Lessons on interpretable machine learning from particle physics

Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature reviews physics Ročník 4; číslo 5; s. 284 - 286
Hlavní autori: Grojean, Christophe, Paul, Ayan, Qian, Zhuoni, Strümke, Inga
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group 01.05.2022
Predmet:
ISSN:2522-5820
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods commonly used in particle physics.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Commentary-1
content type line 14
ISSN:2522-5820
DOI:10.1038/s42254-022-00456-0