Lessons on interpretable machine learning from particle physics
Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods...
Uloženo v:
| Vydáno v: | Nature reviews physics Ročník 4; číslo 5; s. 284 - 286 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group
01.05.2022
|
| Témata: | |
| ISSN: | 2522-5820 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods commonly used in particle physics. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Commentary-1 content type line 14 |
| ISSN: | 2522-5820 |
| DOI: | 10.1038/s42254-022-00456-0 |