On the Moisil-Theodoresco Operator in Orthogonal Curvilinear Coordinates

The action of the Moisil-Theodoresco operator over a quaternionic valued function defined on R 3 (sum of a scalar and a vector field) in Cartesian coordinates is generally well understood. However this is not the case for any orthogonal curvilinear coordinate system. This paper sheds some new light...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational methods and function theory Jg. 21; H. 1; S. 131 - 144
Hauptverfasser: Bory Reyes, J., Pérez-de la Rosa, M. A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2021
Springer Nature B.V
Schlagworte:
ISSN:1617-9447, 2195-3724
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The action of the Moisil-Theodoresco operator over a quaternionic valued function defined on R 3 (sum of a scalar and a vector field) in Cartesian coordinates is generally well understood. However this is not the case for any orthogonal curvilinear coordinate system. This paper sheds some new light on the technical aspect of the subject. Moreover, we introduce a notion of quaternionic Laplace operator acting on a quaternionic valued function from which one can recover both scalar and vector Laplacians in the vector analysis context.
AbstractList The action of the Moisil-Theodoresco operator over a quaternionic valued function defined on R 3 (sum of a scalar and a vector field) in Cartesian coordinates is generally well understood. However this is not the case for any orthogonal curvilinear coordinate system. This paper sheds some new light on the technical aspect of the subject. Moreover, we introduce a notion of quaternionic Laplace operator acting on a quaternionic valued function from which one can recover both scalar and vector Laplacians in the vector analysis context.
The action of the Moisil-Theodoresco operator over a quaternionic valued function defined on R3 (sum of a scalar and a vector field) in Cartesian coordinates is generally well understood. However this is not the case for any orthogonal curvilinear coordinate system. This paper sheds some new light on the technical aspect of the subject. Moreover, we introduce a notion of quaternionic Laplace operator acting on a quaternionic valued function from which one can recover both scalar and vector Laplacians in the vector analysis context.
Author Bory Reyes, J.
Pérez-de la Rosa, M. A.
Author_xml – sequence: 1
  givenname: J.
  surname: Bory Reyes
  fullname: Bory Reyes, J.
  organization: ESIME-Zacatenco, Instituto Politécnico Nacional
– sequence: 2
  givenname: M. A.
  surname: Pérez-de la Rosa
  fullname: Pérez-de la Rosa, M. A.
  email: perezmaths@gmail.com, marco.perez@udlap.mx
  organization: Department of Actuarial Sciences, Physics and Mathematics, Universidad de las Américas Puebla
BookMark eNp9kM9LwzAYhoNMcJv-A54KnqP52TRHKeqESS_zHNI03TJqMpNM8L-3WkHwsNP3Hd7n5eVZgJkP3gJwjdEtRkjcJYYo5hARBNH4SVidgTnBkkMqCJuBOS6xgJIxcQEWKe0R4kxSOgerxhd5Z4uX4JIb4GZnQxeiTSYUzcFGnUMsnC-amHdhG7weivoYP9zgvNWxqEOInfM623QJzns9JHv1e5fg9fFhU6_gunl6ru_X0IyzMiSUad1J07KOk9ZyS23fVsTavjKib2mnkaGyF73UDHdGtyXtulYKYzhngpZ0CW6m3kMM70ebstqHYxyHJUU4FoyUUtAxVU0pE0NK0fbKuKyzCz5H7QaFkfr2piZvavSmfrypakTJP_QQ3ZuOn6chOkFpDPutjX-rTlBflaiDbA
CitedBy_id crossref_primary_10_1007_s40590_024_00677_6
Cites_doi 10.1007/978-3-319-42529-0_11
10.1088/0143-0807/22/6/304
10.1007/978-3-319-08771-9_10
10.1080/17476933.2016.1250877
10.1007/s00006-016-0665-y
10.1007/BF01202702
10.1007/978-3-0348-7295-9
10.1016/0016-0032(53)91160-0
10.1002/mma.4850
10.1007/978-1-4613-3291-6_6
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s40315-020-00319-8
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2195-3724
EndPage 144
ExternalDocumentID 10_1007_s40315_020_00319_8
GroupedDBID -EM
06D
0R~
199
203
2LR
30V
4.4
406
95.
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AM4
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARMRJ
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
KOV
L7B
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
ROL
RSV
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
VH1
W48
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-234aad9cb4d52be5e3efb82eef8c7fb3da0c39f7f9a41dcab63ddb97cc5547363
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531747500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1617-9447
IngestDate Wed Sep 17 23:56:11 EDT 2025
Tue Nov 18 21:31:35 EST 2025
Sat Nov 29 03:09:54 EST 2025
Fri Feb 21 02:48:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Laplace operator
Primary 30G35
Moisil-Theodoresco operator
hyperholomorphic functions
orthogonal curvilinear coordinates
Secondary 35J05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-234aad9cb4d52be5e3efb82eef8c7fb3da0c39f7f9a41dcab63ddb97cc5547363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2517426973
PQPubID 2043941
PageCount 14
ParticipantIDs proquest_journals_2517426973
crossref_citationtrail_10_1007_s40315_020_00319_8
crossref_primary_10_1007_s40315_020_00319_8
springer_journals_10_1007_s40315_020_00319_8
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational methods and function theory
PublicationTitleAbbrev Comput. Methods Funct. Theory
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References MoonPSpencerDEThe meaning of the vector LaplacianJ. Franklin Inst.195325665515585803810.1016/0016-0032(53)91160-0
Safarov, D.K.: On well-posedness of problems for nonclassical systems of equations. Complex methods for partial differential equations (Ankara, 1998), pp. 97–102, Int. Soc. Anal. Appl. Comput., 6, Kluwer Acad. Publ., Dordrecht (1999)
Moreno, G.A., Moreno, G.T., Abreu, B.R., Bory, R.J.: Inframonogenic functions and their applications in 3-dimensional elasticity theory. Math. Methods Appl. Sci. 1–10 (2018). https://doi.org/10.1002/mma.4850 (2018)
RedzicDVThe operator ∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla $$\end{document} in orthogonal curvilinear coordinatesEur. J. Phys.20012259559910.1088/0143-0807/22/6/304
GrigorevMYThree-dimensional analogue of Kolosov-Muskhelishvili formulaeModern Trends Hypercompl. Anal. Trends Math.20162016203215370617610.1007/978-3-319-42529-0_11
BarberJRKlarbringASolid Mechanics and its Applications2003BerlinSpringer
MikhlinSGMultidimensional Singular Integrals and Integral Equations1962MoscowFizmatgiz[in Russian]
HirotaIChiyodaKVector laplacian in general curvilinear coordinatesElectron. Commun. Jpn.1982102218
GrigorevMYRegular quaternionic polynomials and their propertiesCompl. Variables Elliptic Equ.201762913431363366250910.1080/17476933.2016.1250877
GrMThéodorescoNFunctions holomorphes dans l’espaceMath. Cluj193151421590002.27401
Kennedy, W.L.: The value of curl(curlA)-grad(divA)+div(gradA)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm curl}({\rm curl} A) - {\rm grad}({\rm div} A) + {\rm div}({\rm grad} A)$$\end{document} for an absolute vector A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document}. arXiv:1409.5697v1 [physics.gen-ph] 17 (2014)
LaméGSur les surfaces isothermes dans les corps homogènes en èquilibre de tempratureJ. Math. Pures Appl.18372147188
Dzhuraev, A.: Methods of singular integral equations. Translated from the Russian; revised by the author. Pitman Monographs and Surveys in Pure and Applied Mathematics, 60. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, pp. xii+311 (1992)
GürlebeckKSprössigWQuaternionic Analysis and Elliptic Boundary Value Problems1990BaselBirkhäuser10.1007/978-3-0348-7295-9
Grigorev, M. Y.: Three-dimensional quaternionic analogue of the Kolosov-Muskhelishvili formulae. Hypercomplex analysis: new perspectives and applications, pp. 145-166, Trends Math., Birkhäuser/Springer, Cham (2014)
KravchenkoVVShapiroMIntegral Representations for Spatial Models of Mathematical Physics1996Boca RatonCRC Press0872.35001
GriffithsDJCollegeRIntroduction to Electrodynamics2013LondonPearson
FüterRAnalytische Funktionen einer Quaternionen VariablenComment Math Helvetici19324920150944210.1007/BF01202702
BitsadzeAVZahaviHSome classes of partial differential equationsAdvanced Studies in Contemporary Mathematics19884New YorkGordon and Breach Science Publishersxiv+504
MacdonaldAA survey of geometric algebra and geometric calculusAdv. Appl. Clifford Algebras2017271853891361939810.1007/s00006-016-0665-y
Piercey, V.I.: The Lamé and metric coefficients for curvilinear coordinates in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^3$$\end{document}, unpublished. http://odessa.phy.sdsmt.edu/~andre/ (2007). Accessed 1 Apr 2018
Tai, C.T.: A Historical Study of Vector Analysis Technical Report RL 915-The University Of Michigan Radiation Laboratory Department of Electrical Engineering and Computer Science Ann Arbor, Michigan 48109–2122 USA (1995)
Moon, P., Spencer, D.E.: Field theory handbook. Including coordinate systems, differential equations and their solution. Springer, Berlin-Göttingen-Heidelberg, vol. 1961, pp. vii+236 (2012)
Kravchenko, V. V.: Applied quaternionic analysis. Research and Exposition in Mathematics, 28. Heldermann Verlag, Lemgo, pp. iv+127 (2003)
A Macdonald (319_CR16) 2017; 27
DJ Griffiths (319_CR6) 2013
I Hirota (319_CR11) 1982; 102
SG Mikhlin (319_CR17) 1962
DV Redzic (319_CR22) 2001; 22
MY Grigorev (319_CR9) 2017; 62
319_CR3
R Füter (319_CR4) 1932; 4
K Gürlebeck (319_CR10) 1990
M Gr (319_CR5) 1931; 5
VV Kravchenko (319_CR14) 1996
AV Bitsadze (319_CR2) 1988
319_CR7
319_CR18
JR Barber (319_CR1) 2003
P Moon (319_CR19) 1953; 256
319_CR21
319_CR20
MY Grigorev (319_CR8) 2016; 2016
319_CR13
G Lamé (319_CR15) 1837; 2
319_CR24
319_CR12
319_CR23
References_xml – reference: Kennedy, W.L.: The value of curl(curlA)-grad(divA)+div(gradA)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm curl}({\rm curl} A) - {\rm grad}({\rm div} A) + {\rm div}({\rm grad} A)$$\end{document} for an absolute vector A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document}. arXiv:1409.5697v1 [physics.gen-ph] 17 (2014)
– reference: MikhlinSGMultidimensional Singular Integrals and Integral Equations1962MoscowFizmatgiz[in Russian]
– reference: Kravchenko, V. V.: Applied quaternionic analysis. Research and Exposition in Mathematics, 28. Heldermann Verlag, Lemgo, pp. iv+127 (2003)
– reference: MacdonaldAA survey of geometric algebra and geometric calculusAdv. Appl. Clifford Algebras2017271853891361939810.1007/s00006-016-0665-y
– reference: MoonPSpencerDEThe meaning of the vector LaplacianJ. Franklin Inst.195325665515585803810.1016/0016-0032(53)91160-0
– reference: GürlebeckKSprössigWQuaternionic Analysis and Elliptic Boundary Value Problems1990BaselBirkhäuser10.1007/978-3-0348-7295-9
– reference: BitsadzeAVZahaviHSome classes of partial differential equationsAdvanced Studies in Contemporary Mathematics19884New YorkGordon and Breach Science Publishersxiv+504
– reference: BarberJRKlarbringASolid Mechanics and its Applications2003BerlinSpringer
– reference: Grigorev, M. Y.: Three-dimensional quaternionic analogue of the Kolosov-Muskhelishvili formulae. Hypercomplex analysis: new perspectives and applications, pp. 145-166, Trends Math., Birkhäuser/Springer, Cham (2014)
– reference: Dzhuraev, A.: Methods of singular integral equations. Translated from the Russian; revised by the author. Pitman Monographs and Surveys in Pure and Applied Mathematics, 60. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, pp. xii+311 (1992)
– reference: Moreno, G.A., Moreno, G.T., Abreu, B.R., Bory, R.J.: Inframonogenic functions and their applications in 3-dimensional elasticity theory. Math. Methods Appl. Sci. 1–10 (2018). https://doi.org/10.1002/mma.4850 (2018)
– reference: GrigorevMYThree-dimensional analogue of Kolosov-Muskhelishvili formulaeModern Trends Hypercompl. Anal. Trends Math.20162016203215370617610.1007/978-3-319-42529-0_11
– reference: HirotaIChiyodaKVector laplacian in general curvilinear coordinatesElectron. Commun. Jpn.1982102218
– reference: RedzicDVThe operator ∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla $$\end{document} in orthogonal curvilinear coordinatesEur. J. Phys.20012259559910.1088/0143-0807/22/6/304
– reference: GrigorevMYRegular quaternionic polynomials and their propertiesCompl. Variables Elliptic Equ.201762913431363366250910.1080/17476933.2016.1250877
– reference: GriffithsDJCollegeRIntroduction to Electrodynamics2013LondonPearson
– reference: LaméGSur les surfaces isothermes dans les corps homogènes en èquilibre de tempratureJ. Math. Pures Appl.18372147188
– reference: Moon, P., Spencer, D.E.: Field theory handbook. Including coordinate systems, differential equations and their solution. Springer, Berlin-Göttingen-Heidelberg, vol. 1961, pp. vii+236 (2012)
– reference: Tai, C.T.: A Historical Study of Vector Analysis Technical Report RL 915-The University Of Michigan Radiation Laboratory Department of Electrical Engineering and Computer Science Ann Arbor, Michigan 48109–2122 USA (1995)
– reference: KravchenkoVVShapiroMIntegral Representations for Spatial Models of Mathematical Physics1996Boca RatonCRC Press0872.35001
– reference: Piercey, V.I.: The Lamé and metric coefficients for curvilinear coordinates in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^3$$\end{document}, unpublished. http://odessa.phy.sdsmt.edu/~andre/ (2007). Accessed 1 Apr 2018
– reference: GrMThéodorescoNFunctions holomorphes dans l’espaceMath. Cluj193151421590002.27401
– reference: Safarov, D.K.: On well-posedness of problems for nonclassical systems of equations. Complex methods for partial differential equations (Ankara, 1998), pp. 97–102, Int. Soc. Anal. Appl. Comput., 6, Kluwer Acad. Publ., Dordrecht (1999)
– reference: FüterRAnalytische Funktionen einer Quaternionen VariablenComment Math Helvetici19324920150944210.1007/BF01202702
– ident: 319_CR21
– start-page: xiv+504
  volume-title: Advanced Studies in Contemporary Mathematics
  year: 1988
  ident: 319_CR2
– ident: 319_CR24
– volume: 2016
  start-page: 203
  year: 2016
  ident: 319_CR8
  publication-title: Modern Trends Hypercompl. Anal. Trends Math.
  doi: 10.1007/978-3-319-42529-0_11
– volume: 22
  start-page: 595
  year: 2001
  ident: 319_CR22
  publication-title: Eur. J. Phys.
  doi: 10.1088/0143-0807/22/6/304
– ident: 319_CR7
  doi: 10.1007/978-3-319-08771-9_10
– volume: 62
  start-page: 1343
  issue: 9
  year: 2017
  ident: 319_CR9
  publication-title: Compl. Variables Elliptic Equ.
  doi: 10.1080/17476933.2016.1250877
– ident: 319_CR20
– volume: 5
  start-page: 142
  year: 1931
  ident: 319_CR5
  publication-title: Math. Cluj
– volume-title: Introduction to Electrodynamics
  year: 2013
  ident: 319_CR6
– volume: 2
  start-page: 147
  year: 1837
  ident: 319_CR15
  publication-title: J. Math. Pures Appl.
– volume: 27
  start-page: 853
  issue: 1
  year: 2017
  ident: 319_CR16
  publication-title: Adv. Appl. Clifford Algebras
  doi: 10.1007/s00006-016-0665-y
– volume-title: Solid Mechanics and its Applications
  year: 2003
  ident: 319_CR1
– volume: 102
  start-page: 1
  issue: 2
  year: 1982
  ident: 319_CR11
  publication-title: Electron. Commun. Jpn.
– ident: 319_CR12
– volume-title: Integral Representations for Spatial Models of Mathematical Physics
  year: 1996
  ident: 319_CR14
– ident: 319_CR3
– ident: 319_CR13
– volume: 4
  start-page: 9
  year: 1932
  ident: 319_CR4
  publication-title: Comment Math Helvetici
  doi: 10.1007/BF01202702
– volume-title: Quaternionic Analysis and Elliptic Boundary Value Problems
  year: 1990
  ident: 319_CR10
  doi: 10.1007/978-3-0348-7295-9
– volume-title: Multidimensional Singular Integrals and Integral Equations
  year: 1962
  ident: 319_CR17
– volume: 256
  start-page: 551
  issue: 6
  year: 1953
  ident: 319_CR19
  publication-title: J. Franklin Inst.
  doi: 10.1016/0016-0032(53)91160-0
– ident: 319_CR18
  doi: 10.1002/mma.4850
– ident: 319_CR23
  doi: 10.1007/978-1-4613-3291-6_6
SSID ssj0054933
Score 2.1873045
Snippet The action of the Moisil-Theodoresco operator over a quaternionic valued function defined on R 3 (sum of a scalar and a vector field) in Cartesian coordinates...
The action of the Moisil-Theodoresco operator over a quaternionic valued function defined on R3 (sum of a scalar and a vector field) in Cartesian coordinates...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms Analysis
Cartesian coordinates
Computational Mathematics and Numerical Analysis
Fields (mathematics)
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Spherical coordinates
Vector analysis
Title On the Moisil-Theodoresco Operator in Orthogonal Curvilinear Coordinates
URI https://link.springer.com/article/10.1007/s40315-020-00319-8
https://www.proquest.com/docview/2517426973
Volume 21
WOSCitedRecordID wos000531747500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals - Owned
  customDbUrl:
  eissn: 2195-3724
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054933
  issn: 1617-9447
  databaseCode: RSV
  dateStart: 20010901
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGH7R6UEPfovTKTl408LW9CM5ynDs4DZBHbuVfFULox1t5-83ydoORQU9liYhvEmT52nyPg_Adex5ivOeZqqUEU1QAulwKqWey4QLnwjStW4N04dwPCazGX2sksKK-rZ7fSRpV-om2c0zhgSOoTtdm3pDNmHLN2ozhqM_Tev1VxMeayBvgLtDPS-sUmW-b-PzdrTGmF-ORe1uM9j_Xz8PYK9Cl-huNR0OYUOlR7A7aqRZi2MYTlKkH9EoS4pk7pjcfGM2UogMTRbKHrqjJEWTvHzLXg1MR_2lXk4MGmU56mearCapAagn8DK4f-4PncpOwRG6G6XjYo8xSQX3pO9y5SusYk5cpWIiwphjyboC0ziMKfN6UjAeYCk5DYXwjUFxgE-hlWapOgNEXaZ0lHFXSfsPibNAA0WppAg1f8O8Db06qpGotMaN5cU8alSSbZQiHSWrTkoj0oabps5ipbTxa-lOPVhR9dUVkZFfM6m5IW7DbT0469c_t3b-t-IXsOOaqy32KloHWmW-VJewLd7LpMiv7Gz8AAFp2NE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFNQH7-J0ah5808LWZGvyKMMxcRfBOfZWcqsWRjvWzd9vkrUbigr6WJqEcJKefF9PzvkAriNCtBA1w1QZp4agNJQnmFJmL1Mh61TSqlNrGHaCXo-ORuwpTwrLitvuRUjSeeplshuxggSepTtVl3pD12GDWJkdy9Gfh4X_NYTHCchb4O4xQoI8Veb7MT4fRyuM-SUs6k6b1t7_5rkPuzm6RHeL7XAAazo5hJ3usjRrdgTtfoLMI-qmcRaPPZubb8VGMpmi_kS7oDuKE9Sfzt7SVwvTUXNu3IlFo3yKmqkhq3FiAeoxvLTuB822l8speNJMY-b5mHCumBRE1X2h6xrrSFBf64jKIBJY8arELAoixklNSS4aWCnBAinrVqC4gU-glKSJPgXEfK6NlXFVK_cPSfCGAYpKKxkY_oZFGWqFVUOZ1xq3khfjcFkl2VkpNFZy1UlZSMtws-wzWVTa-LV1pVisMP_qstCWX7OpuQEuw22xOKvXP4929rfmV7DVHnQ7Yeeh93gO27695uKupVWgNJvO9QVsyvdZnE0v3c78ADSA27U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwGP3whuiDd3E6NQ--aXFrsjV5lOmYqJt4GXsruVULox1r9febZO28oIL4WNqG8CVNvtN85xyAo4gQLUTdIFXGqQEoTeUJppSZy1TIBpW05twa-tdBt0sHA3b7gcXvqt3LI8kJp8GqNCX56UhFp1PiG7HmBJ6FPjVHw6GzME8MkrFFXXf3_XItNuDHmcnbJN5jhAQFbeb7Nj5vTe_55pcjUrfztFf_3-c1WCmyTnQ2mSbrMKOTDVi-mUq2ZpvQ6SXIXKKbNM7ioWc5-9aEJJMp6o20O4xHcYJ64_w5fbLpO2q9mGXGZql8jFqpAbFxYhPXLXhsXzy0Ol5hs-BJ043c8zHhXDEpiGr4Qjc01pGgvtYRlUEksOI1iVkURIyTupJcNLFSggVSNqxxcRNvw1ySJnoHEPO5NhHHNa3cvyXBmyaBVFrJwOA6LCpQLyMcykKD3FphDMOperKLUmii5FRLWUgrcDx9ZzRR4Pj16Wo5cGHxNWahlWWzlN0AV-CkHKj32z-3tvu3xw9h8fa8HV5fdq_2YMm31S-uWq0Kc_n4Re_DgnzN42x84CbpGyuL5Jk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Moisil-Theodoresco+Operator+in+Orthogonal+Curvilinear+Coordinates&rft.jtitle=Computational+methods+and+function+theory&rft.au=Bory+Reyes%2C+J.&rft.au=P%C3%A9rez-de+la+Rosa%2C+M.+A.&rft.date=2021-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1617-9447&rft.eissn=2195-3724&rft.volume=21&rft.issue=1&rft.spage=131&rft.epage=144&rft_id=info:doi/10.1007%2Fs40315-020-00319-8&rft.externalDocID=10_1007_s40315_020_00319_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-9447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-9447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-9447&client=summon