Lessons on interpretable machine learning from particle physics
Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods...
Gespeichert in:
| Veröffentlicht in: | Nature reviews physics Jg. 4; H. 5; S. 284 - 286 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group
01.05.2022
|
| Schlagworte: | |
| ISSN: | 2522-5820 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods commonly used in particle physics. |
|---|---|
| AbstractList | Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods commonly used in particle physics. |
| Author | Qian, Zhuoni Strümke, Inga Paul, Ayan Grojean, Christophe |
| Author_xml | – sequence: 1 givenname: Christophe surname: Grojean fullname: Grojean, Christophe – sequence: 2 givenname: Ayan surname: Paul fullname: Paul, Ayan – sequence: 3 givenname: Zhuoni surname: Qian fullname: Qian, Zhuoni – sequence: 4 givenname: Inga surname: Strümke fullname: Strümke, Inga |
| BookMark | eNotjs1KxDAYRYMoOI7zAq4CrqNfvvy1K5HBPyi40fWQJqmToZPUpLPw7S3o6nK5cO65Iucpp0DIDYc7DqK5rxJRSQaIDEAqzeCMrFAtVTUIl2RT6wEAkEupQKzIQxdqzanSnGhMcyhTCbPtx0CP1u1jCnQMtqSYvuhQ8pFOtszRLfO0_6nR1WtyMdixhs1_rsnn89PH9pV17y9v28eOOcHbmaESpu-V9th4CNybRVJxrweBejBt4M6ik9oYaIxxbhH03oi2b8B64Vor1uT2jzuV_H0Kdd4d8qmk5XInELUAyaURv7DkS88 |
| CitedBy_id | crossref_primary_10_1016_j_envres_2024_120108 crossref_primary_10_1016_j_biortech_2022_128454 crossref_primary_10_1140_epjc_s10052_023_11532_9 crossref_primary_10_1007_JHEP03_2025_198 crossref_primary_10_1088_1742_5468_accce0 crossref_primary_10_1007_JHEP11_2022_045 crossref_primary_10_1140_epjc_s10052_024_12722_9 crossref_primary_10_1088_2632_2153_ace0a1 crossref_primary_10_1016_j_biortech_2025_133183 crossref_primary_10_1515_phys_2022_0261 crossref_primary_10_1007_JHEP05_2024_292 crossref_primary_10_1051_epjconf_202429509022 crossref_primary_10_1088_2632_2153_ad6be6 crossref_primary_10_1140_epjp_s13360_024_05910_9 crossref_primary_10_1007_JHEP05_2025_055 crossref_primary_10_1016_j_jpowsour_2022_232125 crossref_primary_10_1088_2058_9565_acd579 crossref_primary_10_1016_j_cej_2023_144670 |
| ContentType | Journal Article |
| Copyright | Copyright Nature Publishing Group May 2022 |
| Copyright_xml | – notice: Copyright Nature Publishing Group May 2022 |
| DBID | 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1038/s42254-022-00456-0 |
| DatabaseName | ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database (Proquest) url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2522-5820 |
| EndPage | 286 |
| Genre | Commentary |
| GroupedDBID | 3V. 7XB 88I 8FE 8FG 8FK AARCD AAWYQ AAYZH ABJCF ABJNI ABUWG AFANA AFKRA AFSHS AIBTJ ALMA_UNASSIGNED_HOLDINGS ATHPR AZQEC BENPR BGLVJ CCPQU D1I DWQXO EBS EJD FSGXE GNUQQ HCIFZ KB. L6V M2P M7S NNMJJ PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U RNT SIXXV SNYQT SOJ TBHMF |
| ID | FETCH-LOGICAL-c319t-2537bb56d28d0e1d725451d6f326f79e1ca2c46770877cc002dd739b80ad3c9a3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792632900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Sat Aug 23 13:31:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-2537bb56d28d0e1d725451d6f326f79e1ca2c46770877cc002dd739b80ad3c9a3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Commentary-1 content type line 14 |
| PQID | 3226304147 |
| PQPubID | 7343578 |
| PageCount | 3 |
| ParticipantIDs | proquest_journals_3226304147 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature reviews physics |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group |
| SSID | ssj0002144503 |
| Score | 2.3912845 |
| Snippet | Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 284 |
| SubjectTerms | Algorithms Artificial intelligence Decision trees Kinematics Machine learning Neural networks Particle physics Variables |
| Title | Lessons on interpretable machine learning from particle physics |
| URI | https://www.proquest.com/docview/3226304147 |
| Volume | 4 |
| WOSCitedRecordID | wos000792632900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED3RFiQWvhEfpfLAaurETpxMFUWtkICq4kPqViW2gypBWprC7-fsumVAYmHJkgzJ-fn5fHm-B3BZxIVWIoqoyZWmImOGIpQ1DTmPswKXxCDIndmEHAyS0Sgd-oJb5WWVK050RK2nytbI2wi8GLfegZCd2Qe1rlH276q30KhBw3ZJCJ1072ldY7HtwCLG_VkZxpN2JRC_gloJu0tmKPvFwW5h6e_-95X2YMenlOR6iYF92DDlAWw5aaeqDqFzj2SG2CLTkkzWEsP8zZB3J6Q0xDtHvBJ71oTMPJjIsuhRHcFLv_d8c0u9bQJVOJ8WNIy4zPMo1mGimQm0xC-OAh0XmKkVMjWBykKF_ChtL0ClMExaS57mCcs0V2nGj6FeTktzAiSIDWZ4-DBTUiSM50KzpMgzJRTuM3h2Cs1VZMYe-9X4Jyxnf98-h-3QjYSVDzahvph_mgvYVF-LSTVvQaPbGwwfW1C7617h9SEcttzwfgOPB6u6 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB5qVfTiW3xUzUGPodlN9nWQIj5oaS2CFXqru0lWCrqt3ar4p_yNTtJtPQjeevC8YVl2vvkyM_kmA3Ca-qmSwvOoTqSiImaaIpQVdTn34xS3RMdJ7LCJoN0Ou93orgRf014YI6uccqIlajWQpkZeReD5mHo7IqgNX6mZGmVOV6cjNCawaOrPD0zZ8vPGFdr3zHVvrjuXdVpMFaAS4TamrseDJPF85YaKaUcFmCJ5jvJTDGTSINKOjF2J9BGYq_KkRMZQKuBRErJYcRnFHN-7AIvCsL-VCt7Pajrm-jGP8aI3h_Gwmgv0F0GNZN4GT5T94ny7kd2s_7dfsAFrRchMLiYY34SSzrZg2UpXZb4NtRaSNfoOGWSkP5NQJs-avFihqCbFZIwnYnppyLBwFjIp6uQ78DCXr9-FcjbI9B4Qx9cYweJiJgMRMp4IxcI0iaWQmEfxeB8qU0v0Ct_Oez9mOPj78Qms1Du3rV6r0W4ewqprUWCkkhUoj0dv-giW5Pu4n4-OLYwIPM7baN9u9QPd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lessons+on+interpretable+machine+learning+from+particle+physics&rft.jtitle=Nature+reviews+physics&rft.au=Grojean%2C+Christophe&rft.au=Paul%2C+Ayan&rft.au=Qian%2C+Zhuoni&rft.au=Str%C3%BCmke%2C+Inga&rft.date=2022-05-01&rft.pub=Nature+Publishing+Group&rft.eissn=2522-5820&rft.volume=4&rft.issue=5&rft.spage=284&rft.epage=286&rft_id=info:doi/10.1038%2Fs42254-022-00456-0 |