Lessons on interpretable machine learning from particle physics

Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature reviews physics Ročník 4; číslo 5; s. 284 - 286
Hlavní autoři: Grojean, Christophe, Paul, Ayan, Qian, Zhuoni, Strümke, Inga
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group 01.05.2022
Témata:
ISSN:2522-5820
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods commonly used in particle physics.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Commentary-1
content type line 14
ISSN:2522-5820
DOI:10.1038/s42254-022-00456-0