Lessons on interpretable machine learning from particle physics

Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods...

Full description

Saved in:
Bibliographic Details
Published in:Nature reviews physics Vol. 4; no. 5; pp. 284 - 286
Main Authors: Grojean, Christophe, Paul, Ayan, Qian, Zhuoni, Strümke, Inga
Format: Journal Article
Language:English
Published: London Nature Publishing Group 01.05.2022
Subjects:
ISSN:2522-5820
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods commonly used in particle physics.
AbstractList Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods commonly used in particle physics.
Author Qian, Zhuoni
Strümke, Inga
Paul, Ayan
Grojean, Christophe
Author_xml – sequence: 1
  givenname: Christophe
  surname: Grojean
  fullname: Grojean, Christophe
– sequence: 2
  givenname: Ayan
  surname: Paul
  fullname: Paul, Ayan
– sequence: 3
  givenname: Zhuoni
  surname: Qian
  fullname: Qian, Zhuoni
– sequence: 4
  givenname: Inga
  surname: Strümke
  fullname: Strümke, Inga
BookMark eNotjs1KxDAYRYMoOI7zAq4CrqNfvvy1K5HBPyi40fWQJqmToZPUpLPw7S3o6nK5cO65Iucpp0DIDYc7DqK5rxJRSQaIDEAqzeCMrFAtVTUIl2RT6wEAkEupQKzIQxdqzanSnGhMcyhTCbPtx0CP1u1jCnQMtqSYvuhQ8pFOtszRLfO0_6nR1WtyMdixhs1_rsnn89PH9pV17y9v28eOOcHbmaESpu-V9th4CNybRVJxrweBejBt4M6ik9oYaIxxbhH03oi2b8B64Vor1uT2jzuV_H0Kdd4d8qmk5XInELUAyaURv7DkS88
CitedBy_id crossref_primary_10_1016_j_envres_2024_120108
crossref_primary_10_1016_j_biortech_2022_128454
crossref_primary_10_1140_epjc_s10052_023_11532_9
crossref_primary_10_1007_JHEP03_2025_198
crossref_primary_10_1088_1742_5468_accce0
crossref_primary_10_1007_JHEP11_2022_045
crossref_primary_10_1140_epjc_s10052_024_12722_9
crossref_primary_10_1088_2632_2153_ace0a1
crossref_primary_10_1016_j_biortech_2025_133183
crossref_primary_10_1515_phys_2022_0261
crossref_primary_10_1007_JHEP05_2024_292
crossref_primary_10_1051_epjconf_202429509022
crossref_primary_10_1088_2632_2153_ad6be6
crossref_primary_10_1140_epjp_s13360_024_05910_9
crossref_primary_10_1007_JHEP05_2025_055
crossref_primary_10_1016_j_jpowsour_2022_232125
crossref_primary_10_1088_2058_9565_acd579
crossref_primary_10_1016_j_cej_2023_144670
ContentType Journal Article
Copyright Copyright Nature Publishing Group May 2022
Copyright_xml – notice: Copyright Nature Publishing Group May 2022
DBID 3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1038/s42254-022-00456-0
DatabaseName ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database (ProQuest)
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2522-5820
EndPage 286
Genre Commentary
GroupedDBID 3V.
7XB
88I
8FE
8FG
8FK
AARCD
AAWYQ
AAYZH
ABJCF
ABJNI
ABUWG
AFANA
AFKRA
AFSHS
AIBTJ
ALMA_UNASSIGNED_HOLDINGS
ATHPR
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
EBS
EJD
FSGXE
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
NNMJJ
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
RNT
SIXXV
SNYQT
SOJ
TBHMF
ID FETCH-LOGICAL-c319t-2537bb56d28d0e1d725451d6f326f79e1ca2c46770877cc002dd739b80ad3c9a3
IEDL.DBID M7S
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792632900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Sat Aug 23 13:31:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2537bb56d28d0e1d725451d6f326f79e1ca2c46770877cc002dd739b80ad3c9a3
Notes SourceType-Scholarly Journals-1
ObjectType-Commentary-1
content type line 14
PQID 3226304147
PQPubID 7343578
PageCount 3
ParticipantIDs proquest_journals_3226304147
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature reviews physics
PublicationYear 2022
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
SSID ssj0002144503
Score 2.3912845
Snippet Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is...
SourceID proquest
SourceType Aggregation Database
StartPage 284
SubjectTerms Algorithms
Artificial intelligence
Decision trees
Kinematics
Machine learning
Neural networks
Particle physics
Variables
Title Lessons on interpretable machine learning from particle physics
URI https://www.proquest.com/docview/3226304147
Volume 4
WOSCitedRecordID wos000792632900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RFiQW3ohHqTywmubhxPZUUdQKiVJVPKRuVWI7qBKkpSn8fs7GLQMSC0sWL8ndl3v5uzuAS0zWRMqEona2NmVSSyoTbbMUE6pEhujiXKPwgA-HYjyWI19wqzytcmUTnaHWM2Vr5G0EXoqpd8h4Z_5O7dYoe7vqV2jUoGGnJESOuve4rrHYcWBJEPtemSAW7Yohfhm1FHYXzNDglw12jqW_-99X2oMdH1KS628M7MOGKQ9gy1E7VXUInQEaM8QWmZVkuqYY5q-GvDkipSF-c8QLsb0mZO7BRL6LHtURPPd7Tze31K9NoAr_pyWNkpjneZLqSOjAhJrjFyehTguM1AouUQdZpNA-cjsLUCkUk9Y8lrkIMh0rmcXHUC9npTmxDd12vzrnGSsUk6GRKGWuCxPIPEOfJ06huZLMxGO_mvyI5ezv43PYjpwmLH2wCfXl4sNcwKb6XE6rRQsa3d5w9NCC2l33Cp_30ajl1PsF6JCqaw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qVfTiW3xU3YMel-axyWYPUsQHLY1FsEJvNdndSEHT2lTFP-VvdDZN6kHw1oPnQFgyM9_Mt_lmBuAUyVrgs0BSM1ubMqEEFZ4yLEXb0hM2pri8UTjknU7Q64m7CnyVvTBGVlliYg7UaijNHXkdHc9H6m0z3hi9UrM1yvxdLVdoTN2irT8_kLJl560rtO-Z49xcdy-btNgqQCW624Q6nsvj2POVEyhL24ojRfJs5SdYyCRc4BEjRyJ8cDMqT0pEDKW4K-LAipQrReTiexdgkRn0z6WC97M7HTN-zLPcojfHcoN6xjBeGDWS-bx4otYvzM8T2c36f_sEG7BWlMzkYurjm1DR6RYs59JVmW1DI0Swxtghw5QMZhLK-FmTl1woqkmxGeOJmF4aMiqChUwvdbIdeJjL6Xehmg5TvWca1s3-eM4jlkgmbC1sZGgq0ZaII8zpwT7USkv0i9jO-j9mOPj78QmsNLu3YT9sddqHsIqlFptKB2tQnYzf9BEsyffJIBsf525E4HHeRvsGXlACkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lessons+on+interpretable+machine+learning+from+particle+physics&rft.jtitle=Nature+reviews+physics&rft.au=Grojean%2C+Christophe&rft.au=Paul%2C+Ayan&rft.au=Qian%2C+Zhuoni&rft.au=Str%C3%BCmke%2C+Inga&rft.date=2022-05-01&rft.pub=Nature+Publishing+Group&rft.eissn=2522-5820&rft.volume=4&rft.issue=5&rft.spage=284&rft.epage=286&rft_id=info:doi/10.1038%2Fs42254-022-00456-0