Two new self-adaptive algorithms for solving the split common null point problem with multiple output sets in Hilbert spaces

To solve the split common null point problem with multiple output sets in Hilbert spaces, we introduce two new self-adaptive algorithms and prove strong convergence theorems for both of them.

Uložené v:
Podrobná bibliografia
Vydané v:Fixed point theory and algorithms for sciences and engineering Ročník 23; číslo 2; s. 16
Hlavní autori: Reich, Simeon, Tuyen, Truong Minh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.05.2021
Springer Nature B.V
Predmet:
ISSN:1661-7738, 1661-7746, 2730-5422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract To solve the split common null point problem with multiple output sets in Hilbert spaces, we introduce two new self-adaptive algorithms and prove strong convergence theorems for both of them.
AbstractList To solve the split common null point problem with multiple output sets in Hilbert spaces, we introduce two new self-adaptive algorithms and prove strong convergence theorems for both of them.
ArticleNumber 16
Author Tuyen, Truong Minh
Reich, Simeon
Author_xml – sequence: 1
  givenname: Simeon
  surname: Reich
  fullname: Reich, Simeon
  organization: Department of Mathematics, The Technion, Israel Institute of Technology
– sequence: 2
  givenname: Truong Minh
  surname: Tuyen
  fullname: Tuyen, Truong Minh
  email: tuyentm@tnus.edu.vn
  organization: Department of Mathematics and Informatics, Thai Nguyen University of Sciences
BookMark eNp9kE1LxDAQhoMo-PkHPAU8VzNNm3SPIn6B4GU9hyQmayRNapK6CP54oysKHjzNDLzPzPDso-0Qg0HoGMgpEMLPMgAfuoa00BAydEPTbqE9YAwazju2_dPTYRft5_xMCKtZvofel-uIg1njbLxt5KOcins1WPpVTK48jRnbmHCO_tWFFS5PBufJu4J1HMcYcJi9x1N0oeApReXNiNcVw-Psi5u8wXEu01zq9pKxC_jGeWVSnSepTT5EO1b6bI6-6wF6uLpcXtw0d_fXtxfnd42msChN22slbc-pgV4pu-BaUdlpynU_2J5Jqx87qlW30MAAoKOMcVA96YhVrWZAD9DJZm_98WU2uYjnOKdQTwpaLQAB3vc1NWxSOsWck7FCuyKLi6Ek6bwAIj5di41rUf2JL9eirWj7B52SG2V6-x-iGyjXcFiZ9PvVP9QHvbaV1g
CitedBy_id crossref_primary_10_1007_s11075_022_01343_6
crossref_primary_10_1007_s00186_025_00901_7
crossref_primary_10_1007_s40314_024_03011_y
crossref_primary_10_1016_j_cam_2024_116000
crossref_primary_10_1007_s11075_023_01597_8
crossref_primary_10_1080_01630563_2023_2278836
crossref_primary_10_1016_j_apnum_2023_06_016
crossref_primary_10_1007_s10957_022_02096_x
crossref_primary_10_3390_math11194175
crossref_primary_10_1007_s10957_025_02765_7
crossref_primary_10_1080_01630563_2023_2221856
crossref_primary_10_1007_s00574_024_00405_8
crossref_primary_10_1080_02331934_2021_1945053
crossref_primary_10_1080_02331934_2023_2262493
crossref_primary_10_1080_02331934_2023_2269981
crossref_primary_10_1007_s40314_024_02896_z
crossref_primary_10_1007_s10114_024_2594_3
crossref_primary_10_1007_s00009_024_02796_w
crossref_primary_10_1007_s12190_025_02408_0
crossref_primary_10_1080_02331934_2023_2181081
crossref_primary_10_1007_s11075_021_01252_0
crossref_primary_10_1007_s12215_023_00987_0
crossref_primary_10_1515_cmam_2022_0199
crossref_primary_10_1007_s11590_023_02080_y
crossref_primary_10_1007_s40314_022_02136_2
crossref_primary_10_1007_s40314_025_03359_9
crossref_primary_10_1007_s40314_025_03355_z
crossref_primary_10_1007_s12215_022_00853_5
Cites_doi 10.1017/S000497271700017X
10.2140/pjm.1970.33.209
10.1017/CBO9780511526152
10.1007/s11784-018-0622-6
10.1007/s11075-019-00703-z
10.1007/s11075-018-0572-5
10.1016/j.na.2011.03.044
10.1080/02331934.2019.1655562
10.1007/s00013-015-0738-5
10.1007/s10957-010-9713-2
10.1016/j.na.2003.10.010
10.1080/01630563.2019.1681000
10.1007/s11228-008-0102-z
10.1007/BF02142692
10.1007/s11590-020-01555-6
10.2307/2372313
10.1088/0266-5611/20/4/014
10.1088/0266-5611/26/5/055007
10.1080/02331934.2019.1686633
10.1007/s11075-011-9490-5
10.1080/02331934.2015.1020943
10.1088/0266-5611/20/1/006
10.1007/s00245-017-9427-z
10.1016/j.jmaa.2005.04.082
10.1137/0329022
10.1007/s10957-019-01523-w
10.1155/AAA/2006/84919
10.1080/02331939608844217
10.1016/j.ejor.2013.11.028
10.1016/j.ejor.2016.02.057
10.1088/0266-5611/26/10/105018
10.1088/0266-5611/22/6/007
10.1088/0266-5611/18/2/310
10.1137/0314056
10.1088/0266-5611/21/6/017
10.1007/s10898-006-9002-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021
Copyright Springer Nature B.V. May 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021
– notice: Copyright Springer Nature B.V. May 2021
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s11784-021-00848-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1661-7746
2730-5422
ExternalDocumentID 10_1007_s11784_021_00848_2
GrantInformation_xml – fundername: The Israel Science Foundation
  grantid: Grant 820/17
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
D-I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABJCF
ABUWG
ACACY
ACUHS
ACULB
AFGXO
AFKRA
AFPKN
ARAPS
AZQEC
BENPR
BGLVJ
C24
C6C
CCPQU
DWQXO
ESX
FR3
GNUQQ
GROUPED_DOAJ
HCIFZ
I-F
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
M~E
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
TUS
~8M
ID FETCH-LOGICAL-c319t-25cbaf573e15bbf97cb3a4c37c58f56afcd43cb49c16111436671b5040fb2c613
IEDL.DBID BENPR
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000622335800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1661-7738
IngestDate Sat Oct 18 22:53:22 EDT 2025
Sat Nov 29 01:47:57 EST 2025
Tue Nov 18 21:19:39 EST 2025
Fri Feb 21 02:48:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords split common null point problem
47H10
metric projection
49J53
90C25
self-adaptive algorithm
47H09
nonexpansive mapping
Hilbert space
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-25cbaf573e15bbf97cb3a4c37c58f56afcd43cb49c16111436671b5040fb2c613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3217101755?pq-origsite=%requestingapplication%
PQID 3217101755
PQPubID 237292
ParticipantIDs proquest_journals_3217101755
crossref_citationtrail_10_1007_s11784_021_00848_2
crossref_primary_10_1007_s11784_021_00848_2
springer_journals_10_1007_s11784_021_00848_2
PublicationCentury 2000
PublicationDate 20210500
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 5
  year: 2021
  text: 20210500
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Fixed point theory and algorithms for sciences and engineering
PublicationTitleAbbrev J. Fixed Point Theory Appl
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References ReichSTuyenTMA new algorithm for solving the split common null point problem in Hilbert spacesNumer. Algorithms202083789805405526907160103
ButnariuDResmeritaEBregman distances, totally convex functions and a method for solving operator equations in Banach spacesAbstr. Appl. Anal.2006200613922116751130.47046
ByrneCA unified treatment of some iterative algorithms in signal processing and image reconstructionInverse Probl.20042010312020446081051.65067
MaingéPEA viscosity method with no spectral radius requirements for the split common fixed point problemEJOR20142351172731598971305.65146
YangQThe relaxed CQ algorithm for solving the split feasibility problemInverse Probl.2004201261126620879891066.65047
TakahashiSTakahashiWToyodaMStrong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spacesJ. Optim. Theory Appl.2010147274127205901208.47071
DadashiVShrinking projection algorithms for the split common null point problemBull. Aust. Math. Soc.201799299306370391106792046
TakahashiWThe split common null point problem in Banach spacesArch. Math.201510435736533257701458.47034
ReichSTuyenTMThe split feasibility problem with multiple output sets in Hilbert spacesOptim. Lett.20201423352353416361607311820
AgarwalRPO’ReganDSahuDRFixed Point Theory for Lipschitzian-type Mappings with Applications2009New YorkSpringer1176.47037
IidukaHProximal point algorithms for nonsmooth convex optimization with fixed point constraintsEJOR2015253250351334851881346.90663
ByrneCIterative oblique projection onto convex sets and the split feasibility problemInverse Probl.20021844145319102480996.65048
XuH-KIterative methods for the split feasibility problem in infinite dimensional Hilbert spacesInverse Probl.20102610501827197791213.65085
CensorYGibaliAReichSAlgorithms for the split variational inequality problemsNumer. Algorithms20125930132328731361239.65041
GoebelKKirkWATopics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math.1990CambridgeCambridge University Press
BauschkeHHMatouškováEReichSProjection and proximal point methods: Convergence results and counterexamplesNonlinear Anal.20045671573820367871059.47060
ByrneCCensorYGibaliAReichSThe split common null point problemJ. Nonlinear Convex Anal.20121375977530151191262.47073
TakahashiWThe split feasibility problem and the shrinking projection method in Banach spacesJ. Nonlinear Convex Anal.2015161449145933759771343.47074
TuyenTMHaNSA strong convergence theorem for solving the split feasibility and fixed point problems in Banach spacesJ. Fixed Point Theory Appl.20182014038562701398.65130
GoebelKReichSUniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings1984New YorkMarcel Dekker0537.46001
ReichSTuyenTMIterative methods for solving the generalized split common null point problem in Hilbert spacesOptimization2020691013103840955721445.47043
GülerOOn the convergence of the proximal point algorithm for convex minimizationSIAM J. Control Optim.19912940341910927350737.90047
RockafellarRTOn the maximal monotonicity of subdifferential mappingsPac. J. Math.1970332092162628270199.47101
CensorYSegalAThe split common fixed point problem for directed operatorsJ. Convex Anal.20091658760025599611189.65111
WangFXuH-KCyclic algorithms for split feasibility problems in Hilbert spacesNonlinear Anal.2011744105411128029901308.47079
TakahashiSTakahashiWThe split common null point problem and the shrinking projection method in Banach spacesOptimization20166528128734381101338.47110
MaingéPEStrong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimizationSet-Valued Anal.20081689991224660271156.90426
XuH-KA variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problemInverse Probl.200622202120341126.47057
TuyenTMThuyNTTTrangNMA strong convergence theorem for a parallel iterative method for solving the split common null point problem in Hilbert spacesJ. Optim. Theory Appl.20191382271291398930707112086
XuH-KA regularization method for the proximal point algorithmJ. Glob. Optim.20063611512522568861131.90062
MasadEReichSA note on the multiple-set split convex feasibility problem in Hilbert spaceJ. Nonlinear Convex Anal.2007836737123778591171.90009
ReichSTuyenTMTrangNMParallel iterative methods for solving the split common fixed point problem in Hilbert spacesNumer. Funct. Anal. Optim.20204177880540805291442.47064
CensorYElfvingTA multi projection algorithm using Bregman projections in a product spaceNumer. Algorithms1994822123913092220828.65065
ReichSTuyenTMTwo projection methods for solving the multiple-set split common null point problem in Hilbert spacesOptimization202069919131934413906207249879
RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control Optim.1976148778984104830358.90053
LandweberLAn iterative formula for Fredholm integral equations of the first kindAm. J. Math.195173615624433480043.10602
XuH-KStrong convergence of an iterative method for nonexpansive and accretive operatorsJ. Math. Anal. Appl.200631463164321852551086.47060
TuyenTMHaNSThuyNTTA shrinking projection method for solving the split common null point problem in Banach spacesNumer. Algorithms201981813832396137907072079
CensorYElfvingTKopfNBortfeldTThe multiple-sets split feasibility problem and its applicationInverse Probl.2005212071208421836681089.65046
LehdiliNMoudafiACombining the proximal algorithm and Tikhonov regularizationOptimization19963723925213962380863.49018
MoudafiAThe split common fixed point problem for demicontractive mappingsInverse Probl.20102605500726471491219.90185
TuyenTMA strong convergence theorem for the split common null point problem in Banach spacesAppl. Math. Optim.201979207227390378507043109
H-K Xu (848_CR40) 2006; 22
H Iiduka (848_CR15) 2015; 253
D Butnariu (848_CR3) 2006; 2006
PE Maingé (848_CR18) 2008; 16
S Reich (848_CR23) 2020; 14
O Güler (848_CR14) 1991; 29
S Takahashi (848_CR29) 2016; 65
RT Rockafellar (848_CR27) 1970; 33
Y Censor (848_CR10) 2012; 59
K Goebel (848_CR12) 1990
K Goebel (848_CR13) 1984
C Byrne (848_CR5) 2004; 20
E Masad (848_CR20) 2007; 8
Y Censor (848_CR8) 2009; 16
C Byrne (848_CR6) 2012; 13
TM Tuyen (848_CR36) 2018; 20
TM Tuyen (848_CR33) 2019; 138
H-K Xu (848_CR38) 2006; 36
A Moudafi (848_CR21) 2010; 26
PE Maingé (848_CR19) 2014; 235
F Wang (848_CR37) 2011; 74
Q Yang (848_CR42) 2004; 20
Y Censor (848_CR9) 2005; 21
H-K Xu (848_CR39) 2006; 314
HH Bauschke (848_CR2) 2004; 56
RT Rockafellar (848_CR28) 1976; 14
V Dadashi (848_CR11) 2017; 99
S Reich (848_CR25) 2020; 69
S Takahashi (848_CR30) 2010; 147
Y Censor (848_CR7) 1994; 8
N Lehdili (848_CR17) 1996; 37
W Takahashi (848_CR31) 2015; 16
S Reich (848_CR26) 2020; 83
W Takahashi (848_CR32) 2015; 104
L Landweber (848_CR16) 1951; 73
TM Tuyen (848_CR34) 2019; 79
S Reich (848_CR24) 2020; 41
H-K Xu (848_CR41) 2010; 26
C Byrne (848_CR4) 2002; 18
RP Agarwal (848_CR1) 2009
S Reich (848_CR22) 2020; 69
TM Tuyen (848_CR35) 2019; 81
References_xml – reference: CensorYElfvingTKopfNBortfeldTThe multiple-sets split feasibility problem and its applicationInverse Probl.2005212071208421836681089.65046
– reference: MaingéPEStrong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimizationSet-Valued Anal.20081689991224660271156.90426
– reference: MaingéPEA viscosity method with no spectral radius requirements for the split common fixed point problemEJOR20142351172731598971305.65146
– reference: RockafellarRTOn the maximal monotonicity of subdifferential mappingsPac. J. Math.1970332092162628270199.47101
– reference: TakahashiSTakahashiWThe split common null point problem and the shrinking projection method in Banach spacesOptimization20166528128734381101338.47110
– reference: ReichSTuyenTMIterative methods for solving the generalized split common null point problem in Hilbert spacesOptimization2020691013103840955721445.47043
– reference: ReichSTuyenTMThe split feasibility problem with multiple output sets in Hilbert spacesOptim. Lett.20201423352353416361607311820
– reference: XuH-KA variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problemInverse Probl.200622202120341126.47057
– reference: TuyenTMHaNSThuyNTTA shrinking projection method for solving the split common null point problem in Banach spacesNumer. Algorithms201981813832396137907072079
– reference: LandweberLAn iterative formula for Fredholm integral equations of the first kindAm. J. Math.195173615624433480043.10602
– reference: GoebelKReichSUniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings1984New YorkMarcel Dekker0537.46001
– reference: ReichSTuyenTMA new algorithm for solving the split common null point problem in Hilbert spacesNumer. Algorithms202083789805405526907160103
– reference: DadashiVShrinking projection algorithms for the split common null point problemBull. Aust. Math. Soc.201799299306370391106792046
– reference: CensorYElfvingTA multi projection algorithm using Bregman projections in a product spaceNumer. Algorithms1994822123913092220828.65065
– reference: TakahashiWThe split common null point problem in Banach spacesArch. Math.201510435736533257701458.47034
– reference: MoudafiAThe split common fixed point problem for demicontractive mappingsInverse Probl.20102605500726471491219.90185
– reference: BauschkeHHMatouškováEReichSProjection and proximal point methods: Convergence results and counterexamplesNonlinear Anal.20045671573820367871059.47060
– reference: WangFXuH-KCyclic algorithms for split feasibility problems in Hilbert spacesNonlinear Anal.2011744105411128029901308.47079
– reference: ByrneCCensorYGibaliAReichSThe split common null point problemJ. Nonlinear Convex Anal.20121375977530151191262.47073
– reference: ByrneCIterative oblique projection onto convex sets and the split feasibility problemInverse Probl.20021844145319102480996.65048
– reference: MasadEReichSA note on the multiple-set split convex feasibility problem in Hilbert spaceJ. Nonlinear Convex Anal.2007836737123778591171.90009
– reference: ReichSTuyenTMTrangNMParallel iterative methods for solving the split common fixed point problem in Hilbert spacesNumer. Funct. Anal. Optim.20204177880540805291442.47064
– reference: TuyenTMThuyNTTTrangNMA strong convergence theorem for a parallel iterative method for solving the split common null point problem in Hilbert spacesJ. Optim. Theory Appl.20191382271291398930707112086
– reference: AgarwalRPO’ReganDSahuDRFixed Point Theory for Lipschitzian-type Mappings with Applications2009New YorkSpringer1176.47037
– reference: ReichSTuyenTMTwo projection methods for solving the multiple-set split common null point problem in Hilbert spacesOptimization202069919131934413906207249879
– reference: RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control Optim.1976148778984104830358.90053
– reference: CensorYGibaliAReichSAlgorithms for the split variational inequality problemsNumer. Algorithms20125930132328731361239.65041
– reference: XuH-KA regularization method for the proximal point algorithmJ. Glob. Optim.20063611512522568861131.90062
– reference: GülerOOn the convergence of the proximal point algorithm for convex minimizationSIAM J. Control Optim.19912940341910927350737.90047
– reference: LehdiliNMoudafiACombining the proximal algorithm and Tikhonov regularizationOptimization19963723925213962380863.49018
– reference: YangQThe relaxed CQ algorithm for solving the split feasibility problemInverse Probl.2004201261126620879891066.65047
– reference: TuyenTMHaNSA strong convergence theorem for solving the split feasibility and fixed point problems in Banach spacesJ. Fixed Point Theory Appl.20182014038562701398.65130
– reference: XuH-KStrong convergence of an iterative method for nonexpansive and accretive operatorsJ. Math. Anal. Appl.200631463164321852551086.47060
– reference: ButnariuDResmeritaEBregman distances, totally convex functions and a method for solving operator equations in Banach spacesAbstr. Appl. Anal.2006200613922116751130.47046
– reference: GoebelKKirkWATopics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math.1990CambridgeCambridge University Press
– reference: ByrneCA unified treatment of some iterative algorithms in signal processing and image reconstructionInverse Probl.20042010312020446081051.65067
– reference: TuyenTMA strong convergence theorem for the split common null point problem in Banach spacesAppl. Math. Optim.201979207227390378507043109
– reference: IidukaHProximal point algorithms for nonsmooth convex optimization with fixed point constraintsEJOR2015253250351334851881346.90663
– reference: XuH-KIterative methods for the split feasibility problem in infinite dimensional Hilbert spacesInverse Probl.20102610501827197791213.65085
– reference: CensorYSegalAThe split common fixed point problem for directed operatorsJ. Convex Anal.20091658760025599611189.65111
– reference: TakahashiWThe split feasibility problem and the shrinking projection method in Banach spacesJ. Nonlinear Convex Anal.2015161449145933759771343.47074
– reference: TakahashiSTakahashiWToyodaMStrong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spacesJ. Optim. Theory Appl.2010147274127205901208.47071
– volume-title: Fixed Point Theory for Lipschitzian-type Mappings with Applications
  year: 2009
  ident: 848_CR1
– volume: 16
  start-page: 1449
  year: 2015
  ident: 848_CR31
  publication-title: J. Nonlinear Convex Anal.
– volume: 99
  start-page: 299
  year: 2017
  ident: 848_CR11
  publication-title: Bull. Aust. Math. Soc.
  doi: 10.1017/S000497271700017X
– volume: 33
  start-page: 209
  year: 1970
  ident: 848_CR27
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1970.33.209
– volume-title: Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math.
  year: 1990
  ident: 848_CR12
  doi: 10.1017/CBO9780511526152
– volume: 20
  start-page: 140
  year: 2018
  ident: 848_CR36
  publication-title: J. Fixed Point Theory Appl.
  doi: 10.1007/s11784-018-0622-6
– volume: 83
  start-page: 789
  year: 2020
  ident: 848_CR26
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-019-00703-z
– volume: 81
  start-page: 813
  year: 2019
  ident: 848_CR35
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-018-0572-5
– volume: 74
  start-page: 4105
  year: 2011
  ident: 848_CR37
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.03.044
– volume: 69
  start-page: 1013
  year: 2020
  ident: 848_CR22
  publication-title: Optimization
  doi: 10.1080/02331934.2019.1655562
– volume: 104
  start-page: 357
  year: 2015
  ident: 848_CR32
  publication-title: Arch. Math.
  doi: 10.1007/s00013-015-0738-5
– volume: 147
  start-page: 27
  year: 2010
  ident: 848_CR30
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9713-2
– volume: 56
  start-page: 715
  year: 2004
  ident: 848_CR2
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2003.10.010
– volume: 41
  start-page: 778
  year: 2020
  ident: 848_CR24
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2019.1681000
– volume: 13
  start-page: 759
  year: 2012
  ident: 848_CR6
  publication-title: J. Nonlinear Convex Anal.
– volume: 16
  start-page: 899
  year: 2008
  ident: 848_CR18
  publication-title: Set-Valued Anal.
  doi: 10.1007/s11228-008-0102-z
– volume: 8
  start-page: 221
  year: 1994
  ident: 848_CR7
  publication-title: Numer. Algorithms
  doi: 10.1007/BF02142692
– volume: 14
  start-page: 2335
  year: 2020
  ident: 848_CR23
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-020-01555-6
– volume: 16
  start-page: 587
  year: 2009
  ident: 848_CR8
  publication-title: J. Convex Anal.
– volume-title: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings
  year: 1984
  ident: 848_CR13
– volume: 73
  start-page: 615
  year: 1951
  ident: 848_CR16
  publication-title: Am. J. Math.
  doi: 10.2307/2372313
– volume: 8
  start-page: 367
  year: 2007
  ident: 848_CR20
  publication-title: J. Nonlinear Convex Anal.
– volume: 20
  start-page: 1261
  year: 2004
  ident: 848_CR42
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/20/4/014
– volume: 26
  start-page: 055007
  year: 2010
  ident: 848_CR21
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/26/5/055007
– volume: 69
  start-page: 1913
  issue: 9
  year: 2020
  ident: 848_CR25
  publication-title: Optimization
  doi: 10.1080/02331934.2019.1686633
– volume: 59
  start-page: 301
  year: 2012
  ident: 848_CR10
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-011-9490-5
– volume: 65
  start-page: 281
  year: 2016
  ident: 848_CR29
  publication-title: Optimization
  doi: 10.1080/02331934.2015.1020943
– volume: 20
  start-page: 103
  year: 2004
  ident: 848_CR5
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/20/1/006
– volume: 79
  start-page: 207
  year: 2019
  ident: 848_CR34
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-017-9427-z
– volume: 314
  start-page: 631
  year: 2006
  ident: 848_CR39
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.04.082
– volume: 29
  start-page: 403
  year: 1991
  ident: 848_CR14
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0329022
– volume: 138
  start-page: 271
  issue: 2
  year: 2019
  ident: 848_CR33
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01523-w
– volume: 2006
  start-page: 1
  year: 2006
  ident: 848_CR3
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/AAA/2006/84919
– volume: 37
  start-page: 239
  year: 1996
  ident: 848_CR17
  publication-title: Optimization
  doi: 10.1080/02331939608844217
– volume: 235
  start-page: 17
  issue: 1
  year: 2014
  ident: 848_CR19
  publication-title: EJOR
  doi: 10.1016/j.ejor.2013.11.028
– volume: 253
  start-page: 503
  issue: 2
  year: 2015
  ident: 848_CR15
  publication-title: EJOR
  doi: 10.1016/j.ejor.2016.02.057
– volume: 26
  start-page: 105018
  year: 2010
  ident: 848_CR41
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/26/10/105018
– volume: 22
  start-page: 2021
  year: 2006
  ident: 848_CR40
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/22/6/007
– volume: 18
  start-page: 441
  year: 2002
  ident: 848_CR4
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/18/2/310
– volume: 14
  start-page: 877
  year: 1976
  ident: 848_CR28
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0314056
– volume: 21
  start-page: 2071
  year: 2005
  ident: 848_CR9
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/21/6/017
– volume: 36
  start-page: 115
  year: 2006
  ident: 848_CR38
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-006-9002-7
SSID ssj0060217
ssj0002513275
Score 2.4209013
Snippet To solve the split common null point problem with multiple output sets in Hilbert spaces, we introduce two new self-adaptive algorithms and prove strong...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16
SubjectTerms Adaptive algorithms
Algorithms
Analysis
Feasibility
Hilbert space
Iterative methods
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Regularization methods
Theorems
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iHvTgW1xdZQ7eNGCbpmmOIi5eFMEH3kqSbbSwtmWb1Ys_3km3dVFU0GNpkpbMZOabZPINIYcnQmoTqZii69HUM2BRLRNDRaBFEMTWykw1xSbE1VXy8CCv20thdZft3h1JNpZ6dtktEElEfUpBQwJP0fAucM8242P0m_vO_sYeZfswCz0PYkeWtFdlvh_jszuaYcwvx6KNtxms_u8_18hKiy7hdKoO62QuKzbI8uUHNWu9Sd5uX0tALA11NrJUDVXlDR6o0WM5zt3Tcw0IYwE10u80AHaEGnGqA_w4aiwUGLJCVeaFg7YWDfitXOgSE6GcuGricHRXQ17ARe5JtPC58rlfW-RucH57dkHbEgzU4Np0NORGK8sFywKutZXCaKYiw4ThieWxsmYYMaMjaRA5YmjF4hilzNEyWB0ahArbZL4oi2yHQJIJbhHPM09gI8NQmniIaITFLJMnirEeCTpJpKblJ_dlMkbpjFnZz2yKM5s2M5uGPXL00aeasnP82rrfCThtV2qdMtQWb5Y475HjTqCz1z-Ptvu35ntkKWx0wudK9sm8G0-yfbJoXlxejw8aDX4HYEnqPQ
  priority: 102
  providerName: Springer Nature
Title Two new self-adaptive algorithms for solving the split common null point problem with multiple output sets in Hilbert spaces
URI https://link.springer.com/article/10.1007/s11784-021-00848-2
https://www.proquest.com/docview/3217101755
Volume 23
WOSCitedRecordID wos000622335800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1661-7746
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513275
  issn: 1661-7738
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1661-7746
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513275
  issn: 1661-7738
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1661-7746
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060217
  issn: 1661-7738
  databaseCode: RSV
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1661-7746
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513275
  issn: 1661-7738
  databaseCode: C24
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWg5UAPfKMulNUcuIFFE8dxcqoAbVWEuoraggqXyPbGdKVtEhovvSB-OzNZZ1cg0QsXS1Zsx9KMx8_j8RvGXu6r3NhEpxy3HsOJAYubPLNcRUZFUepcXuk-2YSaTrPz87wIDrcuhFUONrE31LPGko_8jUDsTOoj5UH7nVPWKLpdDSk0brNtYipDPd9-N5kWJ2svC-7eIlYyvJZZvZmLVJZwikzoueR5_OeOtIGZf92M9hvO4f3_neoDdi9ATXi70o2H7FZVP2I7x2ue1u4x-3l23QACa-iqheN6pluyfqAX33A8f3HZAWJaQPUktwNgR-gQtHrAeeBPoMbzK7TNvPYQEtMA-XVhiFKEZunbpcfRfQfzGo7mxKiF9ZYCwZ6wT4eTs_dHPORj4BYXquextEY7qUQVSWNcrqwROrFCWZk5mWpnZ4mwJsktwkg8Z4k0RZFLNBPOxBZxw1O2VTd1tcsgq5R0CO4FsdnkcZzbdIbQRKSiyve1ECMWDTIpbSArp5wZi3JDs0xyLFGOZS_HMh6xV-s-7Yqq48bWe4PwyrBsu3IjuRF7PYh_8_nfoz27ebTn7G7caxwFSu6xLX-1rF6wO_aHn3dX46C0494fgOVHxccUg3pK5a8JloX8iq2KD8fFF6ydnH7-DbpY--A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHRJw4BtRGPAOcAKLxo7j5IAQAqZWW6seijROIXbtrVJJwpIyIfE37W_cc5q0AondduAYJX6Kk5_fl59_D-DlQCXahFnEyPRo5hmwmE5iw1SgVRBEziU2a5pNqMkkPjpKpjtw3p2F8WWVnU5sFPW8MD5H_laQ7-zhI-X78gfzXaP87mrXQmMNiwP764xCturd6BP931ec73-efRyytqsAMwS3mnFpdOakEjaQWrtEGS2y0AhlZOxklDkzD4XRYWLIGaJoQUQRvbgksDvNDVk_knsNdkMC-6AHu9PRePp1k9Uhb0FwJdvTOeszeoGKQ-YrIRruesb_tIBbt_avndjGwO3f-d8-zV243brS-GGN_XuwY_P7cGu84aGtHsDv2VmBFDhgZZeOZfOs9Nods-UxvX998r1C8tmRlp9PqyANxIqc8hpp3jQpzCk-x7JY5DW2jXfQ562xq8LEYlWXq5qk1xUuchwuPGMYXZe-0O0hfLmS6T-CXl7k9jFgbJV0FLwIz9aTcJ6YaE6ul4iETQaZEH0IOgykpiVj9z1BlumWRtrjJiXcpA1uUt6H15sx5ZqK5NKn9zqwpK1aqtItUvrwpoPb9va_pT25XNoLuDGcjQ_Tw9Hk4Cnc5A3afVHoHvTq05V9BtfNz3pRnT5vFwzCt6sG4gU70lFP
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLULlwBuxUGAOcAKrjR3H8QEhoF21KqxWqEi9hdhrw0rbJDRZKiR-Gb-OcTbZFUj01gPHKMkodj7Py-NvAJ7tKm1snCeMTI9hgQGLGZ1apiKjoijxXru8bTahxuP05ERPNuBXfxYmlFX2OrFV1NPShhz5jiDfOcBHyh3flUVM9kavq28sdJAKO619O40lRI7cj3MK3-pXh3v0r59zPto_fnfAug4DzBL0GsalNbmXSrhIGuO1skbksRXKytTLJPd2GgtrYm3JMaLIQSQJDUIS8L3hliwhyb0Cm0pQ0DOAzbf748nHVYaHPAfBlexO6izP60UqjVmoimh57Bn_0xquXdy_dmVbYze6-T9P0y240bnY-Ga5Jm7DhivuwPUPK37a-i78PD4vkQIKrN3cs3yaV0HrYz7_Qt_ffD2tkXx5pGUZ0i1IL2JNznqDNAc0KCxozFiVs6LBriEPhnw29tWZWC6aatGQ9KbGWYEHs8AkRtdVKIC7B58uZfj3YVCUhXsAmDolPQU1IrD4aM61TabkkolEOL2bCzGEqMdDZjuS9tArZJ6t6aUDhjLCUNZiKONDeLF6p1pSlFz49HYPnKxTV3W2Rs0QXvbQW9_-t7SHF0t7CtcIfdn7w_HRI9jiLfBDreg2DJqzhXsMV-33ZlafPenWDsLny8bhbxHPWek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+new+self-adaptive+algorithms+for+solving+the+split+common+null+point+problem+with+multiple+output+sets+in+Hilbert+spaces&rft.jtitle=Journal+of+fixed+point+theory+and+applications&rft.au=Reich%2C+Simeon&rft.au=Tuyen%2C+Truong+Minh&rft.date=2021-05-01&rft.issn=1661-7738&rft.eissn=1661-7746&rft.volume=23&rft.issue=2&rft_id=info:doi/10.1007%2Fs11784-021-00848-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11784_021_00848_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-7738&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-7738&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-7738&client=summon