Lessons on interpretable machine learning from particle physics
Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods...
Gespeichert in:
| Veröffentlicht in: | Nature reviews physics Jg. 4; H. 5; S. 284 - 286 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group
01.05.2022
|
| Schlagworte: | |
| ISSN: | 2522-5820 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods commonly used in particle physics. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Commentary-1 content type line 14 |
| ISSN: | 2522-5820 |
| DOI: | 10.1038/s42254-022-00456-0 |