On the Moisil-Theodoresco Operator in Orthogonal Curvilinear Coordinates
The action of the Moisil-Theodoresco operator over a quaternionic valued function defined on R 3 (sum of a scalar and a vector field) in Cartesian coordinates is generally well understood. However this is not the case for any orthogonal curvilinear coordinate system. This paper sheds some new light...
Uloženo v:
| Vydáno v: | Computational methods and function theory Ročník 21; číslo 1; s. 131 - 144 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1617-9447, 2195-3724 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The action of the Moisil-Theodoresco operator over a quaternionic valued function defined on
R
3
(sum of a scalar and a vector field) in Cartesian coordinates is generally well understood. However this is not the case for any orthogonal curvilinear coordinate system. This paper sheds some new light on the technical aspect of the subject. Moreover, we introduce a notion of quaternionic Laplace operator acting on a quaternionic valued function from which one can recover both scalar and vector Laplacians in the vector analysis context. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1617-9447 2195-3724 |
| DOI: | 10.1007/s40315-020-00319-8 |