote sensing and sampling via an autonomous helicopterJ Field Robot201431510521
– reference: RanzatoMMnihVSusskindJMHintonGEModeling natural images using gated MRFsIEEE Trans Pattern Anal Mach Intell20133522062222
– reference: Russell SJ, Norvig P (2016) Learning from examples. Artificial intelligence: a modern approach, 3rd Edn. Pearson, Chap 18, pp 693–767
– reference: OzdemirAAlturalTA comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW TurkeyJ Asian Earth Sci201364180197
– reference: TrafalisTBAdriantoIRichmanMBLakshmivarahanSMachine-learning classifiers for imbalanced tornado dataCMS201411403418
– reference: Biswas R, Friedrich C, Rao YN, Chakraborty A (2019) Deep reinforcement learning for autonomous inspection system. In: Purdue undergraduate research conference, p 29
– reference: KochCPaalSGRashidiAZhuZKönigMBrilakisIAchievements and challenges in machine vision-based inspection of large concrete structuresAdv Struct Eng201617303318
– reference: ChaudhuriNBoseIExploring the role of deep neural networks for post-disaster decision supportDecis Support Syst202013011323410.1016/j.dss.2019.113234
– reference: MoradiARazmiJBabazadehRSabbaghniaAAn integrated principal component analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertaintyAm Inst Math Sci201915855879
– reference: MousaviSMZhuWShengYBerozaGCCRED: a deep residual network of convolutional and recurrent units for earthquake signal detectionSci Rep2019910267
– reference: Hartawan DR, Purboyo TW, Setianingsih C (2019) Disaster victims detection system using convolutional neural network (CNN) method. In: 2019 IEEE international conference on industry 4.0. Artificial Intelligence, and Communications Technology (IAICT), IEEE, pp 105–111. https://doi.org/10.1109/ICIAICT.2019.8784782
– reference: PualJAHariharanGLocation-allocation planning of stockpiles for effective disaster mitigationAnn Oper Res2012196469490
– reference: SimmonsKMSutterDTornado warning, lead times and tornado casualties: an empirical investigationWeather Forecast200823246258
– reference: Rahnemoonfar M, Murphy R, Miquel MV, Dobbs D, Adams A (2018) Flooded area detection from UAV images based on densely connected recurrent neural networks. In: Proceedings of the 2018 IEEE international geoscience and remotely sensing symposium. IEEE, pp 1788–1791. https://doi.org/10.1109/IGARSS.2018.8517946
– reference: ChengGGuoLZhaoTHanJLiHFangJAutomatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSAInt J Remote Sens2013344559
– reference: Tucker I, Gil-Garcia JR, Sayogo DS (2017) Collaborative data analytics for emergency response: Identifying key factors and proposing a preliminary framework. In: Proceedings of the 10th international conference on theory and practice of electronic governance, pp 508–515
– reference: Alam F, Imran M, Ofli F (2017) Image4Act: online social media image processing for disaster response. In: Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining 2017 (ASONAM‘17). IEEE, pp 601–604
– reference: IrelandGVolpiMPetropoulosGPExamining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean floodRemote Sens2015733723399
– reference: DeVriesPMRViégasFWattenbergMMeadeBJDeep learning of aftershock patterns following large earthquakesNature2018560632634
– reference: ZhaoYMengXQiTQingFXiongMLiYGuoPChenGAI-based identification of low-frequency debris flow catchments in the Bailong River basin, ChinaGeomorphology2020359107125
– reference: GomesGFAlmeidaFAJunqueiraDMCunhaSSJrAncelottiACJrOptimized damage identification in CFRP plates by reduced mode shapes and GA-ANN methodsEng Struct2019181111123
– reference: Gopnarayan A, Deshpande S (2019) Tweets analysis for disaster management: preparedness, emergency response, impact, and recovery. In: International conference on innovative data communication technologies and application. Springer, pp 760–764
– reference: RuanJHWangXPChanFTSShiYOptimizing the intermodal transportation of emergency medical supplies using balanced fuzzy clusteringInt J Prod Res20165443684386
– reference: ChenRSharmanRChakravartiNRaoHRUpadhyayaSJEmergency response information system interoperability: development of chemical incident response data modelJ Assoc Inf Syst20089200230
– reference: CurtisADuval-DiopDNovakJIdentifying spatial patterns of recovery and abandonment in the post-Katrina Holy Cross neighborhood of New OrleansCartogr Geogr Inf Sci2010374556
– reference: AnsariAFiruziEEtemadsaeedLDelineation of seismic sources in probabilistic seismic-hazard analysis using fuzzy cluster analysis and Monte Carlo simulationBull Seismol Soc Am201510521742191
– reference: FernandezPMouratoSMoreiraMPereiraLA new approach for computing a flood vulnerability index using cluster analysisPhys Chem Earth Parts A/B/C2016944755
– reference: YanYKongLHeXOuyangMPeetaSChenXPre-disaster investment decisions for strengthening the Chinese railway system under earthquakesTransp Res Part E Logist Transp Rev20171053959
– reference: Eguchi RT, Huyck CK, Ghosh S, Adams BJ (2008) The application of remote sensing technologies for disaster management. In: The 14th world conference on earthquake engineering, paper ID. K004. https://www.iitk.ac.in/nicee/wcee/article/14_K004.pdf
– reference: Stefanov WL, Evans CA (2014) The international space station: a unique platform for remote sensing of natural disasters. Technical Report 20150003831, NASA. https://ntrs.nasa.gov/search.jsp?R=20150003831
– reference: NIST (2018) Community resilience planning guide. https://www.nist.gov/topics/community-resilience/community-resilience-planning-guide
– reference: YabeTUkkusuriSVIntegrating information from heterogeneous networks on social media to predict post-disaster returning behaviorJ Comput Sci2019321220
– reference: Imran M, Castillo C, Lucas J, Meier P, Vieweg S (2014) AIDR: artificial intelligence for disaster response. In: Proceedings of the 23rd international conference on world wide web. ACM, pp 159–162
– reference: AtaseverUHA new unsupervised change detection approach with hybrid clustering for detecting the areal damage after natural disasterFresen Environ Bull20172638913896
– reference: EU-CIRCLE (2019) A pan-European framework for strengthening critical infrastructure resilience to climate change. https://www.eu-circle.eu/eu-funded-projects/
– reference: TerranovaOGGarianoSLIaquintaPIovineGGRGA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{GA}$$\end{document}SAKe: forecasting landslide activations by a genetic-algorithms-based hydrological modelGeosci Model Develop2015819551978
– reference: Careem M, Silva CD, Silva RD, Raschid L, Weerawarana S (2006) Sahana: Overview of a disaster management system. In: Proceedings of the 2006 international conference on information and automation. IEEE, pp 361–366. https://doi.org/10.1109/ICINFA.2006.374152
– reference: ChungKParkRCP2P cloud network services for IoT based disaster situations informationPeer Peer Netw Appl20169566577
– reference: Mao H, Alizadeh M, Menache I, Kandula S (2016) Resource management with deep reinforcement learning. In: Proceedings of the 15th ACM workshop on hot topics in networks. ACM, pp 50–56. https://doi.org/10.1145/3005745.3005750
– reference: Rauter M, Winkler D (2018) Predicting natural hazards with neuronal networks. https://arxiv.org/pdf/1802.07257.pdf
– reference: Yoon DK, Jeong S (2016) Assessment of community vulnerability to natural disasters in Korea by using GIS and machine learning techniques. In: Quantitative regional economic and environmental analysis for sustainability in Korea. Springer, pp 123–140
– reference: ChoubinBBorjiMMosaviASajedi-HosseiniFSinghVPShamshirbandSSnow avalanche hazard prediction using machine learning methodsJ Hydrol2019577123929
– reference: BaiYGaoCSinghSKochMAdrianoBMasEKoshimuraSA framework of rapid regional tsunami damage recognition from post-event TerraSAR-X imagery using deep neural networksIEEE Geosci Remote Sens Lett2018154347
– reference: Zhang K, Niroui F, Fococelli M, Nejat G (2018a) Robot navigation of environments with unknown rough terrain using deep reinforcement learning. In: Proceedings of the 2018 IEEE international symposium on safety, security, and rescue robotics (SSRR). https://doi.org/10.1109/SSRR.2018.8468643
– reference: HuangXWangCLiZNingHA visual-textual fused approach to automated tagging of flood-related tweets during a flood eventInt J Digit Earth20191212481264
– reference: SadiqFISelamatAIbrahimRPerformance valuation of classifiers on activity recognition for disasters mitigation using smartphone sensingJurnal Teknologi2018771119
– reference: SuttonRSBartoAGSuttonRSBartoAGTemporal-difference learningReinforcement learning: an introduction20182CambridgeThe MIT Press119140
– reference: ChenLHHongYTRegional Taiwan rainfall frequency analysis using principal component analysis, self-organizing maps and L-momentsHydrol Res201243275285
– reference: Saad OM, Shalaby A, Sayed MS (2014) Automatic arrival time detection for earthquakes based on fuzzy possibilistic C-means clustering algorithm. In: Proceedings of the 2017 8th international conference on recent advances in space technologies (RAST). IEEE, pp 1749–1758
– reference: JiaMZhangZCritical mass of women on BODs, multiple identities, and corporate philanthropic disaster response: evidence from privately owned Chinese firmsJ Bus Ethics201211830331710.1007/s10551-012-1589-7
– reference: ButlerDCrowdsourcing goes mainstream in typhoon responseNature201310.1038/nature.2013.14186
– reference: CortezBCarreraBKimYJJungJYAn architecture for emergency event prediction using LSTM recurrent neural networksExpert Syst Appl201897315324
– reference: Liu X, Nourbakhsh A, Li Q, Fang R, Shah S (2015) Real-time rumor debunking on Twitter. In: Proceedings of the 24th ACM international on conference on information and knowledge management (CIKM’15). ACM, pp 1867–1870
– reference: LiangNJShihYTShihFYWuHMWangHJShiSFWangBBDisaster epidemiology and medical response in the Chi-Chi earthquake in TaiwanAnn Emerg Med200138554955510.1067/mem.2001.118999
– reference: MishraAKDesaiVRDrought forecasting using feed-forward recursive neural networkEcol Model2006198127138
– reference: Pessin G, Osorio F, Wolf DF, Dias MA (2009) Genetic algorithm applied to robotic squad coordination. In: 2009 electronics, robotics and automotive mechanics conference (CERMA). IEEE, pp 169–174. https://doi.org/10.1109/CERMA.2009.17
– reference: Tian H, Chen SC (2017b) A video-aided semantic analytics system for disaster information integration. In: The 3rd IEEE international conference on multimedia big data. IEEE, pp 242–243. https://doi.org/10.1109/BigMM.2017.31
– reference: PezanowskiSMacEachrenAMSavelyevARobinsonACSensePlace3: a geovisual framework to analyze place-time-attribute information in social mediaJ Cartogr Geogr Inf Sci201845420437
– reference: ShirzaeiMWalterTRTime-dependent volcano source monitoring using interferometric synthetic aperture radar time series: a combined genetic algorithm and Kalman filter approachJ Geophys Res2010115B10421
– reference: SunHBurtonHWallaceJReconstructing seismic response demands across multiple tall buildings using kernel-based machine learning methodsStruct Control Health Monit201926e2359
– reference: ChaYJChoiWBüyüközturkODeep learning-based crack damage detection using convolutional neural networksComput Aided Civ Infrastruct Eng201732361378
– reference: Tinoco J, Correia AG, Cortez P, Toll D (2019) Combining artificial neural networks and genetic algorithms for rock cuttings slopes stability condition identification. In: International conference on information technology in geo-engineering. Springer, pp 196–209
– reference: GonzalezMCHidalgoCABarabasiALUnderstanding individual human mobility patternsNature2009453779782
– reference: KimJMWoodsPKParkYJKimTSonKPredicting hurricane wind damage by claim payout based on Hurricane Ike in TexasGeomat Nat Hazards Risk201576565585
– reference: SmithABKatzRWUS billion-dollar weather and climate disasters: data sources, trends, accuracy and biasesNat Hazards201367387410
– reference: DevaultJERobotic system for underwater inspection of bridge piersIEEE Instrum Measur Magaz200033237
– reference: LiuXLiuYChenYReinforcement learning in multiple-UAV networks: deployment and movement designIEEE Trans Veh Technol20196880368049
– reference: StraussAHoffmanSWendnerRBergmeiterKStructural assessment and reliability analysis for existing engineering structures, applications for real structuresStruct Infrastruct Eng20095277286
– reference: Verma S, Nair HS, Agarwal G, Dhar J, Shukla A (2020) Deep reinforcement learning for single-shot diagnosis and adaptation in damaged robots. In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. ACM, pp 82–89
– reference: GaoYChenYXDingYSTangBYImmune genetic algorithm based on network model for flood disaster evaluationJ Nat Disaster200615110114
– reference: Khouj M, López C, Sarkaria S, Marti J (2011) Disaster management in real time simulation using machine learning. In: Proceedings of the 24th Canadian conference on electrical and computer engineering (CCECE). IEEE. https://doi.org/10.1109/CCECE.2011.6030716
– reference: ChenPAChangLCChangFJReinforced recurrent neural networks for multi-step-ahead flood forecastsJ Hydrol20134977179
– reference: Rudner TGJ, Rußwurm M, Fil J, Pelich R, Bischke B, Kopačková V, Biliński P (2019) Multi3Net: segmenting flooded buildings via fusion of multiresolution, multisensor, and multitemporal satellite imagery. In: The thirty-third AAAI conference on artificial intelligence (AAAI-19). AAAI, pp 702–709
– reference: Giffard-Roisin S, Yang M, Charpiat G, Kégl B, Monteleoni C (2018) Deep learning for hurricane track forecasting from aligned spatio-temporal climate datasets. In: Workshop on modeling and decision-making in the spatiotemporal domain, the 32nd conference on neural information processing systems (NIPS 2018). https://openreview.net/pdf?id=rkMdBSdRKm
– reference: Huang W, Wang Y, Yi X (2017) Deep Q-learning to preserve connectivity in multi-robot systems. In: Proceedings of the 9th international conference on signal processing systems (ICSPS2017). ACM, pp 45–50
– reference: LiHParikhDHeQQianBLiZFangDHampapurAImproving rail network velocity: a machine learning approach to predictive maintenanceTransp Res Part C2014451726
– reference: ShirzadiABuiDTPhamBTSolaimaniKChapiKKavianAShahabiHRevhaugIShallow landslide susceptibility assessment using a novel hybrid intelligence approachEnviron Earth Sci20177660
– reference: GuoJWuJGuoJJiangZA damage identification approach for offshore jacket platforms using partial modal results and artificial neural networksAppl Sci201882173
– reference: NHERI (2019) DesignSafe. https://www.designsafe-ci.org/
– reference: ChenRSharmanRRaoHRUpadhyayaSJCoordination in emergency response managementCommun ACM2008516673
– reference: LinYRGonçalvesBPerraNEvent-related crowd activities on social mediaSocial phenomena2015BerlinSpringer235250
– reference: KuangSDavisonBDLearning word embeddings with Chi-Square weights for healthcare tweet classificationAppl Sci201778846
– reference: BarabadiAAyeleYPost-disaster infrastructure recovery: prediction of recovery rate using historical dataReliab Eng Syst Saf2018169209223
– reference: AlamPBoothDLeeKThordarsonTThe use of fuzzy clustering algorithm and self-organizing neural networks for identifying potentially failing banks: an experimental studyExpert Syst Appl200018185199
– reference: Pugh J, Martinoli A (2007) Inspiring and modeling multi-robot search with particle swarm optimization. In: 2007 IEEE swarm intelligence symposium. IEEE. https://doi.org/10.1109/SIS.2007.367956
– reference: WlwoodECorotisRBApplication of fuzzy pattern recognition of seismic damage to concrete structuresASCE-ASME J Risk Uncertain Eng Syst Part A Civ Eng2015104015011
– reference: Kumar A, Jiang M, Fang Y (2014) Where not to go?: Detecting road hazards using Twitter. In: Proceedings of the 37th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 1223–1226
– reference: Zhou J, Pei H, Wu H (2017a) Early warning of human crowds based on query data from Baidu maps: analysis based on Shanghai Stampede. In: Big data support of urban planning and management. Springer, pp 19–41
– reference: ReschBUsländerFHavasCCombining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessmentJ Artif Intell Res201845362376
– reference: BarthelFNeumayerEA trend analysis of normalized insured damage from natural disastersClim Change2012113215237
– reference: SeydiSRastiveisHA deep learning framework for roads network damage assessment using post-earthquake LiDAR dataInt Soc Photogramm Remote Sens201942955961
– reference: MitropoulouCCPapadrakakisMDeveloping fragility curves based on neural network IDA predictionsEng Struct20113334093421
– reference: Socher R, Lin CC, Manning C, Ng AY (2011) Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the international conference on machine learning. Omnipress, pp 129–136
– reference: SunYTanWA trust-aware task allocation method using deep Q-learning for uncertain mobile crowdsourcingHuman-centric Comput Inf Sci2019925
– reference: XiaoYLiBGongZReal-time identification of urban rainstorm waterlogging disasters based on Weibo big dataNat Hazards201894833842
– reference: MemarzadehMPozziMModel-free reinforcement learning with model-based safe exploration: Optimizing adaptive recovery process of infrastructure systemsStruct Saf2019804655
– reference: RobertsonBWJohnsonMMurthyDSmithWRStephensKKUsing a combination of human insights and ‘deep learning’ for real-time disaster communicationProg Disaster Sci20192100030
– reference: AdamsSMLevitanMFriedlandCJHigh resolution imagery collection for post-disaster studies utilizing unmanned aircraft systems (UAS)Photogram Eng Remote Sens20141211611168
– reference: Kondaveti R, Ganz A (2009) Decision support system for resource allocation in disaster management. In: The annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 3425–3428. https://doi.org/10.1109/IEMBS.2009.5332498
– reference: Adeel A, Gogate M, Farooq S, Ieracitano C, Dashtipour K, Larijani H, Hussain A (2018) A survey on the role of wireless sensor networks and IoT in disaster management. In: Geological disaster monitoring based on sensor networks. Springer, pp 57–66
– reference: BarrientosFSainzGInterpretable knowledge extraction from emergency call data based on fuzzy unsupervised decision treeKnowl Based Syst2012257787
– reference: KongQAllenRMSchreierLKwonYWMyShake: a smartphone seismic network for earthquake early warning and beyondSci Adv20162e1501055
– reference: IliadisLSA decision support system applying an integrated fuzzy model for long-term forest fire risk estimationEnviron Model Softw200520613621
– reference: MangalahtuSJeonJSDesRochesRCritical uncertainty parameters influencing seismic performance of bridges using Lasso regressionEarthq Eng Struct Dyn201847784801
– reference: WangJZhangJGongLLiQZhouDIndirect seismic economic loss assessment and recovery evaluation using nighttime light images—application for Wenchuan earthquakeNat Hazards Earth Syst Sci20181832533266
– reference: KiatpanontRTanlamaiUChongstitvatanaPExaction of actionable information from crowdsourced disaster dataJ Emerg Manag201614377390
– reference: AliEMAhmedMMWulffSSDetection of critical safety events on freeways in clear and rainy weather using SHRP2 naturalistic driving data: parametric and non-parametric techniquesSaf Sci2019119141149
– reference: SharmaSOgunlanaKUsing genetic algorithm and neural network for modeling learning behavior in a multi-agent system during emergency evacuationInt J Comput Appl201522172182
– reference: EidMSEl-adawayIHSustainable disaster recovery: multiagent-based model for integrating environmental vulnerability into decision-making processes of the associated stakeholdersJ Urban Plann Develop201714304016022
– reference: Burris JW, Shrestha R, Gautam B, Bista B (2015) Machine learning for the activation of contraflow during hurricane evacuation. In: The 2015 IEEE global humanitarian technology conference (GHTC). IEEE. https://doi.org/10.1109/GHTC.2015.7343981
– reference: Zhong L, Garlichs K, Yamada S, Takano K, Ji Y (2018) Mission planning for UAV-based opportunistic disaster recovery networks. In: 2018 15th IEEE annual consumer communications and networking conference (CCNC). IEEE. https://doi.org/10.1109/CCNC.2018.8319233
– reference: da SilvaSJúniorMDJuniorVLBrennanMJStructural damage detection by fuzzy clusteringMech Syst Signal Process20082216361649
– reference: Eckle M, Herfort B, Yan Y, Kuo CL, Zipf A (2017) Towards using volunteered geographic information to monitor post-disaster recovery in tourist destinations. In: Proceedings of the 14th ISCRAM conference, pp 1008–1019
– reference: MitsopoulosIMallinisGA data-driven approach to assess large fire size generation in GreeceNat Hazards20178815911607
– reference: Yang B, Liu M (2018) Keeping in touch with collaborative UAVs: a deep reinforcement learning approach. In: Proceedings of the twenty-seventh international joint conference on artificial intelligence (IJCAI-18), pp 562–568
– reference: LiJStephensKKZhuYMurthyDUsing social media to call for help in Hurricane Harvey: bonding emotion, culture, and community relationshipsInt J Disaster Risk Reduct201938101212
– reference: DOE (2014) Lantern live. https://github.com/GSA/digitalgov.gov/blob/master/content/posts/2014/12/2014-12-04-find-fuel-during-disasters-with-lantern-live-app.md
– reference: ZhangJRisk assessment of drought disaster in the maize-growing region of Songliao Plain, ChinaAgric Ecosyst Environ2004102133153
– reference: SheuJBAn emergency logistics distribution approach for quick response to urgent relief demand in disastersTransp Res Part E Logist Transp Rev200743687709
– reference: Ahmad R, Samy GN, Ibrahim NK, Bath PA, Ismail Z (2009) Threats identification in healthcare information systems using genetic algorithm and cox regression. In: The fifth international conference on information assurance and security, pp 757–760. https://doi.org/10.1109/IAS.2009.313
– reference: Novellino A, Jordan C, Ager G, Bateson L, Fleming C, Confuorto P (2018) Remote sensing for natural or man-made disasters and environmental changes. In: Geological disaster monitoring based on sensor networks. Springer, pp 23–31
– reference: Wang P, Tan E, Jin Y, Wang J, Wang L (2019e) A deep reinforcement leaning evolution of emergency state during traffic network. In: Proceedings of the 14th IEEE conference on industrial electronics and applications. IEEE. https://doi.org/10.1109/ICIEA.2019.8833977
– reference: Wilson R, zu Erbach-Schoenberg E, Albert M, Power D, Tudge S, Gonzalez M, Guthrie S, Chamberlain H, Brooks C, Hughes C, Pitonakova L, Buckee C, Lu X, Wetter E, Tatem A, Bengtsson L (2016) Rapid and near real-time assessments of population displacement using mobile phone data following disasters: the 2015 Nepal earthquake. PLoS Curr Disasters. https://doi.org/10.1371/currents.dis.d073fbece328e4c39087bc086d694b5c
– reference: HutchinsonTCChenZOptimized estimated ground truth for object-based urban damage estimation using satellite images from the 2003 Bam, Iran, EarthquakeEarthq Spectra200521S239S254
– reference: SongXZhangQSekimotoYShibasakiRYuanNJXieXPrediction and simulation of human mobility following natural disastersACM Trans Intell Syst Technol20168123
– reference: Romlay MRM, Rashid MM, Toha SF (2016) Development of particle swarm optimization based rainfall-runoff prediction model for Pahang River Pekan. In: Proceedings of the 2016 international conference on computer and communication engineering (ICCCE). IEEE, pp 306–310. https://doi.org/10.1109/ICCCE.2016.72
– reference: BoccardoPTonoloFGRemote sensing role in emergency mapping for disaster responseEng Geol Soc Territ201451724
– reference: Mane SS, Mokashi MK (2015) Real-time flash-flood monitoring, alerting and forecasting system using data mining and wireless sensor network. In: Proceedings of the 2015 international conference on communications and signal processing (ICCSP). IEEE, pp 1881–1886. https://doi.org/10.1109/ICCSP.2015.7322851
– reference: Duncan A, Chen AS, Keedwell E, Djordjević S, Savić DA (2013) RAPIDS: early warning system for urban flooding and water quality hazards. In: Proceedings of machine learning in water systems symposium: part of AISB annual convention 2013. http://hdl.handle.net/10871/16090
– reference: DouMChenJChenDChenXDengZZhangXXuaKWangJModeling and simulation for natural disaster contingency planning driven by high-resolution remote sensing imagesFuture Gener Comput Syst201437367377
– reference: Zhang L, Lv X, Dhakal S (2019b) A reinforcement learning-based stakeholder value aggregation model for collaborative decision making on disaster resilience. In: ASCE international conference on computing in civil engineering 2019. ASCE, pp 490–497
– reference: ÖzdamarLDemirOA hierarchical clustering and routing procedure for large scale disaster relief logistics planningTransp Res Part E Logist Transp Rev201248591602
– reference: BarringtonLGhoshSGreeneMHar-NoySBergerJGillSLinAYMHuyckCCrowdsourcing earthquake damage assessment using remote sensing imageryAnn Geophys20115468068710.4401/ag-5324
– reference: ChaeJThomDJangYKimSErtlTEbertDPublic behavior response analysis in disaster events utilizing visual analytics of microblog dataComput Graph201438516010.1016/j.cag.2013.10.008
– reference: MoyaLYamazakiFLiuWYamadaMDetection of collapsed buildings from LiDAR data due to the 2016 Kumamoto earthquake in JapanNat Hazards Earth Syst Sci2018186578
– reference: DengLYuDDeep learning: methods and applicationsFound Trends Sig Process20147199200
– reference: Dong L, Wei F, Tan C, Tang D, Zhou M, Xu K (2014) Adaptive recursive neural network for target-dependent Twitter sentiment classification. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (short papers). Association for Computational Linguistics, pp 49–54
– reference: SheuJBDynamic relief-demand management for emergency logistics operations under large-scale disastersTransp Res Part E Logist Transp Rev201046117
– reference: Elsayed M, Erol-Kantarc M (2018) Deep Q-learning for low-latency tactile applications: microgrid communications. In: Proceedings of the 2018 IEEE international conference on communications, control, and computing technologies for smart grids (SmartGridComm). IEEE. https://doi.org/10.1109/SmartGridComm.2018.8587476
– reference: Sun H, Tian X, Li Z, Chen E, Wang W (2017) Remotely sensed monitoring forest changes-a case study in the Jinhe town of Inner Mongolia. In: 2017 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE. https://doi.org/10.1109/IGARSS.2017.8127747
– reference: MelchiorreCMatteucciMAzzoniAZanchiAArtificial neural networks and cluster analysis in landslide susceptibility zonationGeomorphology200894379400
– reference: AlfaiateJAliabadiMGuaglianoMSusmelLIdentification of damaged bars in three-dimensional redundant truss structures by means of genetic algorithmsKey Eng Mater2007348–349229232
– reference: MangalathuSHeoGJeonJSArtificial neural network based multi-dimensional fragility development of skewed concrete bridge classesEng Struct2018162166176
– reference: ChengMYHoangNDSlope collapse prediction using Bayesian framework with K-nearest neighbor density estimation: case study in TaiwanJ Comput Civ Eng20143004014116
– reference: GauthierFGermainDHuétuBLogistic models as a forecasting tool for snow avalanches in a cold maritime climate: northern Gaspésie, Québec, CanadaNat Hazards201789201232
– reference: FallahianMKhoshnoudianFMeruaneVEnsemble classification method for structural damage assessment under varying temperatureStruct Health Monit201817747762
– reference: DHS (2010) DHS risk lexicon. https://www.dhs.gov/xlibrary/assets/dhs-risk-lexicon-2010.pdf
– reference: BandaraRPChanTHThambiratnamDPStructural damage detection method using frequency response functionsStruct Health Monit201413418429
– reference: LinWTChouWCLinCYEarthquake-induced landslide hazard and vegetation recovery assessment using remotely sensed data and a neural network-based classifier: a case study in central TaiwanNat Hazards200847331347
– reference: Hoot N, Aronsky D (2006) An early warning system for overcrowding in the emergency department. In: AMIA annual symposium proceedings symposiu, vol 2006, pp 339–343. PMCID: PMC1839284
– reference: S̆ubikS, Rohde S, Weber T, Wietfeld C (2010) SPIDER: enabling interoperable information sharing between public institutions for efficient disaster recovery and response. In: Proceedings of the 2010 IEEE international conference on technologies for homeland security. IEEE, pp 190–196. https://doi.org/10.1109/THS.2010.5655061
– reference: PechenkinADemidovRApplication of deep neural networks for security analysis of digital infrastructure componentsSHS Web Conf20184400068
– reference: Lingam G, Rout RR, Somayajulu DVLN (2019) Deep Q-learning and particular swarm optimization for bot detection in online social networks. In: Proceedings of the 10th international conference on computing, communication and networking technologies (ICCCNT). https://doi.org/10.1109/ICCCNT45670.2019.8944493
– reference: ReynardDShirgaokarMHarnessing the power of machine learning: Can Twitter data be useful in guiding resource allocation decisions during a natural disaster?Transp Res Part D Transp Environ201977449463
– reference: GoodchildMFGlennonJACrowdsourcing geographic information for disaster response: a research frontierInt J Digit Earth2010323124110.1080/17538941003759255
– reference: JayaramNBakerJWEfficient sampling and data reduction techniques for probabilistic seismic lifeline risk assessmentEarthq Eng Struct Dyn20103911091131
– reference: BagdePRChaudhariMSAnalysis of fraud detection mechanism in health insurance using statistical data mining techniquesInt J Comput Sci Inf Technol20167925927
– reference: ZhangLZhangLDuBDeep learning for remote sensing data: a technical tutorial on the state of the artIEEE Geosci Remote Sens Mag201642240
– reference: MoskowitzHDrnevichPErsoyOAltinkemerKChaturvediAUsing real-time decision tools to improve distributed decision-making capabilities in high-magnitude crisis situationsDecis Sci201142477493
– reference: NaiduSSajinkumarKSOommenTAnujaVJSamuelRAEarly warning system for shallow landslides using rainfall threshold and slope stability analysisGeosci Front2018918711882
– reference: HuangMLeiYChengSDamage identification of bridge structure considering temperature variations based on particle swarm optimization—cuckoo search algorithmAdv Struct Eng20192232623276
– reference: NoymaneeJNikitinNOKalyuzhnayaAVUrban pluvial flood forecasting using open data with machine learning techniques in Pattani BasinProc Comput Sci2017119288297
– reference: ShiHKimMLeeSCPyoSEsfahaniIYooCLocalized indoor air quality monitoring for indoor pollutants’ healthy risk assessment using sub-principal component analysis driven model and engineering big dataKorean J Chem Eng20153219601969
– reference: Karamlou A, Bocchini P, Christou V (2016) Metrics and algorithm for optimal retrofit strategy of resilient transportation networks. In: Proceedings of the maintenance, monitoring, safety, risk and resilience of bridges and bridge networks (IABMAS2016), pp 1121–1128
– reference: Raymond R, Morimura T, Osogami T, Hirosue N (2012) Map matching with hidden Markov model on sampled road network. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012). IEEE, pp 2242–2245
– reference: ZareMPourghasemiHRVafakhahMPradhanBLandslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithmsArab J Geosci2013628732888
– reference: Guo J, Huo Y, Shi X, Wu J, Yu P, Feng L, Li W (2019) 3D aerial vehicle base station (UAV-BS) position planning based on deep Q-learning for capacity enhancement of users with different QoS requirements. In: Proceedings of the 15th international wireless communications and mobile computing conference (IWCMC). IEEE. https://doi.org/10.1109/IWCMC.2019.8766625
– reference: Vieweg S (2012) Situational awareness in mass emergency: a behavioral and linguistic analysis of microblogged communications. PhD dissertation, University of Colorado at Boulder
– reference: Ning L, Li Y, Zhou M, Song H, Dong H (2019) A deep reinforcement learning approach to high-speed train timetable rescheduling under disturbances. In: 2019 IEEE intelligent transportation systems conference (ITSC). IEEE, pp 3469–3474
– reference: LiZMeierMHaukssonEZhanZAndrewsJMachine learning seismic wave discrimination: application to earthquake early warningGeophys Res Lett20184547734779
– reference: ForestiGLFarinosiMVernierMSituational awareness in smart environments: socio-mobile and sensor data fusion for emergency response to disastersJ Ambient Intell Humaniz Comput20156239257
– reference: MalawaniADNurmandiAPurnomoEPRahmanTSocial media in aid of post disaster managementTransform Gov People Process Policy202010.1108/TG-09-2019-0088
– reference: LiuCHChenZTangJXuJPiaoCEnergy-efficient UAV control for effective and fair communication coverage: a deep reinforcement learning approachIEEE J Sel Areas Commun20183620592070
– reference: SaitoHNakayamaDMatsuyamaHComparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, JapanGeomorphology2009109108121
– reference: YuanCMoayediHEvaluation and comparison of the advanced metaheuristic and conventional machine learning methods for the prediction of landslide occurrenceEng Comput201910.1007/s00366-019-00798-x
– reference: UunkLWijinbergKMorelissenRAutomated mapping of the intertidal beach bathymetry from video imagesOcean Eng201057461469
– reference: Baldazo D, Parras J, Zazo S (2019) Decentralized multi-agent deep reinforcement learning in swarms of drones for flood monitoring. In: 2019 27th European signal processing conference (EUSIPCO). IEEE. https://doi.org/10.23919/EUSIPCO.2019.8903067
– reference: Adams BJ, Huyck C, Mansouri B, Eguchi R, Shinozuka M (2002) Post-disaster bridge damage assessment. In: Proceedings of the 15th Pecora conference: integrating remote sensing at the global, regional, and local scale, 8p, on CD-ROM
– reference: KaramlouABocchiniPSequencing algorithm with multiple-input genetic operators: application to disaster resilienceEng Struct2016117591602
– reference: BerawiMALeviakangasPMuhammadFSariMYatmoYASuryanegaraMOptimizing search and rescue personnel allocation in disaster emergency response using fuzzy logicInt J Technol20191014161426
– reference: JahangiriAAfandizadehSKalantariNThe optimization of traffic signal timing for emergency evacuation using the simulated annealing algorithmTransport201126133140
– reference: WangCWuJWangXHeXApplication of the hidden Markov model in a dynamic risk assessment of rainstorms in Dalian, ChinaStoch Env Res Risk Assess20183220452056
– reference: Sánchez-GarcíaJA distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenarioFuture Gener Comput Syst201990129148
– reference: Rahman R, Hasan S (2018) Short-term traffic speed prediction for freeways during hurricane evacuation: a deep learning approach. In: The 21st international conference on intelligent transportation systems (ITSC). IEEE, pp 1291–1296. https://doi.org/10.1109/ITSC.2018.8569443
– reference: RuzGAHenríquezPAnoAMSentiment analysis of Twitter data during critical events through Bayesian networks classifiersFuture Gener Comput Syst202010692104
– reference: YangYChenGReniersGVulnerability assessment of atmospheric storage tanks to floods based on logistic regressionReliab Eng Syst Saf2019196106721
– reference: YuMHuangQQinHScheeleCYangCDeep learning for real-time social media text classification for situation awareness—using Hurricanes Sandy, Harvey, and Irma as case studiesInt J Digit Earth20191212301247
– reference: AhmadKPogorelovKRieglerMOstroukhovaOHalvorsenPConciNDahyotRAutomatic detection of passable roads after floods in remote sensed and social media dataSig Process Image Commun201974110118
– reference: Rawat P, Haddad M, Altman E (2015) Towards efficient disaster management: 5G and device to device communication. In: Proceedings of the 2nd international conference on information and communication technologies for disaster management (ICT-DM). IEEE. https://doi.org/10.1109/ICT-DM.2015.7402056
– reference: CavalieriFFranchinPCortésJAMBTesfamariamSModels for seismic vulnerability analysis of power networks: comparative assessmentComput Aided Civ Infrastruct Eng201429590607
– reference: LodreeEJJDavisLBEmpirical analysis of volunteer convergence following the 2011 tornado disaster in Tuscaloosa, AlabamaNat Hazards20168411091135
– reference: MaCZhangJZhaoYHabibMFSavasSSMukherjeeBTraveling repairman problem for optical network recovery to restore virtual networks after a disasterIEEE/OSA J Opt Commun Netw20157B81B92
– reference: Morito T, Sugiyama O, Kojima R, Nakadai K (2016) Partially shared deep neural network in sound source separation and identification using a UAV-embedded microphone array. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 1299–1304. https://doi.org/10.1109/IROS.2016.7759215
– reference: Pogrebnykov N, Maldonado E (2017) Identifying emergency stages in Facebook posts of police departments with convolutional and recurrent neural networks and support vector machines. In: Proceedings of the 2017 IEEE international conference on big data. IEEE, pp 4343–4352. https://doi.org/10.1109/BigData.2017.8258464
– reference: SongXShibasakiRYuanNJXieXLiTAdachiRDeepMob: learning deep knowledge of human emergency behavior and mobility from big and heterogeneous dataACM Trans Intell Syst Technol201735119
– reference: ValkaniotisSPapathanassiouGGanasAMapping an earthquake-induced landslide based on UAV imagery: case study of the 2015 Okeanos landslide, Lefkada, GreeceEng Geol2018245141152
– ident: 4124_CR510
  doi: 10.23919/OCEANS.2009.5422201
– volume: 366
  start-page: 314
  year: 2019
  ident: 4124_CR615
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.021
– volume: 58
  start-page: 82
  year: 2020
  ident: 4124_CR24
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.12.012
– volume: 62
  start-page: 721
  year: 2014
  ident: 4124_CR397
  publication-title: Robot Auton Syst
  doi: 10.1016/j.robot.2014.03.003
– ident: 4124_CR479
– volume: 119
  start-page: 141
  year: 2019
  ident: 4124_CR18
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2019.01.007
– volume: 78
  start-page: 154
  year: 2014
  ident: 4124_CR244
  publication-title: Eng Sturct
  doi: 10.1016/j.engstruct.2014.05.016
– volume: 84
  start-page: 819
  year: 2015
  ident: 4124_CR275
  publication-title: J Risk Insur
  doi: 10.1111/jori.12106
– ident: 4124_CR185
  doi: 10.1109/ICASSP.2013.6638947
– ident: 4124_CR13
  doi: 10.1109/IAS.2009.313
– ident: 4124_CR193
– volume: 68
  start-page: 37
  year: 2016
  ident: 4124_CR223
  publication-title: Appl Geogr
  doi: 10.1016/j.apgeog.2016.01.005
– ident: 4124_CR335
  doi: 10.1109/VAST.2011.6102456
– volume: 33
  start-page: 3759
  year: 2019
  ident: 4124_CR575
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02342-4
– volume: 143
  start-page: 04017018
  year: 2017
  ident: 4124_CR603
  publication-title: J Urban Plan Dev
  doi: 10.1061/(ASCE)UP.1943-5444.0000404
– volume: 8
  start-page: 767
  year: 2014
  ident: 4124_CR99
  publication-title: Front Environ Sci Eng
  doi: 10.1007/s11783-014-0632-6
– volume: 81
  start-page: 1
  year: 2015
  ident: 4124_CR177
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2015.04.007
– volume: 77
  start-page: 11
  year: 2018
  ident: 4124_CR470
  publication-title: Jurnal Teknologi
– volume: 196
  start-page: 469
  year: 2012
  ident: 4124_CR428
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-011-1052-7
– volume: 31
  start-page: 3369
  year: 2010
  ident: 4124_CR41
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161003727671
– ident: 4124_CR229
  doi: 10.1145/2567948.2577034
– volume: 59
  start-page: 68
  year: 2014
  ident: 4124_CR159
  publication-title: J Psychiatr Res
  doi: 10.1016/j.jpsychires.2014.08.017
– volume: 35
  start-page: 2206
  year: 2013
  ident: 4124_CR440
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.29
– volume: 39
  start-page: 101251
  year: 2019
  ident: 4124_CR61
  publication-title: Int J Disaster Risk Reduct
  doi: 10.1016/j.ijdrr.2019.101251
– volume: 34
  start-page: 189
  year: 2013
  ident: 4124_CR171
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2013.09.003
– year: 2020
  ident: 4124_CR361
  publication-title: Int J Digit Earth
  doi: 10.1080/17538947.2020.1729879
– ident: 4124_CR540
  doi: 10.1007/978-3-030-32029-4_18
– volume: 3
  start-page: 23
  year: 2016
  ident: 4124_CR179
  publication-title: Geoenviron Disasters
  doi: 10.1186/s40677-016-0060-y
– volume: 48
  start-page: 1143
  year: 2018
  ident: 4124_CR216
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-017-9778-0
– volume: 21
  start-page: 04014041
  year: 2015
  ident: 4124_CR288
  publication-title: J Infrastruct Syst
  doi: 10.1061/(ASCE)IS.1943-555X.0000229
– volume: 365
  start-page: 71
  year: 2019
  ident: 4124_CR416
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.06.099
– volume: 42
  start-page: 100974
  year: 2019
  ident: 4124_CR215
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2019.100974
– ident: 4124_CR589
  doi: 10.17077/48vt-m4t2
– volume: 32
  start-page: 537
  year: 2008
  ident: 4124_CR633
  publication-title: Disasters
  doi: 10.1111/j.1467-7717.2008.01054.x
– volume: 47
  start-page: 101326
  year: 2020
  ident: 4124_CR94
  publication-title: Telemat Inform
  doi: 10.1016/j.tele.2019.101326
– volume: 99
  start-page: 161
  year: 2012
  ident: 4124_CR340
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2011.10.011
– volume: 34
  start-page: 1069
  year: 2014
  ident: 4124_CR386
  publication-title: Risk Anal
  doi: 10.1111/risa.12131
– volume: 15
  start-page: 107
  year: 2011
  ident: 4124_CR186
  publication-title: Pers Soc Psychol Rev
  doi: 10.1177/1088868310367640
– ident: 4124_CR352
  doi: 10.1145/2911451.2911460
– ident: 4124_CR651
  doi: 10.23919/ChiCC.2017.8027884
– volume: 577
  start-page: 123929
  year: 2019
  ident: 4124_CR106
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.123929
– volume: 162
  start-page: 166
  year: 2018
  ident: 4124_CR343
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.01.053
– volume: 24
  start-page: 1650
  year: 2002
  ident: 4124_CR349
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2002.1114856
– volume: 12
  start-page: 1248
  year: 2019
  ident: 4124_CR220
  publication-title: Int J Digit Earth
  doi: 10.1080/17538947.2018.1523956
– volume: 106
  start-page: 163
  year: 2019
  ident: 4124_CR577
  publication-title: Fire Saf J
  doi: 10.1016/j.firesaf.2019.04.008
– ident: 4124_CR143
  doi: 10.1109/SmartGridComm.2018.8587476
– volume: 17
  start-page: 747
  year: 2018
  ident: 4124_CR149
  publication-title: Struct Health Monit
  doi: 10.1177/1475921717717311
– volume: 530
  start-page: 829
  year: 2015
  ident: 4124_CR616
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.10.038
– volume: 145
  start-page: 713
  year: 2019
  ident: 4124_CR162
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.05.067
– volume: 4
  start-page: 9
  year: 2017
  ident: 4124_CR74
  publication-title: Geoenviron Disasters
  doi: 10.1186/s40677-017-0073-1
– volume: 30
  start-page: 347
  year: 2015
  ident: 4124_CR82
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12122
– ident: 4124_CR146
– ident: 4124_CR161
  doi: 10.1109/STARTUP.2016.7583959
– volume: 24
  start-page: 2001
  year: 2018
  ident: 4124_CR662
  publication-title: J Vib Control
  doi: 10.1177/1077546316674544
– ident: 4124_CR2
  doi: 10.1109/ICCCE.2018.8539253
– volume: 497
  start-page: 71
  year: 2013
  ident: 4124_CR90
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2013.05.038
– ident: 4124_CR370
  doi: 10.1109/IROS.2016.7759215
– year: 2019
  ident: 4124_CR293
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12493
– volume: 18
  start-page: 185
  year: 2000
  ident: 4124_CR16
  publication-title: Expert Syst Appl
  doi: 10.1016/S0957-4174(99)00061-5
– volume: E96–A
  start-page: 649
  year: 2013
  ident: 4124_CR369
  publication-title: IEICE Trans Fundam Electron Commun Comput Sci
  doi: 10.1587/transfun.E96.A.649
– volume: 112
  start-page: 23
  year: 2018
  ident: 4124_CR659
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2017.11.019
– ident: 4124_CR272
  doi: 10.1109/IEMBS.2009.5332498
– volume: 11
  start-page: 70
  year: 2016
  ident: 4124_CR206
  publication-title: Weather Extreme Events
– ident: 4124_CR388
– ident: 4124_CR502
– volume: 17
  start-page: 1750073
  year: 2017
  ident: 4124_CR256
  publication-title: Int J Struct Stab Dyn
  doi: 10.1142/S0219455417500730
– volume: 11
  start-page: 728
  year: 2010
  ident: 4124_CR572
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2010.2050200
– volume: 105
  start-page: 39
  year: 2017
  ident: 4124_CR606
  publication-title: Transp Res Part E Logist Transp Rev
  doi: 10.1016/j.tre.2017.07.001
– ident: 4124_CR478
  doi: 10.1109/COASE.2018.8560473
– volume: 66
  start-page: 224
  year: 2019
  ident: 4124_CR50
  publication-title: IEEE Trans Eng Manag
  doi: 10.1109/TEM.2018.2794146
– ident: 4124_CR547
  doi: 10.1145/3047273.3047379
– volume: 35
  start-page: 1122
  year: 2008
  ident: 4124_CR354
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.08.008
– volume: 359
  start-page: 107125
  year: 2020
  ident: 4124_CR652
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2020.107125
– volume: 8
  start-page: 297
  year: 2019
  ident: 4124_CR597
  publication-title: Int J Geo-Inf
  doi: 10.3390/ijgi8070297
– ident: 4124_CR134
– ident: 4124_CR538
  doi: 10.1109/IRI.2018.00071
– volume: 16
  start-page: 207
  year: 2016
  ident: 4124_CR625
  publication-title: Adv Struct Eng
  doi: 10.1260/1369-4332.16.1.207
– ident: 4124_CR267
  doi: 10.1109/ICT-DM.2016.7857214
– volume: 711
  start-page: 135161
  year: 2019
  ident: 4124_CR211
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135161
– ident: 4124_CR201
  doi: 10.1007/978-3-319-32034-2_13
– volume: 9
  start-page: 200
  year: 2008
  ident: 4124_CR91
  publication-title: J Assoc Inf Syst
– ident: 4124_CR227
  doi: 10.1109/GHTC.2014.6970316
– volume: 23
  start-page: 246
  year: 2008
  ident: 4124_CR497
  publication-title: Weather Forecast
  doi: 10.1175/2007WAF2006027.1
– volume: 10
  start-page: 931
  year: 2013
  ident: 4124_CR10
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-013-0281-5
– volume: 51
  start-page: 1
  year: 2018
  ident: 4124_CR426
  publication-title: ACM Comput Surv
  doi: 10.1145/3150226
– volume: 12
  start-page: 1300
  year: 2019
  ident: 4124_CR667
  publication-title: Int Journal Digit Earth
  doi: 10.1080/17538947.2018.1545878
– volume: 12
  start-page: 1161
  year: 2014
  ident: 4124_CR6
  publication-title: Photogram Eng Remote Sens
  doi: 10.14358/PERS.80.12.1161
– year: 2019
  ident: 4124_CR393
  publication-title: Int J Distrib Sens Netw
  doi: 10.1177/1550147719856492
– ident: 4124_CR554
  doi: 10.1109/THS.2010.5655061
– ident: 4124_CR317
  doi: 10.1109/ICCCNT45670.2019.8944493
– volume: 6
  start-page: e17680
  year: 2011
  ident: 4124_CR35
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017680
– ident: 4124_CR295
– volume: 115
  start-page: B10421
  year: 2010
  ident: 4124_CR494
  publication-title: J Geophys Res
  doi: 10.1029/2010JB007476
– volume: 10
  start-page: 648
  year: 2011
  ident: 4124_CR375
  publication-title: Inf Technol J
  doi: 10.3923/itj.2011.648.655
– volume: 38
  start-page: 549
  issue: 5
  year: 2001
  ident: 4124_CR309
  publication-title: Ann Emerg Med
  doi: 10.1067/mem.2001.118999
– ident: 4124_CR395
  doi: 10.1109/ITSC.2019.8917180
– year: 2019
  ident: 4124_CR392
  publication-title: IEEE Trans Big Data
  doi: 10.1109/TBDATA.2019.2941887
– volume: 89
  start-page: 35
  year: 2017
  ident: 4124_CR260
  publication-title: Nat Hazards
  doi: 10.1007/s11069-017-2951-y
– volume: 44
  start-page: 195
  year: 2013
  ident: 4124_CR180
  publication-title: Psychol Med
  doi: 10.1017/S0033291713000561
– volume: 181
  start-page: 111
  year: 2019
  ident: 4124_CR178
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.11.081
– ident: 4124_CR205
  doi: 10.1109/THS.2018.8574145
– volume: 15
  start-page: 159
  year: 2008
  ident: 4124_CR241
  publication-title: Acad Emerg Med
  doi: 10.1111/j.1553-2712.2007.00032.x
– volume: 35
  start-page: 41
  year: 2000
  ident: 4124_CR155
  publication-title: Saf Sci
  doi: 10.1016/S0925-7535(00)00021-7
– volume: 140
  start-page: 45
  year: 2018
  ident: 4124_CR563
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2017.03.001
– volume: 122
  start-page: 378
  year: 2019
  ident: 4124_CR579
  publication-title: Accid Anal Prev
  doi: 10.1016/j.aap.2017.06.003
– ident: 4124_CR72
– ident: 4124_CR225
– volume: 34
  start-page: 1102
  year: 2008
  ident: 4124_CR259
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.12.019
– ident: 4124_CR410
  doi: 10.1109/IROS40897.2019.8967633
– volume: 96
  start-page: 123
  year: 2008
  ident: 4124_CR445
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2007.04.002
– volume: 11
  start-page: 403
  year: 2014
  ident: 4124_CR545
  publication-title: CMS
  doi: 10.1007/s10287-013-0174-6
– ident: 4124_CR621
  doi: 10.1007/978-981-10-0300-4_7
– volume: 7
  start-page: 3372
  year: 2015
  ident: 4124_CR230
  publication-title: Remote Sens
  doi: 10.3390/rs70303372
– volume: 14
  start-page: 124
  year: 2017
  ident: 4124_CR252
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2017.1330891
– volume: 43
  start-page: 687
  year: 2007
  ident: 4124_CR487
  publication-title: Transp Res Part E Logist Transp Rev
  doi: 10.1016/j.tre.2006.04.004
– volume: 29
  start-page: 9
  year: 2014
  ident: 4124_CR360
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2013.126
– ident: 4124_CR103
  doi: 10.1109/IJCNN.2018.8489600
– volume: 53
  start-page: 339
  year: 2007
  ident: 4124_CR87
  publication-title: Environ Geol
  doi: 10.1007/s00254-007-0649-2
– volume: 109
  start-page: 108
  year: 2009
  ident: 4124_CR471
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.02.026
– volume: 579
  start-page: 142229
  year: 2019
  ident: 4124_CR611
  publication-title: J Hydrol
– volume: 42
  start-page: 1
  year: 2010
  ident: 4124_CR299
  publication-title: Electron J Inf Syst Develop Ctries
  doi: 10.1002/j.1681-4835.2010.tb00300.x
– volume: 6
  start-page: 63
  year: 2014
  ident: 4124_CR248
  publication-title: Water Qual Expo Health
  doi: 10.1007/s12403-014-0119-5
– ident: 4124_CR481
  doi: 10.1109/CarpathianCC.2017.7970400
– volume: 130
  start-page: 113234
  year: 2020
  ident: 4124_CR88
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2019.113234
– volume: 8
  start-page: 287
  year: 2009
  ident: 4124_CR531
  publication-title: Malar J
  doi: 10.1186/1475-2875-8-287
– volume: 11
  start-page: 277
  year: 2010
  ident: 4124_CR571
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2010.2040276
– volume: 27
  start-page: 52
  year: 2012
  ident: 4124_CR620
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2012.6
– volume: 27
  start-page: S179
  year: 2011
  ident: 4124_CR172
  publication-title: Earthq Spectra
  doi: 10.1193/1.3636416
– volume: 17
  start-page: 405
  year: 2010
  ident: 4124_CR567
  publication-title: Smart Struct Syst
  doi: 10.12989/sss.2010.6.4.405
– ident: 4124_CR31
  doi: 10.1007/978-3-319-98446-9_19
– volume: 15
  start-page: 43
  year: 2018
  ident: 4124_CR38
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2017.2772349
– volume: 12
  start-page: 218
  year: 2012
  ident: 4124_CR253
  publication-title: Environ Hazards
  doi: 10.1080/17477891.2012.761593
– volume: 47
  start-page: 784
  year: 2018
  ident: 4124_CR342
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.2991
– volume: 11
  start-page: 8475
  year: 2014
  ident: 4124_CR140
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph110808475
– volume: 115
  start-page: 143
  year: 2016
  ident: 4124_CR521
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2015.09.011
– ident: 4124_CR534
– ident: 4124_CR36
  doi: 10.1109/INCOS.2010.24
– ident: 4124_CR69
  doi: 10.1109/GHTC.2015.7343981
– volume: 29
  start-page: 918
  year: 2006
  ident: 4124_CR452
  publication-title: J Appl Soc Psychol
  doi: 10.1111/j.1559-1816.1999.tb00132.x
– ident: 4124_CR213
  doi: 10.1109/GCWkshps45667.2019.9024648
– year: 2019
  ident: 4124_CR476
  publication-title: J Water Clim Change
  doi: 10.2166/wcc.2019.321
– ident: 4124_CR26
– ident: 4124_CR526
  doi: 10.1109/RIISS.2014.7009173
– ident: 4124_CR289
  doi: 10.1109/ICACCP.2019.8882877
– ident: 4124_CR535
– volume: 12
  start-page: 1230
  year: 2019
  ident: 4124_CR627
  publication-title: Int J Digit Earth
  doi: 10.1080/17538947.2019.1574316
– ident: 4124_CR294
– volume: 45
  start-page: 783
  year: 2015
  ident: 4124_CR631
  publication-title: Can J For Res
  doi: 10.1139/cjfr-2014-0347
– ident: 4124_CR303
  doi: 10.1145/2983323.2983355
– volume: 83
  start-page: 194
  year: 2017
  ident: 4124_CR408
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.06.007
– volume: 23
  start-page: 53
  year: 2014
  ident: 4124_CR421
  publication-title: Disaster Prev Manag
  doi: 10.1108/DPM-12-2012-0148
– volume: 370
  start-page: 176
  year: 2012
  ident: 4124_CR508
  publication-title: Philos Trans R Soc A Math Phys Eng Sci
  doi: 10.1098/rsta.2011.0244
– volume: 28
  start-page: 427
  year: 2012
  ident: 4124_CR65
  publication-title: Earthq Spectra
  doi: 10.1193/1.4000019
– volume: 32
  start-page: 04018027
  year: 2018
  ident: 4124_CR539
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000770
– volume: 31
  start-page: 04017030
  year: 2017
  ident: 4124_CR138
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000680
– ident: 4124_CR40
  doi: 10.23919/EUSIPCO.2019.8903067
– ident: 4124_CR468
  doi: 10.1109/PERCOMW.2017.7917529
– ident: 4124_CR501
– volume: 33
  start-page: 443
  year: 2018
  ident: 4124_CR383
  publication-title: J Comput Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12359
– volume: 26
  start-page: e2359
  year: 2019
  ident: 4124_CR517
  publication-title: Struct Control Health Monit
– ident: 4124_CR418
  doi: 10.1109/CERMA.2009.17
– volume: 57
  start-page: 1857
  year: 2018
  ident: 4124_CR441
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2018.1509392
– ident: 4124_CR144
– volume: 11
  start-page: 516
  year: 2019
  ident: 4124_CR366
  publication-title: Sustainability
  doi: 10.3390/su11020516
– ident: 4124_CR477
  doi: 10.1109/CDC.2016.7799189
– volume: 57
  start-page: 81
  year: 2013
  ident: 4124_CR578
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2013.04.006
– volume: 21
  start-page: 2083
  year: 2019
  ident: 4124_CR265
  publication-title: Environ Dev Sustain
  doi: 10.1007/s10668-018-0086-2
– ident: 4124_CR292
  doi: 10.1109/ICCE.2017.7889305
– ident: 4124_CR187
  doi: 10.1145/276305.276312
– volume: 13
  start-page: 928
  year: 2018
  ident: 4124_CR385
  publication-title: J Disaster Res
  doi: 10.20965/jdr.2018.p0928
– volume: 32
  start-page: 41
  year: 2017
  ident: 4124_CR199
  publication-title: Aust J Emerg Manag
– ident: 4124_CR126
  doi: 10.1016/S1464-2859(14)70322-0
– volume: 22
  start-page: 868
  year: 2018
  ident: 4124_CR635
  publication-title: Adv Struct Eng
  doi: 10.1177/1369433218789191
– ident: 4124_CR1
  doi: 10.1007/978-3-030-03828-1_6
– volume: 23
  start-page: 735
  year: 2007
  ident: 4124_CR285
  publication-title: Earthq Spectra
  doi: 10.1193/1.2798241
– volume: 8
  start-page: 29
  year: 2019
  ident: 4124_CR612
  publication-title: ISPRS Int J Geo-Inf
  doi: 10.3390/ijgi8010029
– volume: 15
  start-page: 30
  year: 2015
  ident: 4124_CR249
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-015-0399-8
– volume: 14
  start-page: 377
  year: 2016
  ident: 4124_CR258
  publication-title: J Emerg Manag
  doi: 10.5055/jem.2016.0302
– volume: 15
  start-page: 855
  year: 2019
  ident: 4124_CR368
  publication-title: Am Inst Math Sci
– volume: 37
  start-page: 367
  year: 2014
  ident: 4124_CR130
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2013.12.018
– volume: 7
  start-page: 82
  year: 2017
  ident: 4124_CR23
  publication-title: Int J Space Based Situat Comput
  doi: 10.1504/IJSSC.2017.10008038
– volume: 51
  start-page: 66
  year: 2008
  ident: 4124_CR92
  publication-title: Commun ACM
  doi: 10.1145/1342327.1342340
– ident: 4124_CR584
  doi: 10.1109/CCGrid49817.2020.00-15
– volume: 7
  start-page: B81
  year: 2015
  ident: 4124_CR332
  publication-title: IEEE/OSA J Opt Commun Netw
  doi: 10.1364/JOCN.7.000B81
– ident: 4124_CR409
  doi: 10.1109/ICCES45898.2019.9002400
– ident: 4124_CR396
– volume: 7
  start-page: 1
  year: 2016
  ident: 4124_CR240
  publication-title: J Geomat Nat Hazards Risk
– volume: 547
  start-page: 236
  year: 2017
  ident: 4124_CR237
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.01.057
– volume: 2
  start-page: e1500779
  issue: 3
  year: 2016
  ident: 4124_CR278
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1500779
– ident: 4124_CR132
– ident: 4124_CR607
  doi: 10.24963/ijcai.2018/78
– volume: 67
  start-page: 215
  issue: 4
  year: 2019
  ident: 4124_CR175
  publication-title: Imaging Sci J
  doi: 10.1080/13682199.2019.1600254
– volume: 48
  start-page: 591
  year: 2012
  ident: 4124_CR406
  publication-title: Transp Res Part E Logist Transp Rev
  doi: 10.1016/j.tre.2011.11.003
– volume: 20
  start-page: 30
  year: 2012
  ident: 4124_CR115
  publication-title: IEEE Trans Audio Speech Lang Process
  doi: 10.1109/TASL.2011.2134090
– volume: 46
  start-page: 918
  year: 2009
  ident: 4124_CR296
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2008.12.003
– volume: 7
  start-page: 29639
  year: 2019
  ident: 4124_CR79
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902558
– ident: 4124_CR637
  doi: 10.1109/SSRR.2014.7017679
– ident: 4124_CR551
– volume: 49
  start-page: 86
  year: 2019
  ident: 4124_CR77
  publication-title: Int J Inf Manag
  doi: 10.1016/j.ijinfomgt.2019.03.004
– ident: 4124_CR442
– ident: 4124_CR543
  doi: 10.1109/ICASSP.2009.4959870
– year: 2020
  ident: 4124_CR484
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2020.2967936
– volume: 54
  start-page: 937
  year: 2008
  ident: 4124_CR595
  publication-title: Environ Geol
  doi: 10.1007/s00254-007-0887-3
– ident: 4124_CR191
  doi: 10.1109/IWCMC.2019.8766625
– volume: 90
  start-page: 921
  year: 2018
  ident: 4124_CR398
  publication-title: Nat Hazards
  doi: 10.1007/s11069-017-3081-2
– ident: 4124_CR523
  doi: 10.1007/978-3-030-19562-5_18
– volume: 33
  start-page: 618
  year: 2018
  ident: 4124_CR194
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12346
– volume: 46
  start-page: 551
  year: 2010
  ident: 4124_CR188
  publication-title: Fire Technol
  doi: 10.1007/s10694-009-0106-8
– ident: 4124_CR412
– volume: 27
  start-page: 622
  year: 2013
  ident: 4124_CR169
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000333
– volume: 50
  start-page: 392
  year: 2015
  ident: 4124_CR525
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2015.04.020
– ident: 4124_CR654
  doi: 10.1145/2020408.2020457
– ident: 4124_CR604
  doi: 10.1109/ICAwST.2019.8923362
– volume: 8
  start-page: 1955
  year: 2015
  ident: 4124_CR533
  publication-title: Geosci Model Develop
  doi: 10.5194/gmd-8-1955-2015
– ident: 4124_CR561
  doi: 10.1145/3371158.3371168
– year: 2020
  ident: 4124_CR568
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.2967430
– volume: 22
  start-page: 708
  year: 2018
  ident: 4124_CR325
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-017-1329-8
– volume: 8
  start-page: e1001083
  year: 2011
  ident: 4124_CR55
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001083
– volume: 560
  start-page: 632
  year: 2018
  ident: 4124_CR123
  publication-title: Nature
  doi: 10.1038/s41586-018-0438-y
– volume: 43
  start-page: 275
  year: 2012
  ident: 4124_CR89
  publication-title: Hydrol Res
  doi: 10.2166/nh.2012.032
– volume: 4
  start-page: 47
  year: 2016
  ident: 4124_CR401
  publication-title: Big Data
  doi: 10.1089/big.2014.0064
– volume: 60
  start-page: 1097
  year: 2017
  ident: 4124_CR277
  publication-title: Commun ACM
  doi: 10.1145/3065386
– ident: 4124_CR466
  doi: 10.1109/RAST.2017.8003001
– volume: 85
  start-page: 471
  year: 2017
  ident: 4124_CR27
  publication-title: Nat Hazards
  doi: 10.1007/s11069-016-2579-3
– volume: 11
  start-page: 2427
  year: 2019
  ident: 4124_CR170
  publication-title: Remote Sens
  doi: 10.3390/rs11202427
– ident: 4124_CR619
  doi: 10.1145/2396761.2398732
– volume: 18
  start-page: 383
  year: 2010
  ident: 4124_CR200
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-18-383-2018
– volume: 14
  start-page: 1571
  year: 2016
  ident: 4124_CR338
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-016-9894-7
– volume: 53
  start-page: 266
  year: 2017
  ident: 4124_CR290
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2016.09.002
– volume: 14
  start-page: 1267
  issue: 10
  year: 2017
  ident: 4124_CR67
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph14101267
– volume: 67
  start-page: 919
  year: 2013
  ident: 4124_CR593
  publication-title: Nat Hazards
  doi: 10.1007/s11069-013-0617-y
– volume: 9
  start-page: 100
  year: 2017
  ident: 4124_CR53
  publication-title: Remote Sens
  doi: 10.3390/rs9020100
– ident: 4124_CR151
– volume: 144
  start-page: 28
  year: 2017
  ident: 4124_CR54
  publication-title: Cold Reg Sci Technol
  doi: 10.1016/j.coldregions.2017.09.013
– volume: 38
  start-page: 101212
  year: 2019
  ident: 4124_CR300
  publication-title: Int J Disaster Risk Reduct
  doi: 10.1016/j.ijdrr.2019.101212
– volume: 57
  start-page: 708
  year: 2017
  ident: 4124_CR39
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.02.028
– volume: 8
  start-page: 165
  year: 2018
  ident: 4124_CR626
  publication-title: Geosciences
  doi: 10.3390/geosciences8050165
– volume: 17
  start-page: 117
  year: 2012
  ident: 4124_CR64
  publication-title: J Bridge Eng
  doi: 10.1061/(asce)be.1943-5592.0000201
– volume: 89
  start-page: 201
  year: 2017
  ident: 4124_CR164
  publication-title: Nat Hazards
  doi: 10.1007/s11069-017-2959-3
– volume: 4
  start-page: 26
  year: 2017
  ident: 4124_CR448
  publication-title: J Asian Secur Int Aff
– volume: 18
  start-page: 825
  year: 2011
  ident: 4124_CR358
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.401
– volume: 102
  start-page: 133
  year: 2004
  ident: 4124_CR640
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2003.08.003
– volume: 34
  start-page: 29
  year: 2019
  ident: 4124_CR492
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2019.2918245
– volume: 97
  start-page: 315
  year: 2018
  ident: 4124_CR109
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.12.037
– volume: 91
  start-page: 81
  year: 2018
  ident: 4124_CR86
  publication-title: Appl Geogr
  doi: 10.1016/j.apgeog.2017.12.017
– volume: 34
  start-page: 415
  year: 2018
  ident: 4124_CR310
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12425
– volume: 70
  start-page: 32
  year: 2012
  ident: 4124_CR649
  publication-title: Cold Reg Sci Technol
  doi: 10.1016/j.coldregions.2011.08.011
– volume: 21
  start-page: 42
  year: 2019
  ident: 4124_CR127
  publication-title: J Control Eng Appl Inform
– volume: 94
  start-page: 47
  year: 2016
  ident: 4124_CR154
  publication-title: Phys Chem Earth Parts A/B/C
  doi: 10.1016/j.pce.2016.04.003
– volume: 15
  start-page: 2725
  year: 2015
  ident: 4124_CR156
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-15-2725-2015
– volume: 76
  start-page: 60
  year: 2017
  ident: 4124_CR493
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-6374-y
– volume: 44
  start-page: 185
  year: 2010
  ident: 4124_CR415
  publication-title: Water Res
  doi: 10.1016/j.watres.2009.09.036
– ident: 4124_CR542
  doi: 10.1109/EEEIC-2.2013.6737884
– volume: 51
  start-page: 070901
  year: 2012
  ident: 4124_CR269
  publication-title: Opt Eng
  doi: 10.1117/1.OE.51.7.070901
– volume: 245
  start-page: 141
  year: 2018
  ident: 4124_CR556
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2018.08.010
– volume: 74
  start-page: 110
  year: 2019
  ident: 4124_CR12
  publication-title: Sig Process Image Commun
  doi: 10.1016/j.image.2019.02.002
– volume: 348–349
  start-page: 229
  year: 2007
  ident: 4124_CR17
  publication-title: Key Eng Mater
– volume: 34
  start-page: 793
  year: 2012
  ident: 4124_CR570
  publication-title: Acta Seismol Sin
– volume: 15
  start-page: 662
  year: 2012
  ident: 4124_CR66
  publication-title: J Inf Commun Soc
  doi: 10.1080/1369118X.2012.678878
– ident: 4124_CR648
  doi: 10.1109/ICMA.2009.5246026
– ident: 4124_CR411
– volume: 8
  start-page: 578
  year: 2019
  ident: 4124_CR381
  publication-title: Int J Geo-Inf
  doi: 10.3390/ijgi8120578
– volume: 552
  start-page: 92
  year: 2017
  ident: 4124_CR628
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.06.020
– ident: 4124_CR245
– volume: 26
  start-page: 3891
  year: 2017
  ident: 4124_CR28
  publication-title: Fresen Environ Bull
– year: 2018
  ident: 4124_CR111
  publication-title: Adv Civ Eng
  doi: 10.1155/2018/7258156
– ident: 4124_CR312
  doi: 10.1145/2480362.2480511
– ident: 4124_CR348
  doi: 10.1007/978-1-4614-5885-2_11
– volume: 34
  start-page: 328
  year: 2012
  ident: 4124_CR462
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.108
– ident: 4124_CR516
  doi: 10.1109/IGARSS.2017.8127747
– ident: 4124_CR174
– ident: 4124_CR432
– volume: 9
  start-page: 25
  year: 2019
  ident: 4124_CR522
  publication-title: Human-centric Comput Inf Sci
  doi: 10.1186/s13673-019-0187-4
– ident: 4124_CR609
– volume: 84
  start-page: 175
  year: 2016
  ident: 4124_CR639
  publication-title: Nat Hazards
  doi: 10.1007/s11069-016-2414-x
– ident: 4124_CR76
  doi: 10.6028/NIST.IR.8231
– volume: 33
  start-page: 873
  issue: 3
  year: 2018
  ident: 4124_CR173
  publication-title: Weather Forecast
  doi: 10.1175/WAF-D-17-0006.1
– volume: 78
  start-page: 247
  year: 2019
  ident: 4124_CR97
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1256-z
– volume: 7
  start-page: 846
  issue: 8
  year: 2017
  ident: 4124_CR279
  publication-title: Appl Sci
  doi: 10.3390/app7080846
– ident: 4124_CR282
  doi: 10.1109/ASONAM.2018.8508695
– volume: 38
  start-page: 97
  year: 2014
  ident: 4124_CR330
  publication-title: Prog Phys Geogr Earth Environ
  doi: 10.1177/0309133313515293
– volume: 36
  start-page: 265
  year: 2007
  ident: 4124_CR600
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.623
– volume: 16
  start-page: 596
  year: 2015
  ident: 4124_CR473
  publication-title: IEEE Trans Intell Transp Syst
– ident: 4124_CR351
– volume: 45
  start-page: 138
  year: 2007
  ident: 4124_CR56
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2006.882264
– volume: 224
  start-page: 62
  year: 2017
  ident: 4124_CR311
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2017.05.009
– ident: 4124_CR562
  doi: 10.3990/2.369
– volume: 169
  start-page: 209
  year: 2018
  ident: 4124_CR44
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.08.018
– volume: 21
  start-page: 213
  year: 2017
  ident: 4124_CR387
  publication-title: Int J Disaster Risk Reduct
  doi: 10.1016/j.ijdrr.2016.12.011
– volume: 91
  start-page: 566
  year: 2016
  ident: 4124_CR323
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2016.07.144
– ident: 4124_CR152
– volume: 42
  start-page: 955
  year: 2019
  ident: 4124_CR483
  publication-title: Int Soc Photogramm Remote Sens
  doi: 10.5194/isprs-archives-XLII-4-W18-955-2019
– ident: 4124_CR643
  doi: 10.1061/9780784482445.063
– volume: 102
  start-page: 47
  year: 2019
  ident: 4124_CR549
  publication-title: Appl Geol
– volume: 72
  start-page: 1
  year: 2018
  ident: 4124_CR647
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2017.12.001
– year: 2020
  ident: 4124_CR101
  publication-title: Curr Issues Tour
  doi: 10.1080/13683500.2019.1711029
– ident: 4124_CR75
  doi: 10.1109/GHTC.2018.8601911
– volume: 45
  start-page: 362
  year: 2018
  ident: 4124_CR449
  publication-title: J Artif Intell Res
– volume: 13
  start-page: 53
  year: 2013
  ident: 4124_CR359
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-13-53-2013
– volume: 1
  start-page: 63
  year: 2016
  ident: 4124_CR422
  publication-title: Sustain Resil Infrastruct
  doi: 10.1080/23789689.2016.1179529
– volume: 12
  start-page: 1350012
  year: 2013
  ident: 4124_CR663
  publication-title: Int J Comput Intell Appl
  doi: 10.1142/S1469026813500120
– volume: 90
  start-page: 374
  year: 2017
  ident: 4124_CR133
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.08.030
– ident: 4124_CR209
  doi: 10.1145/2020408.2020485
– volume: 9
  start-page: 1
  year: 2009
  ident: 4124_CR427
  publication-title: J Spat Hydrol
– volume: 69
  start-page: 1315
  year: 2013
  ident: 4124_CR8
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0359-2
– volume: 11
  start-page: 1
  year: 2016
  ident: 4124_CR668
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0150989
– volume: 38
  start-page: 51
  year: 2014
  ident: 4124_CR83
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2013.10.008
– volume: 45
  start-page: 965
  year: 2017
  ident: 4124_CR231
  publication-title: J Indian Soc Remote Sens
  doi: 10.1007/s12524-017-0660-3
– ident: 4124_CR560
– volume: 22
  start-page: 1636
  year: 2008
  ident: 4124_CR495
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2008.01.004
– volume: 18
  start-page: 70
  year: 2013
  ident: 4124_CR657
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2281396
– volume: 8
  start-page: 2173
  year: 2018
  ident: 4124_CR190
  publication-title: Appl Sci
  doi: 10.3390/app8112173
– volume: 164
  start-page: 362
  year: 2018
  ident: 4124_CR329
  publication-title: Adv Eng Res
– volume: 45
  start-page: 420
  year: 2018
  ident: 4124_CR419
  publication-title: J Cartogr Geogr Inf Sci
  doi: 10.1080/15230406.2017.1370391
– volume: 9
  start-page: 351
  year: 2013
  ident: 4124_CR632
  publication-title: Int J Emerg Manag
  doi: 10.1504/IJEM.2013.059879
– volume: 87
  start-page: 271
  year: 2006
  ident: 4124_CR243
  publication-title: Rev Econ Stat
  doi: 10.1162/0034653053970339
– volume: 90
  start-page: 129
  year: 2019
  ident: 4124_CR475
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2018.07.048
– volume: 575
  start-page: 743
  year: 2019
  ident: 4124_CR58
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.05.066
– volume: 568
  start-page: 1042
  year: 2018
  ident: 4124_CR367
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.11.060
– ident: 4124_CR424
  doi: 10.1109/BigData.2017.8258464
– volume: 9
  start-page: 1149
  year: 2009
  ident: 4124_CR414
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-9-1149-2009
– volume: 21
  start-page: 04014054
  year: 2015
  ident: 4124_CR141
  publication-title: J Infrastruct Syst
  doi: 10.1061/(ASCE)IS.1943-555X.0000246
– volume: 42
  start-page: 477
  year: 2011
  ident: 4124_CR371
  publication-title: Decis Sci
  doi: 10.1111/j.1540-5915.2011.00319.x
– volume: 46
  start-page: 1
  year: 2010
  ident: 4124_CR488
  publication-title: Transp Res Part E Logist Transp Rev
  doi: 10.1016/j.tre.2009.07.005
– ident: 4124_CR444
– volume: 44
  start-page: 25
  year: 2019
  ident: 4124_CR235
  publication-title: Int J Inf Manag
  doi: 10.1016/j.ijinfomgt.2018.09.005
– volume: 84
  start-page: 405
  year: 2016
  ident: 4124_CR263
  publication-title: Nat Hazards
  doi: 10.1007/s11069-016-2425-7
– ident: 4124_CR239
  doi: 10.1109/DSAA.2017.11
– year: 2020
  ident: 4124_CR281
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-020-03514-x
– volume: 115
  start-page: 100
  year: 2019
  ident: 4124_CR528
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.03.005
– ident: 4124_CR242
  doi: 10.1109/BigData47090.2019.9006385
– volume: 83
  start-page: 1505
  year: 2016
  ident: 4124_CR638
  publication-title: Nat Hazards
– volume: 94
  start-page: 689
  year: 2018
  ident: 4124_CR365
  publication-title: Nat Hazards
  doi: 10.1007/s11069-018-3413-x
– volume: 517
  start-page: 836
  year: 2014
  ident: 4124_CR84
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.06.013
– volume: 9
  start-page: 168
  year: 2017
  ident: 4124_CR121
  publication-title: Am Econ J Econ Policy
  doi: 10.1257/pol.20140296
– volume: 5
  start-page: 277
  year: 2009
  ident: 4124_CR512
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732470601185638
– year: 2019
  ident: 4124_CR630
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00798-x
– volume: 14
  start-page: 1
  issue: 9
  year: 2018
  ident: 4124_CR184
  publication-title: Int J Distrib Sens Netw
  doi: 10.1177/1550147718801703
– ident: 4124_CR255
  doi: 10.1109/ICSSA.2018.8535606
– volume: 4
  start-page: e1700578
  year: 2018
  ident: 4124_CR417
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1700578
– volume: 29
  start-page: 590
  year: 2014
  ident: 4124_CR78
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12064
– ident: 4124_CR453
  doi: 10.1145/3297280.3297481
– ident: 4124_CR565
– volume: 28
  start-page: 928
  year: 2013
  ident: 4124_CR48
  publication-title: Int J Commun Syst
  doi: 10.1002/dac.2716
– ident: 4124_CR321
  doi: 10.1145/2806416.2806651
– volume: 76
  start-page: 1711
  year: 2015
  ident: 4124_CR313
  publication-title: Nat Hazards
  doi: 10.1007/s11069-014-1565-x
– volume: 3
  start-page: 32
  year: 2000
  ident: 4124_CR122
  publication-title: IEEE Instrum Measur Magaz
  doi: 10.1109/5289.863909
– volume: 77
  start-page: 449
  year: 2019
  ident: 4124_CR450
  publication-title: Transp Res Part D Transp Environ
  doi: 10.1016/j.trd.2019.03.002
– ident: 4124_CR382
– ident: 4124_CR403
  doi: 10.1088/1755-1315/426/1/012156
– volume: 28
  start-page: A4014004
  year: 2014
  ident: 4124_CR544
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000334
– volume: 169
  start-page: 012056
  year: 2018
  ident: 4124_CR566
  publication-title: IOP Conf Ser Earth Environ Sci
  doi: 10.1088/1755-1315/169/1/012056
– volume: 7
  start-page: 134293
  year: 2019
  ident: 4124_CR195
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940822
– start-page: 235
  volume-title: Social phenomena
  year: 2015
  ident: 4124_CR316
  doi: 10.1007/978-3-319-14011-7_12
– volume: 100
  start-page: 417
  year: 2017
  ident: 4124_CR434
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2017.05.013
– volume: 7
  start-page: 147755
  year: 2019
  ident: 4124_CR656
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946659
– volume: 36
  start-page: 246
  issue: 3
  year: 2005
  ident: 4124_CR350
  publication-title: Prof Psychol Res Pract
  doi: 10.1037/0735-7028.36.3.246
– ident: 4124_CR125
  doi: 10.1109/CIG.2008.5035649
– volume: 51
  start-page: 101768
  year: 2019
  ident: 4124_CR601
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2019.101768
– volume: 17
  start-page: 51
  year: 2015
  ident: 4124_CR68
  publication-title: Inf Syst Front
  doi: 10.1007/s10796-014-9515-4
– volume: 12
  start-page: 411
  year: 2018
  ident: 4124_CR158
  publication-title: Eng Appl Comput Fluid Mech
– volume: 76
  start-page: 565
  year: 2015
  ident: 4124_CR262
  publication-title: Geomat Nat Hazards Risk
  doi: 10.1007/s11069-014-1508-6
– volume: 30
  start-page: 04015011
  year: 2016
  ident: 4124_CR622
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000483
– volume: 57
  start-page: 661
  year: 2016
  ident: 4124_CR439
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.5098
– volume: 88
  start-page: 379
  year: 2017
  ident: 4124_CR546
  publication-title: Seismol Res Lett
  doi: 10.1785/0220160188
– volume: 31
  start-page: e4910
  year: 2019
  ident: 4124_CR650
  publication-title: Concurr Comput Pract Exp
  doi: 10.1002/cpe.4910
– volume: 12
  start-page: 200
  year: 2016
  ident: 4124_CR605
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2016.2607701
– volume: 10
  start-page: 229
  year: 2013
  ident: 4124_CR324
  publication-title: Int J Adv Rob Syst
  doi: 10.5772/54379
– ident: 4124_CR658
  doi: 10.1109/CCNC.2018.8319233
– volume: 4
  start-page: 299
  year: 2016
  ident: 4124_CR160
  publication-title: EURO J Comput Optim
  doi: 10.1007/s13675-015-0058-3
– volume: 23
  start-page: 13393
  year: 2019
  ident: 4124_CR610
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03878-8
– year: 2017
  ident: 4124_CR203
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-2017-74
– volume: 9
  start-page: 943
  year: 2011
  ident: 4124_CR557
  publication-title: Photogramm Eng Remote Sens
  doi: 10.14358/PERS.77.9.943
– ident: 4124_CR457
  doi: 10.1109/ICCCE.2016.72
– ident: 4124_CR463
  doi: 10.1609/aaai.v33i01.3301702
– volume: 12
  start-page: 74
  year: 2016
  ident: 4124_CR291
  publication-title: J Soc Disaster Inf
– volume: 288
  start-page: 30
  year: 2018
  ident: 4124_CR376
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.083
– volume: 35
  start-page: 1
  year: 2017
  ident: 4124_CR506
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/3057280
– ident: 4124_CR341
  doi: 10.1109/ICCSP.2015.7322851
– volume: 4
  start-page: 169
  year: 2014
  ident: 4124_CR95
  publication-title: Int J Disaster Risk Sci
  doi: 10.1007/s13753-013-0018-6
– year: 2020
  ident: 4124_CR32
  publication-title: Int J Disaster Risk Reduct
  doi: 10.1016/j.ijdrr.2020.101645
– volume: 20
  start-page: 613
  year: 2005
  ident: 4124_CR226
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2004.03.006
– volume: 117
  start-page: 591
  year: 2016
  ident: 4124_CR246
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.03.038
– ident: 4124_CR520
  doi: 10.1061/9780784415894.ch4
– volume: 64
  start-page: 77
  year: 2011
  ident: 4124_CR380
  publication-title: J Intell Robot Syst
  doi: 10.1007/s10846-010-9514-8
– ident: 4124_CR504
  doi: 10.1609/aaai.v29i1.9237
– volume: 21
  start-page: 419
  year: 2017
  ident: 4124_CR284
  publication-title: Int J Disaster Risk Reduct
  doi: 10.1016/j.ijdrr.2017.01.004
– ident: 4124_CR580
  doi: 10.1109/GCWkshps45667.2019.9024679
– ident: 4124_CR536
  doi: 10.1109/BigMM.2017.30
– volume: 40
  start-page: 56
  year: 2016
  ident: 4124_CR9
  publication-title: IATSS Res
  doi: 10.1016/j.iatssr.2016.06.001
– volume: 93
  start-page: 803
  year: 2018
  ident: 4124_CR585
  publication-title: Nat Hazards
  doi: 10.1007/s11069-018-3325-9
– ident: 4124_CR5
– volume: 9
  start-page: 10267
  year: 2019
  ident: 4124_CR372
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-45748-1
– volume: 54
  start-page: 4368
  year: 2016
  ident: 4124_CR461
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2016.1174344
– volume: 137
  start-page: 6
  year: 2014
  ident: 4124_CR629
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.12.007
– ident: 4124_CR377
  doi: 10.7551/mitpress/9407.001.0001
– volume: 16
  start-page: 91
  year: 2009
  ident: 4124_CR379
  publication-title: IEEE Robot Autom Mag
  doi: 10.1109/MRA.2009.932521
– ident: 4124_CR166
  doi: 10.1109/IROS.2014.6942626
– volume: 159
  start-page: 1216
  year: 2019
  ident: 4124_CR664
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2019.09.291
– volume: 7
  start-page: 199
  year: 2014
  ident: 4124_CR120
  publication-title: Found Trends Sig Process
– volume: 8
  start-page: 868
  year: 2016
  ident: 4124_CR108
  publication-title: Remote Sens
  doi: 10.3390/rs8100868
– volume: 26
  start-page: 237
  year: 2010
  ident: 4124_CR404
  publication-title: J Manag Eng
  doi: 10.1061/(ASCE)ME.1943-5479.0000024
– ident: 4124_CR71
  doi: 10.1109/IS3C.2018.00067
– volume: 34
  start-page: 773
  year: 2019
  ident: 4124_CR233
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2860904
– volume: 22
  start-page: 172
  year: 2015
  ident: 4124_CR485
  publication-title: Int J Comput Appl
– volume: 115
  start-page: 23
  year: 2010
  ident: 4124_CR37
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.09.025
– ident: 4124_CR43
  doi: 10.1109/SmartTechCon.2017.8358367
– volume: 39
  start-page: 1109
  year: 2010
  ident: 4124_CR236
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.988
– volume: 79
  start-page: 1359
  year: 2015
  ident: 4124_CR588
  publication-title: Nat Hazards
  doi: 10.1007/s11069-015-1908-2
– ident: 4124_CR394
– ident: 4124_CR15
  doi: 10.1145/3110025.3110164
– ident: 4124_CR112
  doi: 10.1145/2740908.2741722
– volume: 14
  start-page: 271
  year: 2018
  ident: 4124_CR19
  publication-title: Trans Electr Electron Eng
  doi: 10.1002/tee.22806
– volume: 712
  start-page: 012032
  year: 2020
  ident: 4124_CR51
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899X/712/1/012032
– ident: 4124_CR496
– volume: 92
  start-page: 1889
  year: 2018
  ident: 4124_CR587
  publication-title: Nat Hazards
  doi: 10.1007/s11069-018-3264-5
– volume: 93
  start-page: 351
  year: 2019
  ident: 4124_CR456
  publication-title: J Intell Robot Syst
  doi: 10.1007/s10846-018-0891-8
– ident: 4124_CR653
  doi: 10.21437/Interspeech.2016-354
– volume: 93
  start-page: 897
  year: 2008
  ident: 4124_CR319
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2007.03.038
– ident: 4124_CR553
– ident: 4124_CR119
  doi: 10.1109/ELEKTRO.2018.8398359
– volume: 91
  start-page: 51
  year: 2010
  ident: 4124_CR644
  publication-title: J Bus Ethics
  doi: 10.1007/s10551-009-0067-3
– volume: 17
  start-page: 04015013
  year: 2016
  ident: 4124_CR286
  publication-title: Nat Hazards Rev
  doi: 10.1061/(ASCE)NH.1527-6996.0000193
– volume: 19
  start-page: 1746
  year: 2019
  ident: 4124_CR202
  publication-title: Sensors
  doi: 10.3390/s19071746
– volume: 7
  start-page: 175
  year: 2016
  ident: 4124_CR334
  publication-title: Int J Disaster Risk Sci
  doi: 10.1007/s13753-016-0087-4
– volume: 198
  start-page: 127
  year: 2006
  ident: 4124_CR362
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2006.04.017
– volume: 147
  start-page: 266
  year: 2011
  ident: 4124_CR608
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.147.266
– year: 2019
  ident: 4124_CR150
  publication-title: Int J Inf Manag
  doi: 10.1016/j.ijinfomgt.2019.102049
– ident: 4124_CR443
  doi: 10.1109/ICT-DM.2015.7402056
– ident: 4124_CR4
  doi: 10.1109/WCNC.2017.7925654
– volume: 47
  start-page: 331
  year: 2008
  ident: 4124_CR314
  publication-title: Nat Hazards
  doi: 10.1007/s11069-008-9222-x
– year: 2019
  ident: 4124_CR326
  publication-title: Int J Digit Earth
  doi: 10.1080/17538947.2019.1645894
– volume: 35
  start-page: 192
  year: 2011
  ident: 4124_CR541
  publication-title: Comput Environ Urban Syst
  doi: 10.1016/j.compenvurbsys.2011.01.003
– year: 2018
  ident: 4124_CR261
  publication-title: Int J Distrib Sens Netw
  doi: 10.1177/1550147718784482
– volume: 541
  start-page: 563
  year: 2016
  ident: 4124_CR147
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.04.017
– year: 2013
  ident: 4124_CR70
  publication-title: Nature
  doi: 10.1038/nature.2013.14186
– volume: 31
  start-page: 149
  year: 2016
  ident: 4124_CR320
  publication-title: Int J Sedim Res
  doi: 10.1016/j.ijsrc.2016.02.002
– volume: 18
  start-page: 3017
  year: 2018
  ident: 4124_CR104
  publication-title: Sensors
  doi: 10.3390/s18093017
– volume: 106
  start-page: 92
  year: 2020
  ident: 4124_CR465
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2020.01.005
– volume: 9
  start-page: 1871
  year: 2018
  ident: 4124_CR384
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2017.10.008
– volume: 2
  start-page: 6
  year: 1995
  ident: 4124_CR480
  publication-title: IEEE Robot Autom Soc Mag
  doi: 10.1109/100.388296
– ident: 4124_CR20
– volume: 79
  start-page: 37
  year: 2016
  ident: 4124_CR274
  publication-title: Fire Saf J
  doi: 10.1016/j.firesaf.2015.11.015
– ident: 4124_CR552
– volume: 51
  start-page: 32
  year: 2018
  ident: 4124_CR669
  publication-title: ACM Comput Surv
  doi: 10.1145/3161603
– volume: 4
  start-page: 407
  year: 2011
  ident: 4124_CR353
  publication-title: Stat Anal Data Min
  doi: 10.1002/sam.10128
– ident: 4124_CR7
  doi: 10.1007/978-981-13-0992-2_5
– ident: 4124_CR247
  doi: 10.1201/9781315207681-171
– start-page: 119
  volume-title: Reinforcement learning: an introduction
  year: 2018
  ident: 4124_CR524
– volume: 14
  start-page: e0214367
  year: 2019
  ident: 4124_CR306
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0214367
– ident: 4124_CR399
  doi: 10.1007/978-981-13-0992-2_3
– ident: 4124_CR204
  doi: 10.1109/ICPPW.2014.52
– year: 2019
  ident: 4124_CR307
  publication-title: Int J Geogra Inf Sci
  doi: 10.1080/13658816.2019.1673397
– volume: 113
  start-page: 215
  year: 2012
  ident: 4124_CR47
  publication-title: Clim Change
  doi: 10.1007/s10584-011-0331-2
– volume: 26
  start-page: 04020031
  issue: 3
  year: 2020
  ident: 4124_CR518
  publication-title: J Infrast Syst
  doi: 10.1061/(ASCE)IS.1943-555X.0000569
– ident: 4124_CR613
  doi: 10.4108/icst.collaboratecom.2012.250525
– ident: 4124_CR498
– volume: 52
  start-page: 167
  year: 2014
  ident: 4124_CR486
  publication-title: Geoforum
  doi: 10.1016/j.geoforum.2014.01.006
– volume: 22
  start-page: 3262
  year: 2019
  ident: 4124_CR217
  publication-title: Adv Struct Eng
  doi: 10.1177/1369433219861728
– volume: 385
  start-page: 257
  year: 2010
  ident: 4124_CR85
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.02.028
– volume: 108
  start-page: 1
  year: 2019
  ident: 4124_CR586
  publication-title: Appl Geogr
  doi: 10.1016/j.apgeog.2019.05.001
– volume: 78
  start-page: 12
  year: 2019
  ident: 4124_CR645
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2018.12.004
– volume: 149
  start-page: 52
  year: 2017
  ident: 4124_CR420
  publication-title: CATENA
  doi: 10.1016/j.catena.2016.09.007
– volume: 37
  start-page: 3810
  year: 2010
  ident: 4124_CR222
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.11.039
– volume: 30
  start-page: 1553
  year: 2014
  ident: 4124_CR165
  publication-title: Earthq Spectra
  doi: 10.1193/121812EQS350M
– volume: 54
  start-page: 680
  year: 2011
  ident: 4124_CR46
  publication-title: Ann Geophys
  doi: 10.4401/ag-5324
– volume: 626
  start-page: 1121
  year: 2018
  ident: 4124_CR96
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.01.124
– volume: 3
  start-page: 231
  year: 2010
  ident: 4124_CR182
  publication-title: Int J Digit Earth
  doi: 10.1080/17538941003759255
– volume: 33
  start-page: 3409
  year: 2011
  ident: 4124_CR363
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2011.07.005
– volume: 20
  start-page: 629
  year: 2011
  ident: 4124_CR564
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2010.12.005
– volume: 54
  start-page: 9
  year: 2007
  ident: 4124_CR548
  publication-title: Environ Geol
  doi: 10.1007/s00254-007-0788-5
– volume: 37
  start-page: 45
  year: 2010
  ident: 4124_CR114
  publication-title: Cartogr Geogr Inf Sci
  doi: 10.1559/152304010790588043
– ident: 4124_CR529
– volume: 5
  start-page: 77
  issue: 1
  year: 2014
  ident: 4124_CR455
  publication-title: Risk Hazards Crisis
  doi: 10.1002/rhc3.12047
– volume: 3
  start-page: 1128
  year: 2018
  ident: 4124_CR21
  publication-title: IEEE Robot Autom
  doi: 10.1109/LRA.2018.2792701
– ident: 4124_CR210
– volume: 45
  start-page: 1053
  year: 2014
  ident: 4124_CR665
  publication-title: Decis Sci
  doi: 10.1111/deci.12103
– ident: 4124_CR336
– volume: 42
  start-page: 941
  issue: 9
  year: 2013
  ident: 4124_CR331
  publication-title: Iran J Public Health
– year: 2019
  ident: 4124_CR167
  publication-title: Int J Comput Appl
  doi: 10.1080/1206212X.2019.1706812
– volume: 94
  start-page: 379
  year: 2008
  ident: 4124_CR355
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.10.035
– ident: 4124_CR464
– ident: 4124_CR357
  doi: 10.1145/1964858.1964869
– volume: 44
  start-page: 00068
  year: 2018
  ident: 4124_CR413
  publication-title: SHS Web Conf
  doi: 10.1051/shsconf/20184400068
– ident: 4124_CR11
  doi: 10.1145/3095713.3095726
– volume: 10
  start-page: 242
  year: 2013
  ident: 4124_CR446
  publication-title: IEEE Robot Autom Soc
– ident: 4124_CR591
– volume: 74
  start-page: 397
  year: 2015
  ident: 4124_CR212
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4047-x
– volume: 7
  start-page: 392
  year: 2011
  ident: 4124_CR3
  publication-title: Int J Web Based Communities
  doi: 10.1504/IJWBC.2011.041206
– volume: 36
  start-page: 6978
  year: 2009
  ident: 4124_CR192
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.08.074
– volume: 32
  start-page: 12
  year: 2019
  ident: 4124_CR602
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2019.02.002
– volume: 34
  start-page: 45
  year: 2013
  ident: 4124_CR100
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2012.705443
– volume: 80
  start-page: 46
  year: 2019
  ident: 4124_CR356
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2019.04.003
– volume: 25
  start-page: 919
  year: 2012
  ident: 4124_CR472
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.29
– volume: 37
  start-page: 1580
  year: 2017
  ident: 4124_CR315
  publication-title: Risk Anal
  doi: 10.1111/risa.12829
– ident: 4124_CR328
  doi: 10.1109/ICT-DM.2018.8636373
– ident: 4124_CR391
  doi: 10.1145/3110025.3110109
– volume: 58
  start-page: 101018
  year: 2019
  ident: 4124_CR499
  publication-title: Pervasive Mobile Comput
  doi: 10.1016/j.pmcj.2019.04.009
– volume: 10
  start-page: 1416
  year: 2019
  ident: 4124_CR57
  publication-title: Int J Technol
  doi: 10.14716/ijtech.v10i7.3709
– ident: 4124_CR345
  doi: 10.1145/3005745.3005750
– volume: 78
  start-page: 1749
  year: 2015
  ident: 4124_CR129
  publication-title: Nat Hazards
  doi: 10.1007/s11069-015-1799-2
– ident: 4124_CR402
– volume: 116
  start-page: 1
  year: 2015
  ident: 4124_CR513
  publication-title: Ocean Coast Manag
  doi: 10.1016/j.ocecoaman.2015.06.026
– volume: 6
  start-page: 239
  year: 2015
  ident: 4124_CR157
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-014-0227-x
– volume: 18
  start-page: 65
  year: 2018
  ident: 4124_CR374
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-18-65-2018
– volume: 7
  start-page: 1437
  year: 2019
  ident: 4124_CR153
  publication-title: Water
  doi: 10.3390/w7041437
– ident: 4124_CR59
  doi: 10.1109/GHTC.2013.6713678
– volume: 119
  start-page: 288
  year: 2017
  ident: 4124_CR400
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2017.11.187
– volume: 18
  start-page: 3253
  year: 2018
  ident: 4124_CR574
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-18-3253-2018
– volume: 201
  start-page: 109785
  year: 2019
  ident: 4124_CR344
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109785
– ident: 4124_CR62
– volume: 12
  start-page: 93
  year: 2015
  ident: 4124_CR530
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2014.995676
– ident: 4124_CR197
  doi: 10.1109/ICIAICT.2019.8784782
– volume: 16
  start-page: 711
  year: 2017
  ident: 4124_CR661
  publication-title: Struct Health Monit
  doi: 10.1016/j.cag.2013.10.008
– volume: 108
  start-page: 77
  year: 2017
  ident: 4124_CR214
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.05.032
– volume: 4
  start-page: eaay7120
  year: 2019
  ident: 4124_CR189
  publication-title: Sci Robot
  doi: 10.1126/scirobotics.aay7120
– ident: 4124_CR280
  doi: 10.1145/2600428.2609550
– ident: 4124_CR594
  doi: 10.1109/ICDE.2015.7113322
– volume: 18
  start-page: 1758
  year: 2016
  ident: 4124_CR573
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2016.2540004
– volume: 2459
  start-page: 110
  year: 2014
  ident: 4124_CR550
  publication-title: Transp Res Rec J Transp Res Board
  doi: 10.3141/2459-13
– ident: 4124_CR660
  doi: 10.1007/978-3-319-51929-6_2
– ident: 4124_CR503
  doi: 10.1145/2623330.2623628
– volume: 24
  start-page: 1231
  year: 2006
  ident: 4124_CR98
  publication-title: Construct Manag Econ
  doi: 10.1080/01446190600953805
– volume: 124
  start-page: 67
  year: 2019
  ident: 4124_CR34
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.01.042
– volume: 30
  start-page: 759
  year: 2015
  ident: 4124_CR617
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12141
– volume: 14
  start-page: 245
  year: 1998
  ident: 4124_CR135
  publication-title: Earthq Spectra
  doi: 10.1193/1.1585998
– ident: 4124_CR583
  doi: 10.1007/978-981-13-0992-2_8
– volume: 7
  start-page: e47203
  year: 2012
  ident: 4124_CR196
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047203
– volume: 25
  start-page: 134
  year: 2010
  ident: 4124_CR447
  publication-title: Int J Sedim Res
  doi: 10.1016/S1001-6279(10)60033-9
– volume: 14
  start-page: 357
  year: 2015
  ident: 4124_CR425
  publication-title: Int J Disaster Risk Reduct
  doi: 10.1016/j.ijdrr.2015.09.002
– volume: 15
  start-page: 110
  year: 2006
  ident: 4124_CR163
  publication-title: J Nat Disaster
– volume: 96
  start-page: 15
  year: 2018
  ident: 4124_CR458
  publication-title: J Psychiatr Res
  doi: 10.1016/j.jpsychires.2017.09.010
– volume: 1
  start-page: 661
  year: 2015
  ident: 4124_CR176
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2015.2509024
– volume: 107
  start-page: 289
  year: 2016
  ident: 4124_CR301
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2016.06.017
– ident: 4124_CR636
  doi: 10.1109/ICDCS.2019.00123
– ident: 4124_CR435
  doi: 10.1109/ITSC.2018.8569443
– volume: 36
  start-page: 4101
  year: 2009
  ident: 4124_CR93
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.03.012
– volume: 2
  start-page: e1501055
  year: 2016
  ident: 4124_CR273
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1501055
– volume: 15
  start-page: 49
  year: 2014
  ident: 4124_CR558
  publication-title: ACM SIGKDD Explor Newsl
  doi: 10.1145/2641190.2641198
– volume: 8
  start-page: 1
  year: 2016
  ident: 4124_CR505
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/2970819
– volume: 8
  start-page: 100
  year: 2011
  ident: 4124_CR514
  publication-title: Int J Autom Comput
  doi: 10.1007/s11633-010-0560-2
– volume: 52
  start-page: 411
  year: 2017
  ident: 4124_CR305
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-016-1014-0
– ident: 4124_CR559
  doi: 10.1145/3194452.3194475
– volume: 143
  start-page: 04016022
  year: 2017
  ident: 4124_CR139
  publication-title: J Urban Plann Develop
  doi: 10.1061/(ASCE)UP.1943-5444.0000349
– volume: 32
  start-page: 2045
  year: 2018
  ident: 4124_CR569
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-018-1530-4
– ident: 4124_CR624
– volume: 17
  start-page: 134
  year: 2017
  ident: 4124_CR207
  publication-title: IEEE Trans Dependable Secure Comput
  doi: 10.1109/TDSC.2017.2751478
– volume: 2
  start-page: 100033
  year: 2019
  ident: 4124_CR232
  publication-title: Prog Disaster Sci
  doi: 10.1016/j.pdisas.2019.100033
– volume: 87
  start-page: 103
  year: 2017
  ident: 4124_CR459
  publication-title: Nat Hazards
  doi: 10.1007/s11069-017-2755-0
– volume: 45
  start-page: 37
  year: 2011
  ident: 4124_CR137
  publication-title: Mar Technol Soc J
  doi: 10.4031/MTSJ.45.3.1
– volume: 31
  start-page: 50
  year: 2016
  ident: 4124_CR266
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2016.27
– volume: 54
  start-page: 187
  year: 2015
  ident: 4124_CR333
  publication-title: Transp Res Part C
  doi: 10.1016/j.trc.2015.03.014
– volume: 55
  start-page: 5407
  year: 2017
  ident: 4124_CR254
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2707528
– volume: 57
  start-page: 461
  year: 2010
  ident: 4124_CR555
  publication-title: Ocean Eng
– volume: 61
  start-page: 689
  year: 2010
  ident: 4124_CR490
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-009-0381-1
– volume: 237–238
  start-page: 105
  year: 2017
  ident: 4124_CR451
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2017.02.011
– volume: 33
  start-page: 5
  year: 2018
  ident: 4124_CR268
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2018.043741317
– volume: 64
  start-page: 180
  year: 2013
  ident: 4124_CR407
  publication-title: J Asian Earth Sci
  doi: 10.1016/j.jseaes.2012.12.014
– volume: 5
  start-page: 549
  year: 2011
  ident: 4124_CR430
  publication-title: Int J Comput Electr Autom Control Inf Eng
– year: 2019
  ident: 4124_CR423
  publication-title: Internet Things
  doi: 10.1016/j.iot.2019.100076
– ident: 4124_CR482
– volume: 32
  start-page: 1960
  year: 2015
  ident: 4124_CR491
  publication-title: Korean J Chem Eng
  doi: 10.1007/s11814-015-0042-x
– volume: 6
  start-page: 604
  year: 2019
  ident: 4124_CR49
  publication-title: IEEE Trans Comput Soc Syst
  doi: 10.1109/TCSS.2019.2914179
– volume: 37
  start-page: 100
  year: 2016
  ident: 4124_CR80
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2015.1117684
– volume: 453
  start-page: 779
  year: 2009
  ident: 4124_CR181
  publication-title: Nature
  doi: 10.1038/nature06958
– volume: 6
  start-page: 2873
  year: 2013
  ident: 4124_CR634
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-012-0610-x
– volume: 64
  start-page: 513
  year: 2009
  ident: 4124_CR276
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2009.03.002
– volume: 57
  start-page: 102115
  year: 2020
  ident: 4124_CR431
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2020.102115
– volume: 22
  start-page: 9875
  year: 2018
  ident: 4124_CR515
  publication-title: Clust Comput
  doi: 10.1007/s10586-018-1783-1
– volume: 21
  start-page: S239
  year: 2005
  ident: 4124_CR224
  publication-title: Earthq Spectra
  doi: 10.1193/1.2098937
– volume: 43
  start-page: 451
  year: 2013
  ident: 4124_CR655
  publication-title: IEEE Trans Hum Mach Syst
  doi: 10.1109/THMS.2013.2281762
– ident: 4124_CR183
  doi: 10.1007/978-3-030-38040-3_87
– volume: 45
  start-page: 4773
  year: 2018
  ident: 4124_CR308
  publication-title: Geophys Res Lett
  doi: 10.1029/2018GL077870
– ident: 4124_CR511
– start-page: 131
  volume-title: Time-sensitive remote sensing
  year: 2015
  ident: 4124_CR60
  doi: 10.1007/978-1-4939-2602-2_9
– volume: 9
  start-page: 566
  year: 2016
  ident: 4124_CR107
  publication-title: Peer Peer Netw Appl
  doi: 10.1007/s12083-015-0386-3
– volume: 5
  start-page: 17
  year: 2014
  ident: 4124_CR63
  publication-title: Eng Geol Soc Territ
– volume: 45
  start-page: 17
  year: 2014
  ident: 4124_CR297
  publication-title: Transp Res Part C
  doi: 10.1016/j.trc.2014.04.013
– ident: 4124_CR581
  doi: 10.1109/ICIEA.2019.8833977
– ident: 4124_CR257
  doi: 10.1109/CCECE.2011.6030716
– ident: 4124_CR148
– volume: 72
  start-page: 127
  issue: 1
  year: 2019
  ident: 4124_CR460
  publication-title: J Int Aff
– volume: 4
  start-page: 046024
  year: 2017
  ident: 4124_CR30
  publication-title: J Appl Remote Sens
– volume: 17
  start-page: 307
  year: 2018
  ident: 4124_CR264
  publication-title: J Archit Build Eng
  doi: 10.3130/jaabe.17.307
– ident: 4124_CR436
  doi: 10.1109/IGARSS.2018.8517946
– volume: 44
  start-page: 363
  year: 2014
  ident: 4124_CR198
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2014.04.003
– volume: 47
  start-page: 111
  year: 2014
  ident: 4124_CR437
  publication-title: J Hum Ecol
  doi: 10.1080/09709274.2014.11906743
– volume: 58
  start-page: 1
  year: 2013
  ident: 4124_CR576
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2013.04.018
– ident: 4124_CR474
  doi: 10.1109/WCNC.2019.8885893
– volume: 17
  start-page: 303
  year: 2016
  ident: 4124_CR270
  publication-title: Adv Struct Eng
  doi: 10.1260/1369-4332.17.3.303
– volume: 25
  start-page: 77
  year: 2012
  ident: 4124_CR45
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2011.01.014
– volume: 118
  start-page: 303
  year: 2012
  ident: 4124_CR238
  publication-title: J Bus Ethics
  doi: 10.1007/s10551-012-1589-7
– volume: 84
  start-page: 1109
  year: 2016
  ident: 4124_CR327
  publication-title: Nat Hazards
  doi: 10.1007/s11069-016-2477-8
– volume: 11
  start-page: 1174
  year: 2019
  ident: 4124_CR489
  publication-title: Remote Sens
  doi: 10.3390/rs11101174
– ident: 4124_CR283
  doi: 10.1109/ICTS.2016.7910295
– ident: 4124_CR527
  doi: 10.1109/ISDEA.2010.404
– volume: 2
  start-page: 172
  year: 2018
  ident: 4124_CR337
  publication-title: IET Smart Grid
  doi: 10.1049/iet-stg.2018.0043
– volume: 94
  start-page: 833
  year: 2018
  ident: 4124_CR596
  publication-title: Nat Hazards
  doi: 10.1007/s11069-018-3427-4
– volume: 4
  start-page: 510
  year: 2015
  ident: 4124_CR117
  publication-title: Int J Adv Res Comput Commun Eng
– ident: 4124_CR29
  doi: 10.1145/2623330.2623358
– volume: 13
  start-page: 418
  year: 2014
  ident: 4124_CR42
  publication-title: Struct Health Monit
  doi: 10.1177/1475921714522847
– ident: 4124_CR218
  doi: 10.1145/3163080.3163113
– ident: 4124_CR532
  doi: 10.1145/2187980.2188190
– ident: 4124_CR128
  doi: 10.3115/v1/P14-2009
– ident: 4124_CR52
  doi: 10.1109/SPAWC.2018.8445768
– ident: 4124_CR168
– volume: 196
  start-page: 106721
  year: 2019
  ident: 4124_CR614
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.106721
– volume: 18
  start-page: 89
  year: 2011
  ident: 4124_CR25
  publication-title: Intell Syst Acc Finance Manag
  doi: 10.1002/isaf.326
– volume: 51
  start-page: 1939
  year: 2013
  ident: 4124_CR118
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2012.2236683
– ident: 4124_CR136
– volume: 25
  start-page: 3
  year: 2007
  ident: 4124_CR378
  publication-title: J Field Robot
  doi: 10.1002/rob.20207
– volume: 1
  start-page: 95
  year: 2016
  ident: 4124_CR142
  publication-title: Sustain Resilient Infrastruct
  doi: 10.1080/23789689.2016.1255000
– volume: 80
  start-page: 491
  year: 2015
  ident: 4124_CR110
  publication-title: GeoJournal
  doi: 10.1007/s10708-014-9597-z
– volume: 54
  start-page: 221
  issue: 2
  year: 2014
  ident: 4124_CR623
  publication-title: Struct Eng Mech
  doi: 10.12989/sem.2015.54.2.221
– year: 2020
  ident: 4124_CR250
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-2019-420
– ident: 4124_CR373
  doi: 10.1109/ICNSC.2007.372797
– volume: 7
  start-page: 47
  year: 2016
  ident: 4124_CR251
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2015.11.005
– ident: 4124_CR469
  doi: 10.1007/978-3-319-15702-3_20
– volume: 1
  start-page: 04015011
  year: 2015
  ident: 4124_CR592
  publication-title: ASCE-ASME J Risk Uncertain Eng Syst Part A Civ Eng
  doi: 10.1061/AJRUA6.0000831
– ident: 4124_CR389
– volume: 30
  start-page: 04014116
  year: 2014
  ident: 4124_CR102
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000456
– ident: 4124_CR228
– volume: 7
  start-page: 925
  year: 2016
  ident: 4124_CR33
  publication-title: Int J Comput Sci Inf Technol
– ident: 4124_CR73
  doi: 10.1109/ICINFA.2006.374152
– volume: 283
  start-page: 1345
  year: 2018
  ident: 4124_CR302
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-018-3037-2
– year: 2019
  ident: 4124_CR219
  publication-title: Int J Digit Earth
  doi: 10.1080/17538947.2019.1633425
– ident: 4124_CR537
  doi: 10.1109/BigMM.2017.31
– volume: 10
  start-page: 134
  year: 2019
  ident: 4124_CR131
  publication-title: Int J Disaster Risk Sci
  doi: 10.1007/s13753-018-0189-2
– volume: 7
  start-page: 35344
  year: 2019
  ident: 4124_CR507
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904457
– volume: 30
  start-page: 494
  year: 2012
  ident: 4124_CR208
  publication-title: J Oper Manag
  doi: 10.1016/j.jom.2012.08.003
– volume: 50
  start-page: 1
  year: 2017
  ident: 4124_CR304
  publication-title: ACM Comput Surv
  doi: 10.1145/2996357
– volume: 68
  start-page: 8036
  year: 2019
  ident: 4124_CR322
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2019.2922849
– volume: 32
  start-page: 361
  year: 2017
  ident: 4124_CR81
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12263
– volume: 31
  start-page: 510
  year: 2014
  ident: 4124_CR271
  publication-title: J Field Robot
  doi: 10.1002/rob.21502
– ident: 4124_CR14
  doi: 10.1007/978-981-10-3773-3_55
– volume: 91
  start-page: 201
  year: 2018
  ident: 4124_CR221
  publication-title: Nat Hazards
  doi: 10.1007/s11069-017-3122-x
– ident: 4124_CR509
– ident: 4124_CR590
  doi: 10.1371/currents.dis.d073fbece328e4c39087bc086d694b5c
– volume: 4
  start-page: 22
  year: 2016
  ident: 4124_CR642
  publication-title: IEEE Geosci Remote Sens Mag
  doi: 10.1109/MGRS.2016.2540798
– volume: 25
  start-page: 100193
  year: 2019
  ident: 4124_CR116
  publication-title: Clim Risk Manag
  doi: 10.1016/j.crm.2019.100193
– ident: 4124_CR124
– volume: 76
  start-page: 5
  year: 2009
  ident: 4124_CR646
  publication-title: J Am Plan Assoc
  doi: 10.1080/01944360903294556
– ident: 4124_CR429
  doi: 10.1109/SIS.2007.367956
– volume: 67
  start-page: 387
  year: 2013
  ident: 4124_CR500
  publication-title: Nat Hazards
  doi: 10.1007/s11069-013-0566-5
– volume: 12
  start-page: 1285
  year: 2019
  ident: 4124_CR346
  publication-title: Int J Digit Earth
  doi: 10.1080/17538947.2018.1535000
– volume: 15
  start-page: 208
  year: 2007
  ident: 4124_CR113
  publication-title: J Conting Crisis Manag
  doi: 10.1111/j.1468-5973.2007.00522.x
– volume: 88
  start-page: 1591
  year: 2017
  ident: 4124_CR364
  publication-title: Nat Hazards
  doi: 10.1007/s11069-017-2934-z
– volume: 145–146
  start-page: 70
  year: 2012
  ident: 4124_CR598
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.12.040
– volume: 61
  start-page: 821
  year: 2010
  ident: 4124_CR618
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-009-0394-9
– volume: 1
  start-page: 60
  year: 2014
  ident: 4124_CR433
  publication-title: IEEE Cloud Comput
  doi: 10.1109/MCC.2014.71
– volume: 5
  start-page: 168
  issue: 3
  year: 2020
  ident: 4124_CR519
  publication-title: Sustain Resil Infrastruct
  doi: 10.1080/23789689.2018.1448663
– volume: 8
  start-page: 148
  year: 2020
  ident: 4124_CR582
  publication-title: IEEE Trans Emerg Top Comput
  doi: 10.1109/TETC.2017.2699169
– ident: 4124_CR641
  doi: 10.1109/SSRR.2018.8468643
– ident: 4124_CR438
– volume: 23
  start-page: 04017004
  year: 2017
  ident: 4124_CR287
  publication-title: J Infrastruct Syst
  doi: 10.1061/(ASCE)IS.1943-555X.0000353
– volume: 2
  start-page: 100030
  year: 2019
  ident: 4124_CR454
  publication-title: Prog Disaster Sci
  doi: 10.1016/j.pdisas.2019.100030
– year: 2020
  ident: 4124_CR339
  publication-title: Transform Gov People Process Policy
  doi: 10.1108/TG-09-2019-0088
– volume: 26
  start-page: 16
  year: 2018
  ident: 4124_CR298
  publication-title: J Contingencies Crisis Manag
  doi: 10.1111/1468-5973.12194
– volume: 92
  start-page: 1399
  year: 2018
  ident: 4124_CR467
  publication-title: Nat Hazards
  doi: 10.1007/s11069-018-3256-5
– volume: 13
  start-page: 158
  year: 2015
  ident: 4124_CR666
  publication-title: Int J Disaster Risk Reduct
  doi: 10.1016/j.ijdrr.2015.04.004
– volume: 105
  start-page: 2174
  year: 2015
  ident: 4124_CR22
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/0120140256
– ident: 4124_CR599
– ident: 4124_CR390
– volume: 123
  start-page: 225
  year: 2011
  ident: 4124_CR347
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2011.09.006
– volume: 32
  start-page: 3315
  year: 2017
  ident: 4124_CR145
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2016.2631895
– ident: 4124_CR405
  doi: 10.1109/ICC.2019.8761575
– volume: 26
  start-page: 133
  year: 2011
  ident: 4124_CR234
  publication-title: Transport
  doi: 10.3846/16484142.2011.584959
– volume: 68
  start-page: 65
  year: 2016
  ident: 4124_CR105
  publication-title: Autom Construct
  doi: 10.1016/j.autcon.2016.03.015
– volume: 36
  start-page: 2059
  year: 2018
  ident: 4124_CR318
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2018.2864373
SSID ssj0011629
Score 2.638521
SecondaryResourceType review_article
Snippet Natural hazards have the potential to cause catastrophic damage and significant socioeconomic loss. The actual damage and loss observed in the recent decades...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2631
SubjectTerms Artificial intelligence
Civil Engineering
Damage
Disaster management
Disasters
Earth and Environmental Science
Earth Sciences
Emergency preparedness
Environmental Management
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Mitigation
Natural Hazards
Review Article
Socioeconomic factors
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aBb34FqtVcvCmwd1kmyanUsTiQYrgg96WbJJiQdvarYL_3kw2262CvXje3WHJzGRmMpPvQ-icCQEodIo0pTYkUcyQTMeKOKd0wTvmkfRch893rV5P9PvyPhy45WGsstwT_UZtxhrOyK9oArAllAvZnrwTYI2C7mqg0FhFa4CSQP3o3sO8ixBzWmDtURgbivrh0kxxdc7VQpJA8eQJmAn7GZiqbPNXg9THne72f_94B22FjBN3ChPZRSt2tIc2Avn5y9c-ancWmth4PMBgTQWwBB4uIHZil99iM8wVYCvgt_nczAF66t48Xt-SwKtAtHO4GYHurDEytpFLrV39Y6QLSsIwCj1AxjNXFVNrnAoVFZHmkquoKQaaJ8J5O1DTH6LaaDyyRwhLYaGGack4c0JtpnSibKQE04PYMC7qKC4XNdUBdBy4L17TCi4ZFJE6RaReESmro4v5N5MCcmPp241y9dPgfnlaLX0dXZb6qx7_Le14ubQTtEm9ycCMWQPVZtMPe4rW9edsmE_PvPF9Azei2ww
  priority: 102
  providerName: ProQuest
Title Applications of artificial intelligence for disaster management
URI https://link.springer.com/article/10.1007/s11069-020-04124-3
https://www.proquest.com/docview/2438802689
Volume 103
WOSCitedRecordID wos000545205200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0840
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011629
  issn: 0921-030X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5sK-jFt1itJQdvGthNtmlykiotHrSUVktvSzZJsaCtdKvgvzfZR7eKCnrZyybDMo-dGWbmG4AzyrlDoZO4IZTGgaQaR8qX2Bqldd4-80Sy63B42-x2-WgketlQWJx3u-clyeRPXQy72exFYJfuJCuTMS1Bxbo77syxPxguawc-IynCHnHNQt4oG5X5nsZnd1TEmF_Koom36Wz_7zt3YCuLLlErVYddWDPTPdjIFp0_vu_DZWulYI1mY-Q0JwWRQJMVdE5kY1mkJ7F0OAroedkjcwAPnfb99Q3OdihgZY1rgV0lVmvhG8-G0TbX0cI6IK4pcfU-yiKbAROjrbgk4Z5igkmvwceKBdxatltDfwjl6WxqjgAJbly-0hR-ZImaSKpAGk9yqsa-poxXwc9ZGaoMYNztuXgKC2hkx5rQsiZMWBPSKpwv77yk8Bq_nq7lEgozU4tDEjg8G8K4qMJFLpHi9c_Ujv92_AQ2SSJU119Wg_Ji_mpOYV29LSbxvA6Vq3a3169D6Y703LM5qCdq-QF1rdRL
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTwIxEJ4gmujFtxFF7UFP2rjbXZb2YIzxEQ1ITETDbS1tiSQKCKjhT_kb7ewD0ERuHDzv7mSX-TqdYabfB7DvcY4sdJIWhNLUl56mdeVKahel3bzdwBGR1uFjuVip8FpN3GXgKz0Lg2OVaUyMArVuK_yP_Jj5SFvCAi5OO28UVaOwu5pKaMSwKJnBpy3Zeic3F9a_B4xdXVbPr2miKkCVhVufYm9Sa-EaxyaWNvvXwoZkrj2GHTAvqNuakBltP0Ay7qhABNIp8IYKfG6xjsLs1u4MzPoY_aNRwfth18INWMztx3BMyaklh3Tio3q29hIUi7VI8Jl6PzfCUXb7qyEb7XNXS__tF1qGxSSjJmfxEliBjGmtwnwi7v48WIPTs7EmPWk3CK6WmDiDNMcYSYnN34lu9iRyR5DX4VzQOjxM5f03INtqt8wmEMEN1mhF4datUVOXypfGkdxTDVd7Ac-BmzoxVAmpOmp7vIQjOmh0fGgdH0aOD70cHA6f6cSUIhPvzqfeDpPw0gtHrs7BUYqX0eW_rW1NtrYH89fV23JYvqmUtmGBRXDFebo8ZPvdd7MDc-qj3-x1dyPgE3iaNo6-Aek_Mfo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB2FgKAXWlpQU2i7h3KiK-x1WHYPCIVA1ChRFKFS5eaudzciEk0oTlvx1_rrOuOPOEUqNw492x7ZmTezO5nZ9wA-REoRC53hR9o63jSR44kNDcegxMU7lIHOtA6_9I8HAzUa6WENfpdnYWisssyJWaJ2M0v_kR-KJtGWCKn04bgYixied05vv3NSkKJOaymnkUOk5-9_YfmWnnTP0df7QnQuPrc_8UJhgFuE3pxTn9I5HfoAN5lYCTiN6Vm5SFA3LJIJ1ofCO_wYI1RgpZYmOFJjK5sKcU8i7Wh3BVaVxLipw-qwfda6XPQwQilypj9BQ0vBqDiykx_cw0pMcyrdMvlnHv29LFZ73Qft2WzV6zz_n3-vF7BZ7LVZKw-OLaj56UvYKGTfr-9fwWlrqX3PZmNGcZRTarDJElcpw509c5PUEKsE-7aYGNqGqyd5_x2oT2dT_xqYVp6qt2MdJmjUJ8Y2jQ-Miuw4dJFUDQhLh8a2oFsn1Y-buCKKJhDECII4A0EcNeBg8cxtTjby6N17pefjIvGkceX2BnwssVNd_re1N49bew_rCJ-43x30duGZyJBLg3Z7UJ_f_fBvYc3-nE_Su3dFFDD4-tRA-gPxHzvq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+artificial+intelligence+for+disaster+management&rft.jtitle=Natural+hazards+%28Dordrecht%29&rft.au=Sun%2C+Wenjuan&rft.au=Bocchini%2C+Paolo&rft.au=Davison%2C+Brian+D.&rft.date=2020-09-01&rft.pub=Springer+Netherlands&rft.issn=0921-030X&rft.eissn=1573-0840&rft.volume=103&rft.issue=3&rft.spage=2631&rft.epage=2689&rft_id=info:doi/10.1007%2Fs11069-020-04124-3&rft.externalDocID=10_1007_s11069_020_04124_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-030X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-030X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-030X&client=summon