A survey on computation offloading and service placement in fog computing-based IoT
In recent years, fog computing has emerged as a computing paradigm to support the computationally intensive and latency-critical applications for resource limited Internet of Things (IoT) devices. The main feature of fog computing is to push computation, networking, and storage facilities closer to...
Uloženo v:
| Vydáno v: | The Journal of supercomputing Ročník 78; číslo 2; s. 1983 - 2014 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.02.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0920-8542, 1573-0484 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In recent years, fog computing has emerged as a computing paradigm to support the computationally intensive and latency-critical applications for resource limited Internet of Things (IoT) devices. The main feature of fog computing is to push computation, networking, and storage facilities closer to the network edge. This enables IoT user equipment (UE) to profit from the fog computing paradigm by mainly offloading their intensive computation tasks to fog resources. Thus, computation offloading and service placement mechanisms can overcome the resource constraints of IoT devices, and improve the system performance in terms of increasing battery lifetime of UE and reducing the total delay. In this paper, we survey the current research conducted on computation offloading and service placement in fog computing-based IoT in a comparative manner. |
|---|---|
| AbstractList | In recent years, fog computing has emerged as a computing paradigm to support the computationally intensive and latency-critical applications for resource limited Internet of Things (IoT) devices. The main feature of fog computing is to push computation, networking, and storage facilities closer to the network edge. This enables IoT user equipment (UE) to profit from the fog computing paradigm by mainly offloading their intensive computation tasks to fog resources. Thus, computation offloading and service placement mechanisms can overcome the resource constraints of IoT devices, and improve the system performance in terms of increasing battery lifetime of UE and reducing the total delay. In this paper, we survey the current research conducted on computation offloading and service placement in fog computing-based IoT in a comparative manner. |
| Author | Ozdemir, Suat Dilek, Selma Tosun, Suleyman Gasmi, Kaouther |
| Author_xml | – sequence: 1 givenname: Kaouther surname: Gasmi fullname: Gasmi, Kaouther organization: Higher Institute of Applied Languages and Computer Sciences in Beja – sequence: 2 givenname: Selma surname: Dilek fullname: Dilek, Selma organization: Graduate School of Science and Engineering, Hacettepe University – sequence: 3 givenname: Suleyman orcidid: 0000-0002-3708-2009 surname: Tosun fullname: Tosun, Suleyman email: stosun@cs.hacettepe.edu.tr organization: Department of Computer Engineering, Hacettepe University – sequence: 4 givenname: Suat surname: Ozdemir fullname: Ozdemir, Suat organization: Department of Computer Engineering, Hacettepe University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9F87UeOpfhREDxYzyFNJmVLm9RkW9h_79YtCB4KAzOH95kZngkahRgAoXtGHxml1VNmjPOKUM4IFUoy0l2hMSsqQais5QiNqeKU1IXkN2iS84ZSKkUlxuhzhvMhHaHDMWAbd_tDa9qmn6P322hcE9bYBIczpGNjAe-3xsIOQoubgH1cn5k-RlYmg8OLuLxF195sM9yd-xR9vTwv52_k_eN1MZ-9EyuYaglnAIYpbwtZrmQNqrJl6QvrlBLggSslV54XtLC2rITj4IA6W0rBjC8dc2KKHoa9-xS_D5BbvYmHFPqTmpf8VDVVfYoPKZtizgm83qdmZ1KnGdUneXqQp3t5-lee7nqo_gfZZhDTJtNsL6NiQHN_J6wh_X11gfoBk4iHVg |
| CitedBy_id | crossref_primary_10_1007_s12083_025_01905_0 crossref_primary_10_1007_s10586_024_04518_z crossref_primary_10_1038_s41598_025_08691_y crossref_primary_10_32604_cmc_2023_037214 crossref_primary_10_1007_s10462_025_11351_2 crossref_primary_10_1109_JIOT_2022_3152381 crossref_primary_10_1007_s10723_021_09593_9 crossref_primary_10_1016_j_comnet_2024_110243 crossref_primary_10_1007_s11227_022_04797_6 crossref_primary_10_1109_ACCESS_2024_3376670 crossref_primary_10_1109_JSYST_2022_3185011 crossref_primary_10_1007_s11277_022_09487_3 crossref_primary_10_1016_j_eswa_2025_127214 crossref_primary_10_1007_s11227_022_04541_0 crossref_primary_10_3390_fi17010037 crossref_primary_10_1016_j_iot_2023_100918 crossref_primary_10_3390_drones7100622 crossref_primary_10_1007_s10586_025_05200_8 crossref_primary_10_1002_ett_4790 crossref_primary_10_1007_s00607_025_01443_w crossref_primary_10_1016_j_comnet_2022_109137 crossref_primary_10_1016_j_jnca_2025_104211 crossref_primary_10_1117_1_JEI_32_5_052305 crossref_primary_10_1016_j_solener_2023_01_005 crossref_primary_10_1007_s10723_022_09604_3 crossref_primary_10_1016_j_jpdc_2022_12_001 crossref_primary_10_1109_JIOT_2024_3403003 crossref_primary_10_1007_s11227_022_04483_7 crossref_primary_10_3390_jmse13010016 crossref_primary_10_1016_j_eswa_2023_121607 crossref_primary_10_3390_s23177470 crossref_primary_10_3390_fi17050201 crossref_primary_10_1145_3603703 crossref_primary_10_1007_s12083_022_01435_z crossref_primary_10_1016_j_measen_2022_100446 crossref_primary_10_1155_2022_1121822 crossref_primary_10_1007_s42979_024_03524_7 crossref_primary_10_1007_s12243_023_00997_0 crossref_primary_10_1016_j_comnet_2025_111349 crossref_primary_10_1016_j_comcom_2023_06_021 crossref_primary_10_1007_s11227_023_05228_w crossref_primary_10_1007_s00607_025_01515_x crossref_primary_10_1109_TNSM_2024_3392976 crossref_primary_10_1016_j_cosrev_2023_100549 crossref_primary_10_1109_TNSM_2023_3317810 crossref_primary_10_1515_comp_2023_0115 crossref_primary_10_1007_s11227_023_05576_7 crossref_primary_10_1145_3571729 crossref_primary_10_1007_s11831_025_10227_6 crossref_primary_10_1007_s10462_023_10684_0 crossref_primary_10_1007_s11277_024_11553_x crossref_primary_10_1016_j_comcom_2023_12_016 crossref_primary_10_1007_s10586_024_04482_8 crossref_primary_10_1109_ACCESS_2023_3241881 crossref_primary_10_1007_s11227_022_04586_1 crossref_primary_10_1007_s10723_022_09622_1 crossref_primary_10_1007_s11227_024_06163_0 crossref_primary_10_3390_s23063110 crossref_primary_10_1007_s11280_022_01053_y crossref_primary_10_1016_j_future_2024_04_021 crossref_primary_10_1007_s11227_023_05172_9 crossref_primary_10_3390_a15110397 crossref_primary_10_1016_j_cosrev_2023_100550 crossref_primary_10_1016_j_iot_2023_100817 crossref_primary_10_1016_j_cosrev_2023_100598 crossref_primary_10_1155_2022_1163177 crossref_primary_10_1007_s11227_022_04521_4 crossref_primary_10_1016_j_adhoc_2024_103681 crossref_primary_10_1016_j_dajour_2023_100295 crossref_primary_10_1016_j_compeleceng_2022_108350 crossref_primary_10_1016_j_suscom_2023_100859 crossref_primary_10_1109_TCE_2025_3565590 crossref_primary_10_32604_cmc_2023_033194 crossref_primary_10_1109_TITS_2024_3410896 crossref_primary_10_1109_TNSE_2022_3200057 |
| Cites_doi | 10.1155/2018/1386470 10.1109/JIOT.2018.2889511 10.3390/s18082423 10.1109/MPRV.2009.82 10.1080/17517575.2017.1304579 10.23919/INM.2017.7987464 10.1016/j.iot.2019.100070 10.1109/COMST.2017.2771153 10.1016/j.sysarc.2019.02.009 10.1007/978-3-319-60717-7-29 10.1109/TCOMM.2017.2787700 10.1145/2811587.2811598 10.1145/1721654.1721672 10.1109/GLOCOM.2017.8254207 10.1016/j.iot.2020.100177 10.1109/ICDCS.2017.226 10.1145/3362031 10.1109/COMST.2017.2745201 10.1007/s11761-017-0219-8 10.1145/3391196 10.1145/3403955 10.1145/3234463 10.1109/MWC.2019.1700441 10.1016/j.dcan.2018.10.008 10.1016/j.compeleceng.2018.02.047 10.1109/JSAC.2016.2611964 10.1109/ACCESS.2018.2866491 10.1016/j.future.2020.12.021 10.1145/2342509.2342513 10.1109/ICFEC.2017.20 10.1016/j.future.2018.04.057 10.1002/cpe.5581 10.1109/LCOMM.2017.2690678 10.1109/SOSE.2013.73 10.1007/s10723-015-9356-5 10.1109/CloudCom.2017.45 10.1109/CIT/IUCC/DASC/PICOM.2015.51 10.3390/s19092122 10.1109/TC.2016.2536019 10.1016/j.jnca.2017.09.002 10.1371/journal.pone.0224934 10.1145/3287921.3287984 10.1145/3326066 10.1016/j.comnet.2020.107496 10.1109/COMST.2017.2682318 10.1007/978-981-10-5861-5_5 10.1007/s12243-016-0524-9 10.1007/s10723-019-09491-1 10.1109/JIOT.2018.2838022 10.1109/IEEE.EDGE.2017.12 10.1109/COMST.2018.2814571 10.1109/ACSSC.2015.7421170 10.1109/NAS.2015.7255196 10.1007/978-3-319-57639-8-2 10.1016/j.pmcj.2018.12.007 10.1109/TVT.2018.2871414 10.1109/TNET.2018.2841758 10.1109/SOCA.2016.10 10.1145/3186592 10.1109/TCC.2016.2560808 10.1109/TII.2018.2842821 10.1109/TSC.2018.2827070 10.1145/3167132.3167215 10.1145/3093336.3037698 10.1109/HotWeb.2015.22 10.1109/NCA.2017.8171359 10.1109/ACCESS.2019.2946683 10.1007/978-3-319-94890-4_1 10.1109/JIOT.2017.2780236 10.1145/2757384.2757397 10.1109/GLOCOM.2018.8647488 10.1109/ICNN.1995.488968 10.1016/B978-0-12-805395-9.00004-6 10.1109/IE.2014.54 10.7551/mitpress/1090.001.0001 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-021-03941-y |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 2014 |
| ExternalDocumentID | 10_1007_s11227_021_03941_y |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c319t-21eea19fc546b48e97c66f5cd993efe2994bf2505cc673d2ede0dc6431af6d1d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 90 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000665687500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 00:54:44 EDT 2025 Sat Nov 29 04:27:40 EST 2025 Tue Nov 18 20:42:55 EST 2025 Fri Feb 21 02:46:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Fog computing Optimization algorithms Internet of Things (IoT) Computation offloading Service placement |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-21eea19fc546b48e97c66f5cd993efe2994bf2505cc673d2ede0dc6431af6d1d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3708-2009 |
| PQID | 2622622809 |
| PQPubID | 2043774 |
| PageCount | 32 |
| ParticipantIDs | proquest_journals_2622622809 crossref_primary_10_1007_s11227_021_03941_y crossref_citationtrail_10_1007_s11227_021_03941_y springer_journals_10_1007_s11227_021_03941_y |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | MahmoodZRamachandranMMahmoodZFog computing: concepts, principles and related paradigmsFog computing: concepts, frameworks and technologies, chap. 12018BerlinSpringer32110.1007/978-3-319-94890-4_1 Ma X, Lin C, Xiang X, Chen C (2015) Game-theoretic analysis of computation offloading for cloudlet-based mobile cloud computing. In: Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp 271–278 Gia TN, Jiang M, Rahmani AM, Westerlund T, Liljeberg P, Tenhunen H (2015) Fog computing in healthcare internet of things: a case study on ECG feature extraction. In: 2015 IEEE International Conference on Computer and Information Technology. IEEE, pp 356–363 Sundar S (2019) Optimization algorithms for task offloading and scheduling in cloud computing. Ph.D. thesis PhanLANguyenDTLeeMParkDHKimTDynamic fog-to-fog offloading in SDN-based fog computing systemsFutur Gener Comput Syst202111748649710.1016/j.future.2020.12.021 LiLOtaKDongMDeep learning for smart industry: efficient manufacture inspection system with fog computingIEEE Trans Ind Inf201814104665467310.1109/TII.2018.2842821 LiuLChangZGuoXMaoSRistaniemiTMultiobjective optimization for computation offloading in fog computingIEEE Internet Things J20185128329410.1109/JIOT.2017.2780236 ShakaramiAGhobaei-AraniMShahidinejadAA survey on the computation offloading approaches in mobile edge computing: a machine learning-based perspectiveComput Netw202018210749610.1016/j.comnet.2020.107496 NahaRKGargSGeorgakopoulosDJayaramanPPGaoLXiangYRanjanRFog computing: survey of trends, architectures, requirements, and research directionsIEEE Access20186479804800910.1109/ACCESS.2018.2866491 SunXAnsariNLatency aware workload offloading in the cloudlet networkIEEE Commun Lett20172171481148410.1109/LCOMM.2017.2690678 SalahtFADesprezFLebreAAn overview of service placement problem in fog and edge computingACM Comput Surv202053313510.1145/3391196 WangYShengMWangXWangLLiJMobile-edge computing: partial computation offloading using dynamic voltage scalingIEEE Trans Commun2016641042684282 HuPDhelimSNingHQiuTSurvey on fog computing: architecture, key technologies, applications and open issuesJ Netw Comput Appl201710.1016/j.jnca.2017.09.002 Hardesty L (2017) Fog computing group publishes reference architecture. https://www.sdxcentral.com/articles/news/Fog-computing-group-publishes-reference-architecture/2017/02/. Accessed 20 April 2020 Dastjerdi AV, Gupta H, Calheiros RN, Ghosh SK, Buyya R (2016) Fog computing: principles, architectures, and applications. In: Internet of things. Elsevier, pp 61–75 Zhao X, Zhao L, Liang K (2017) An energy consumption oriented offloading algorithm for fog computing. In: Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, pp 293–301. Springer. https://doi.org/10.1007/978-3-319-60717-7-29 PaulAPinjariHHongWHSeoHCRhoSFog computing-based IoT for health monitoring systemJ Sens201810.1155/2018/1386470 MahmudRRamamohanaraoKBuyyaRLatency-aware application module management for fog computing environmentsACM Trans Internet Technol201819112110.1145/3186592 RenJZhangDHeSZhangYLiTA survey on end-edge-cloud orchestrated network computing paradigms: transparent computing, mobile edge computing, fog computing, and cloudletACM Comput Surv201910.1145/3362031 BitamSZeadallySMelloukAFog computing job scheduling optimization based on bees swarmEnterprise Inf Syst201812437339710.1080/17517575.2017.1304579 Li G, Liu Y, Wu J, Lin D, Zhao S (2019) Methods of resource scheduling based on optimized fuzzy clustering in fog computing. Sensors (Basel, Switzerland) 19(9). https://doi.org/10.3390/s19092122. https://europepmc.org/articles/PMC6539192 DuJZhaoLFengJChuXComputation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guaranteeIEEE Trans Commun20186641594160810.1109/TCOMM.2017.2787700 Hong H, Tsai P, Cheng A, Uddin MYS, Venkatasubramanian N, Hsu C (2017) Supporting internet-of-things analytics in a fog computing platform. In: 2017 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), pp 138–145. https://doi.org/10.1109/CloudCom.2017.45 HongCHVargheseBResource management in fog/edge computing: a survey on architectures, infrastructure, and algorithmsACM Comput Surv201910.1145/3326066 MaoYZhangJLetaiefKBDynamic computation offloading for mobile-edge computing with energy harvesting devicesIEEE J Sel Areas Commun201634123590360510.1109/JSAC.2016.2611964 KangYHauswaldJGaoCRovinskiAMudgeTMarsJTangLNeurosurgeon: collaborative intelligence between the cloud and mobile edgeSIGPLAN Not.201752461562910.1145/3093336.3037698 TangZZhouXZhangFJiaWZhaoWMigration modeling and learning algorithms for containers in fog computingIEEE Trans Serv Comput201812571272510.1109/TSC.2018.2827070 Cao Yu, Chen Songqing, Hou Peng, Brown D (2015) Fast: a fog computing assisted distributed analytics system to monitor fall for stroke mitigation. In: 2015 IEEE International Conference on Networking, Architecture and Storage (NAS), pp 2–11. https://doi.org/10.1109/NAS.2015.7255196 SatyanarayananMBahlPCaceresRDaviesNThe case for VM-based cloudlets in mobile computingIEEE Pervasive Comput200984142310.1109/MPRV.2009.82 Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. In: Proceedings of the first edition of the MCC workshop on mobile cloud computing, pp 13–16 La QD, Ngo MV, Dinh TQ, Quek TQ, Shin H (2019) Enabling intelligence in fog computing to achieve energy and latency reduction. Digital Commun Netw 5(1):3–9. https://doi.org/10.1016/j.dcan.2018.10.008, http://www.sciencedirect.com/science/article/pii/S2352864818301081. Artificial intelligence for future wireless communications and networking Shah-MansouriHWongVWHierarchical fog-cloud computing for IoT systems: a computation offloading gameIEEE Internet Things J2018543246325710.1109/JIOT.2018.2838022 Taneja M, Davy A (2017) Resource aware placement of IoT application modules in fog-cloud computing paradigm. In: 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, pp 1222–1228 Jamil B, Shojafar M, Ahmed I, Ullah A, Munir K, Ijaz H (2020) A job scheduling algorithm for delay and performance optimization in fog computing. Concurr Comput Pract Exp 32(7). https://doi.org/10.1002/cpe.5581. https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5581. E5581 cpe.5581 WangJWuWLiaoZSangaiahAKSimon SherrattRAn energy-efficient off-loading scheme for low latency in collaborative edge computingIEEE Access2019714918214919010.1109/ACCESS.2019.2946683 Daneshfar N, Pappas N, Polishchuk V, Angelakis V (2018) Service allocation in a mobile fog infrastructure under availability and QOS constraints. In: 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, pp 1–6 AazamMZeadallySHarrasKAOffloading in fog computing for IoT: review, enabling technologies, and research opportunitiesFuture Gener Comput Syst20188727828910.1016/j.future.2018.04.057 ArmbrustMFoxAGriffithRJosephADKatzRKonwinskiALeeGPattersonDRabkinAStoicaIA view of cloud computingCommun ACM2010534505810.1145/1721654.1721672 BadriHStochastic optimization methods for resource management in edge computing systems2019DetroitWayne State University Nath SB, Gupta H, Chakraborty S, Ghosh SK (2018) A survey of fog computing and communication: current researches and future directions. arXiv preprint arXiv:1804.04365 Mahmud R, Kotagiri R, Buyya R (2018) Fog computing: a taxonomy, survey and future directions. In: Internet of everything. Springer, pp 103–130 YaseenSGAl-SlamyNAnt colony optimizationIJCSNS200886351 ChenLZhouSXuJComputation peer offloading for energy-constrained mobile edge computing in small-cell networksIEEE/ACM Trans Netw20182641619163210.1109/TNET.2018.2841758 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks. IEEE, vol 4, pp 1942–1948 MahmoodiSEUmaRNSubbalakshmiKPOptimal joint scheduling and cloud offloading for mobile applicationsIEEE Trans Cloud Comput20167230131310.1109/TCC.2016.2560808 ZengDGuLGuoSChengZYuSJoint optimization of task scheduling and image placement in fog computing supported software-defined embedded systemIEEE Trans Comput2016651237023712357076910.1109/TC.2016.25360191360.68298 GuBChenYLiaoHZhouZZhangDA distributed and context-aware task assignment mechanism for collaborative mobile edge computingSensors2018188242310.3390/s18082423 Wright KL (2019) High-performance distributed computing techniques for wireless IoT and connected vehicle systems. Ph.D. thesis, University of Southern California NishaPFog computing and its real time applicationsInt J Emerg Technol Adv Eng201556266269 HollandJHAdaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence1992CambridgeMIT Press10.7551/mitpress/1090.001.0001 MaoYYouCZhangJHuangKLetaiefKBA survey on mobile edge computing: the communication perspectiveIEEE Commun Surv Tutor20171942322235810.1109/COMST.2017.2745201 Ghobaei-AraniMSouriARahmanianAResource management approaches in fog computing: a comprehensive reviewJ Grid Comput20191814210.1007/s10723-019-09491-1 Yi S, Hao Z, Qin Z, Li Q (2015) Fog computing: platform and applications. In: 2015 third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb). IEEE, pp 73–78 AazamMSt-HilaireMLungCHLambadarisIHuhENIoT resource estimation challenges and modeling in Fog2018ChamSpringer173110.1007/978-3-319-57639-8-2 MukherjeeMShuLWangDSurvey of fog computing: fundamental, network applications, and research challengesIEEE Commun Surv Tutor20182031826185710.1109/COMST.2018.2814571 LeraIGuerreroCJuizCAvailability-aware service placement policy in fog computing based on graph partitionsIEEE Internet Things J2018623641365110.1109/JIOT.2018.2889511 AlliAAAlamMMSecoff-fciot: machine learning based secure offloading in fog-cloud of things for smart city app M Armbrust (3941_CR5) 2010; 53 H Ding (3941_CR31) 2018; 67 M Aazam (3941_CR43) 2018 CH Hong (3941_CR10) 2019 3941_CR81 P Nisha (3941_CR26) 2015; 5 3941_CR84 3941_CR41 3941_CR44 3941_CR88 L Chen (3941_CR63) 2018; 26 3941_CR87 AA Alli (3941_CR60) 2019; 7 3941_CR49 P Hu (3941_CR20) 2017; 98 S Bitam (3941_CR69) 2018; 12 SG Yaseen (3941_CR83) 2008; 8 D Zeng (3941_CR74) 2016; 65 FA Salaht (3941_CR29) 2020; 53 M Satyanarayanan (3941_CR42) 2009; 8 P Mach (3941_CR7) 2017; 19 RK Naha (3941_CR19) 2018; 6 Z Ning (3941_CR39) 2019; 26 AA Alli (3941_CR17) 2020; 9 K Velasquez (3941_CR75) 2017; 72 MM Mahmoud (3941_CR47) 2018; 67 J Du (3941_CR65) 2018; 66 3941_CR55 S Shukla (3941_CR36) 2019; 14 3941_CR57 3941_CR12 LA Phan (3941_CR15) 2021; 117 3941_CR56 3941_CR58 Z Mahmood (3941_CR3) 2018 Y Kang (3941_CR54) 2017; 52 Y Wang (3941_CR64) 2016; 64 P Bellavista (3941_CR24) 2019; 52 M Aazam (3941_CR46) 2018; 16 H Shah-Mansouri (3941_CR61) 2018; 5 B Gu (3941_CR76) 2018; 18 A Daniel (3941_CR4) 2017; 9 X Sun (3941_CR59) 2017; 21 J Wang (3941_CR85) 2019; 7 H Li (3941_CR80) 2019 A Yousefpour (3941_CR21) 2019; 98 R Mahmud (3941_CR18) 2020 M Aazam (3941_CR45) 2018; 87 3941_CR66 3941_CR68 3941_CR25 3941_CR28 3941_CR27 M Mukherjee (3941_CR22) 2018; 20 I Lera (3941_CR48) 2018; 6 H Badri (3941_CR86) 2019 C Mouradian (3941_CR13) 2018; 20 L Li (3941_CR53) 2018; 14 Y Mao (3941_CR51) 2017; 19 M Ghobaei-Arani (3941_CR14) 2019; 18 J Ren (3941_CR11) 2019 A Paul (3941_CR40) 2018 P Hu (3941_CR23) 2017 3941_CR70 3941_CR73 L Liu (3941_CR62) 2018; 5 3941_CR72 3941_CR30 3941_CR33 3941_CR77 3941_CR32 3941_CR35 3941_CR34 3941_CR78 3941_CR37 JH Holland (3941_CR82) 1992 A Shakarami (3941_CR16) 2020; 182 3941_CR38 3941_CR6 3941_CR8 O Skarlat (3941_CR71) 2017; 11 3941_CR9 Y Mao (3941_CR67) 2016; 34 SE Mahmoodi (3941_CR50) 2016; 7 3941_CR2 Z Tang (3941_CR79) 2018; 12 3941_CR1 R Mahmud (3941_CR52) 2018; 19 |
| References_xml | – reference: MaoYZhangJLetaiefKBDynamic computation offloading for mobile-edge computing with energy harvesting devicesIEEE J Sel Areas Commun201634123590360510.1109/JSAC.2016.2611964 – reference: MahmudRRamamohanaraoKBuyyaRLatency-aware application module management for fog computing environmentsACM Trans Internet Technol201819112110.1145/3186592 – reference: Teerapittayanon S, McDanel B, Kung HT (2017) Distributed deep neural networks over the cloud, the edge and end devices. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp 328–339. https://doi.org/10.1109/ICDCS.2017.226 – reference: WangJWuWLiaoZSangaiahAKSimon SherrattRAn energy-efficient off-loading scheme for low latency in collaborative edge computingIEEE Access2019714918214919010.1109/ACCESS.2019.2946683 – reference: ArmbrustMFoxAGriffithRJosephADKatzRKonwinskiALeeGPattersonDRabkinAStoicaIA view of cloud computingCommun ACM2010534505810.1145/1721654.1721672 – reference: Skarlat O, Schulte S, Borkowski M, Leitner P (2016) Resource provisioning for IoT services in the fog. In: 2016 IEEE 9th International Conference on Service-oriented Computing and Applications (SOCA), pp 32–39 . https://doi.org/10.1109/SOCA.2016.10 – reference: Zhu J, Chan DS, Prabhu MS, Natarajan P, Hu H, Bonomi F (2013) Improving web sites performance using edge servers in fog computing architecture. In: 2013 IEEE Seventh International Symposium on Service-oriented System Engineering, pp 320–323 . https://doi.org/10.1109/SOSE.2013.73 – reference: VelasquezKAbreuDPCuradoMMonteiroEService placement for latency reduction in the internet of thingsAnn Telecommun2017721–210511510.1007/s12243-016-0524-9 – reference: MukherjeeMShuLWangDSurvey of fog computing: fundamental, network applications, and research challengesIEEE Commun Surv Tutor20182031826185710.1109/COMST.2018.2814571 – reference: SalahtFADesprezFLebreAAn overview of service placement problem in fog and edge computingACM Comput Surv202053313510.1145/3391196 – reference: KangYHauswaldJGaoCRovinskiAMudgeTMarsJTangLNeurosurgeon: collaborative intelligence between the cloud and mobile edgeSIGPLAN Not.201752461562910.1145/3093336.3037698 – reference: Ghobaei-AraniMSouriARahmanianAResource management approaches in fog computing: a comprehensive reviewJ Grid Comput20191814210.1007/s10723-019-09491-1 – reference: Hong H, Tsai P, Cheng A, Uddin MYS, Venkatasubramanian N, Hsu C (2017) Supporting internet-of-things analytics in a fog computing platform. In: 2017 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), pp 138–145. https://doi.org/10.1109/CloudCom.2017.45 – reference: YaseenSGAl-SlamyNAnt colony optimizationIJCSNS200886351 – reference: Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. In: Proceedings of the first edition of the MCC workshop on mobile cloud computing, pp 13–16 – reference: BellavistaPBerrocalJCorradiADasSKFoschiniLZanniAA survey on fog computing for the internet of thingsPervasive Mobile Comput201952719910.1016/j.pmcj.2018.12.007 – reference: Nath SB, Gupta H, Chakraborty S, Ghosh SK (2018) A survey of fog computing and communication: current researches and future directions. arXiv preprint arXiv:1804.04365 – reference: Yi S, Li C, Li Q (2015) A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 Workshop on Mobile Big Data, pp 37–42 – reference: MahmudRRamamohanaraoKBuyyaRApplication management in fog computing environments: a taxonomy, review and future directionsACM Comput Surv202010.1145/3403955 – reference: Ma X, Lin C, Xiang X, Chen C (2015) Game-theoretic analysis of computation offloading for cloudlet-based mobile cloud computing. In: Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp 271–278 – reference: DingHFangYVirtual infrastructure at traffic lights: vehicular temporary storage assisted data transportation at signalized intersectionsIEEE Trans Veh Technol20186712124521245610.1109/TVT.2018.2871414 – reference: NahaRKGargSGeorgakopoulosDJayaramanPPGaoLXiangYRanjanRFog computing: survey of trends, architectures, requirements, and research directionsIEEE Access20186479804800910.1109/ACCESS.2018.2866491 – reference: ShuklaSHassanMFKhanMKJungLTAwangAAn analytical model to minimize the latency in healthcare internet-of-things in fog computing environmentPLoS ONE20191411e022493410.1371/journal.pone.0224934 – reference: Cao Yu, Chen Songqing, Hou Peng, Brown D (2015) Fast: a fog computing assisted distributed analytics system to monitor fall for stroke mitigation. In: 2015 IEEE International Conference on Networking, Architecture and Storage (NAS), pp 2–11. https://doi.org/10.1109/NAS.2015.7255196 – reference: IDC: Iot growth demands rethink of long-term storage strategies (2020). https://www.idc.com/getdoc.jsp?containerId=prAP46737220 – reference: HongCHVargheseBResource management in fog/edge computing: a survey on architectures, infrastructure, and algorithmsACM Comput Surv201910.1145/3326066 – reference: NingZHuangJWangXVehicular fog computing: enabling real-time traffic management for smart citiesIEEE Wirel Commun2019261879310.1109/MWC.2019.1700441 – reference: SatyanarayananMBahlPCaceresRDaviesNThe case for VM-based cloudlets in mobile computingIEEE Pervasive Comput200984142310.1109/MPRV.2009.82 – reference: LeraIGuerreroCJuizCAvailability-aware service placement policy in fog computing based on graph partitionsIEEE Internet Things J2018623641365110.1109/JIOT.2018.2889511 – reference: Craciunescu R, Mihovska A, Mihaylov M, Kyriazakos S, Prasad R, Halunga S (2015) Implementation of fog computing for reliable e-health applications. In: 2015 49th Asilomar Conference on Signals, Systems and Computers. IEEE, pp 459–463 – reference: Varshney P, Simmhan Y (2017) Demystifying fog computing: characterizing architectures, applications and abstractions. In: 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC). IEEE, pp 115–124 – reference: Hardesty L (2017) Fog computing group publishes reference architecture. https://www.sdxcentral.com/articles/news/Fog-computing-group-publishes-reference-architecture/2017/02/. Accessed 20 April 2020 – reference: La QD, Ngo MV, Dinh TQ, Quek TQ, Shin H (2019) Enabling intelligence in fog computing to achieve energy and latency reduction. Digital Commun Netw 5(1):3–9. https://doi.org/10.1016/j.dcan.2018.10.008, http://www.sciencedirect.com/science/article/pii/S2352864818301081. Artificial intelligence for future wireless communications and networking – reference: RenJZhangDHeSZhangYLiTA survey on end-edge-cloud orchestrated network computing paradigms: transparent computing, mobile edge computing, fog computing, and cloudletACM Comput Surv201910.1145/3362031 – reference: ZengDGuLGuoSChengZYuSJoint optimization of task scheduling and image placement in fog computing supported software-defined embedded systemIEEE Trans Comput2016651237023712357076910.1109/TC.2016.25360191360.68298 – reference: AazamMHuhENSt-HilaireMTowards media inter-cloud standardization-evaluating impact of cloud storage heterogeneityJ Grid Comput201816342544310.1007/s10723-015-9356-5 – reference: Xia Y, Etchevers X, Letondeur L, Coupaye T, Desprez F (2018) Combining hardware nodes and software components ordering-based heuristics for optimizing the placement of distributed IoT applications in the fog. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC ’18, p 751–760. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3167132.3167215 – reference: LiHOtaKDongMDeep reinforcement scheduling for mobile crowdsensing in fog computingACM Trans Internet Technol201910.1145/3234463 – reference: HollandJHAdaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence1992CambridgeMIT Press10.7551/mitpress/1090.001.0001 – reference: BitamSZeadallySMelloukAFog computing job scheduling optimization based on bees swarmEnterprise Inf Syst201812437339710.1080/17517575.2017.1304579 – reference: Statista: Internet of things (IoT) connected devices installed base worldwide from 2015 to 2025 (2016). https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ – reference: DanielASubburathinamKPaulARajkumarNRhoSBig autonomous vehicular data classifications: towards procuring intelligenceVeh Commun20179306312 – reference: AlliAAAlamMMSecoff-fciot: machine learning based secure offloading in fog-cloud of things for smart city applicationsInternet Things2019710007010.1016/j.iot.2019.100070 – reference: Sundar S (2019) Optimization algorithms for task offloading and scheduling in cloud computing. Ph.D. thesis – reference: PaulAPinjariHHongWHSeoHCRhoSFog computing-based IoT for health monitoring systemJ Sens201810.1155/2018/1386470 – reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks. IEEE, vol 4, pp 1942–1948 – reference: Taneja M, Davy A (2017) Resource aware placement of IoT application modules in fog-cloud computing paradigm. In: 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, pp 1222–1228 – reference: Jamil B, Shojafar M, Ahmed I, Ullah A, Munir K, Ijaz H (2020) A job scheduling algorithm for delay and performance optimization in fog computing. Concurr Comput Pract Exp 32(7). https://doi.org/10.1002/cpe.5581. https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5581. E5581 cpe.5581 – reference: DuJZhaoLFengJChuXComputation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guaranteeIEEE Trans Commun20186641594160810.1109/TCOMM.2017.2787700 – reference: Li G, Liu Y, Wu J, Lin D, Zhao S (2019) Methods of resource scheduling based on optimized fuzzy clustering in fog computing. Sensors (Basel, Switzerland) 19(9). https://doi.org/10.3390/s19092122. https://europepmc.org/articles/PMC6539192 – reference: HuPDhelimSNingHQiuTSurvey on fog computing: architecture, key technologies, applications and open issuesJ Netw Comput Appl201710.1016/j.jnca.2017.09.002 – reference: Filippo Poltronieri Mauro Tortonesi CS, Sur N (2021) Reinforcement learning for value-based placement of fog services – reference: HuPDhelimSNingHQiuTSurvey on fog computing: architecture, key technologies, applications and open issuesJ Netw Comput Appl201798274210.1016/j.jnca.2017.09.002 – reference: Yousefpour A, Ishigaki G, Jue JP (2017) Fog computing: towards minimizing delay in the internet of things. In: 2017 IEEE International Conference on Edge Computing (EDGE). IEEE, pp 17–24 – reference: MahmoodZRamachandranMMahmoodZFog computing: concepts, principles and related paradigmsFog computing: concepts, frameworks and technologies, chap. 12018BerlinSpringer32110.1007/978-3-319-94890-4_1 – reference: Gia TN, Jiang M, Rahmani AM, Westerlund T, Liljeberg P, Tenhunen H (2015) Fog computing in healthcare internet of things: a case study on ECG feature extraction. In: 2015 IEEE International Conference on Computer and Information Technology. IEEE, pp 356–363 – reference: ChenLZhouSXuJComputation peer offloading for energy-constrained mobile edge computing in small-cell networksIEEE/ACM Trans Netw20182641619163210.1109/TNET.2018.2841758 – reference: TangZZhouXZhangFJiaWZhaoWMigration modeling and learning algorithms for containers in fog computingIEEE Trans Serv Comput201812571272510.1109/TSC.2018.2827070 – reference: Dastjerdi AV, Gupta H, Calheiros RN, Ghosh SK, Buyya R (2016) Fog computing: principles, architectures, and applications. In: Internet of things. Elsevier, pp 61–75 – reference: Mahmud R, Kotagiri R, Buyya R (2018) Fog computing: a taxonomy, survey and future directions. In: Internet of everything. Springer, pp 103–130 – reference: WangYShengMWangXWangLLiJMobile-edge computing: partial computation offloading using dynamic voltage scalingIEEE Trans Commun2016641042684282 – reference: SkarlatONardelliMSchulteSBorkowskiMLeitnerPOptimized IoT service placement in the fogSOCA20171142744310.1007/s11761-017-0219-8 – reference: MaoYYouCZhangJHuangKLetaiefKBA survey on mobile edge computing: the communication perspectiveIEEE Commun Surv Tutor20171942322235810.1109/COMST.2017.2745201 – reference: Zao JK, Gan TT, You CK, Méndez SJR, Chung CE, Te Wang Y, Mullen T, Jung TP (2014) Augmented brain computer interaction based on fog computing and linked data. In: 2014 International Conference on Intelligent Environments. IEEE, pp 374–377 – reference: PhanLANguyenDTLeeMParkDHKimTDynamic fog-to-fog offloading in SDN-based fog computing systemsFutur Gener Comput Syst202111748649710.1016/j.future.2020.12.021 – reference: LiLOtaKDongMDeep learning for smart industry: efficient manufacture inspection system with fog computingIEEE Trans Ind Inf201814104665467310.1109/TII.2018.2842821 – reference: Shah-MansouriHWongVWHierarchical fog-cloud computing for IoT systems: a computation offloading gameIEEE Internet Things J2018543246325710.1109/JIOT.2018.2838022 – reference: MahmoudMMRodriguesJJSaleemKAl-MuhtadiJKumarNKorotaevVTowards energy-aware fog-enabled cloud of things for healthcareComput Electr Eng201867586910.1016/j.compeleceng.2018.02.047 – reference: Yi S, Hao Z, Qin Z, Li Q (2015) Fog computing: platform and applications. In: 2015 third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb). IEEE, pp 73–78 – reference: Binh HTT, Anh TT, Son DB, Duc PA, Nguyen BM (2018) An evolutionary algorithm for solving task scheduling problem in cloud-fog computing environment. In: Proceedings of the Ninth International Symposium on Information and Communication Technology, SoICT 2018, p 397–404. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3287921.3287984 – reference: MachPBecvarZMobile edge computing: a survey on architecture and computation offloadingIEEE Commun Surv Tutor20171931628165610.1109/COMST.2017.2682318 – reference: MouradianCNaboulsiDYanguiSGlithoRHMorrowMJPolakosPAA comprehensive survey on fog computing: state-of-the-art and research challengesIEEE Commun Surv Tutor201820141646410.1109/COMST.2017.2771153 – reference: AazamMZeadallySHarrasKAOffloading in fog computing for IoT: review, enabling technologies, and research opportunitiesFuture Gener Comput Syst20188727828910.1016/j.future.2018.04.057 – reference: BadriHStochastic optimization methods for resource management in edge computing systems2019DetroitWayne State University – reference: ShakaramiAGhobaei-AraniMShahidinejadAA survey on the computation offloading approaches in mobile edge computing: a machine learning-based perspectiveComput Netw202018210749610.1016/j.comnet.2020.107496 – reference: Zhao X, Zhao L, Liang K (2017) An energy consumption oriented offloading algorithm for fog computing. In: Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, pp 293–301. Springer. https://doi.org/10.1007/978-3-319-60717-7-29 – reference: MahmoodiSEUmaRNSubbalakshmiKPOptimal joint scheduling and cloud offloading for mobile applicationsIEEE Trans Cloud Comput20167230131310.1109/TCC.2016.2560808 – reference: AlliAAAlamMMThe fog cloud of things: a survey on concepts, architecture, standards, tools, and applicationsInternet Things2020910017710.1016/j.iot.2020.100177 – reference: GuBChenYLiaoHZhouZZhangDA distributed and context-aware task assignment mechanism for collaborative mobile edge computingSensors2018188242310.3390/s18082423 – reference: LiuLChangZGuoXMaoSRistaniemiTMultiobjective optimization for computation offloading in fog computingIEEE Internet Things J20185128329410.1109/JIOT.2017.2780236 – reference: NishaPFog computing and its real time applicationsInt J Emerg Technol Adv Eng201556266269 – reference: Chang Z, Zhou Z, Ristaniemi T, Niu Z (2017) Energy efficient optimization for computation offloading in fog computing system. In: GLOBECOM 2017–2017 IEEE Global Communications Conference. IEEE, pp 1–6 – reference: Wright KL (2019) High-performance distributed computing techniques for wireless IoT and connected vehicle systems. Ph.D. thesis, University of Southern California – reference: AazamMSt-HilaireMLungCHLambadarisIHuhENIoT resource estimation challenges and modeling in Fog2018ChamSpringer173110.1007/978-3-319-57639-8-2 – reference: Mebrek A, Merghem-Boulahia L, Esseghir M (2017) Efficient green solution for a balanced energy consumption and delay in the IoT-fog-cloud computing. In: 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA), pp 1–4 . https://doi.org/10.1109/NCA.2017.8171359 – reference: YousefpourAFungCNguyenTKadiyalaKJalaliFNiakanlahijiAKongJJueJPAll one needs to know about fog computing and related edge computing paradigms: a complete surveyJ Syst Architect20199828933010.1016/j.sysarc.2019.02.009 – reference: Daneshfar N, Pappas N, Polishchuk V, Angelakis V (2018) Service allocation in a mobile fog infrastructure under availability and QOS constraints. In: 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, pp 1–6 – reference: SunXAnsariNLatency aware workload offloading in the cloudlet networkIEEE Commun Lett20172171481148410.1109/LCOMM.2017.2690678 – year: 2018 ident: 3941_CR40 publication-title: J Sens doi: 10.1155/2018/1386470 – volume: 6 start-page: 3641 issue: 2 year: 2018 ident: 3941_CR48 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2889511 – volume: 18 start-page: 2423 issue: 8 year: 2018 ident: 3941_CR76 publication-title: Sensors doi: 10.3390/s18082423 – volume: 8 start-page: 14 issue: 4 year: 2009 ident: 3941_CR42 publication-title: IEEE Pervasive Comput doi: 10.1109/MPRV.2009.82 – volume: 12 start-page: 373 issue: 4 year: 2018 ident: 3941_CR69 publication-title: Enterprise Inf Syst doi: 10.1080/17517575.2017.1304579 – ident: 3941_CR34 doi: 10.23919/INM.2017.7987464 – volume: 7 start-page: 100070 year: 2019 ident: 3941_CR60 publication-title: Internet Things doi: 10.1016/j.iot.2019.100070 – volume: 20 start-page: 416 issue: 1 year: 2018 ident: 3941_CR13 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2017.2771153 – volume: 98 start-page: 289 year: 2019 ident: 3941_CR21 publication-title: J Syst Architect doi: 10.1016/j.sysarc.2019.02.009 – ident: 3941_CR56 doi: 10.1007/978-3-319-60717-7-29 – volume: 66 start-page: 1594 issue: 4 year: 2018 ident: 3941_CR65 publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2017.2787700 – ident: 3941_CR66 doi: 10.1145/2811587.2811598 – volume: 53 start-page: 50 issue: 4 year: 2010 ident: 3941_CR5 publication-title: Commun ACM doi: 10.1145/1721654.1721672 – ident: 3941_CR57 doi: 10.1109/GLOCOM.2017.8254207 – volume: 9 start-page: 100177 year: 2020 ident: 3941_CR17 publication-title: Internet Things doi: 10.1016/j.iot.2020.100177 – ident: 3941_CR2 – ident: 3941_CR55 doi: 10.1109/ICDCS.2017.226 – year: 2019 ident: 3941_CR11 publication-title: ACM Comput Surv doi: 10.1145/3362031 – ident: 3941_CR25 – volume: 19 start-page: 2322 issue: 4 year: 2017 ident: 3941_CR51 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2017.2745201 – volume: 11 start-page: 427 year: 2017 ident: 3941_CR71 publication-title: SOCA doi: 10.1007/s11761-017-0219-8 – volume: 53 start-page: 1 issue: 3 year: 2020 ident: 3941_CR29 publication-title: ACM Comput Surv doi: 10.1145/3391196 – year: 2020 ident: 3941_CR18 publication-title: ACM Comput Surv doi: 10.1145/3403955 – year: 2019 ident: 3941_CR80 publication-title: ACM Trans Internet Technol doi: 10.1145/3234463 – volume: 26 start-page: 87 issue: 1 year: 2019 ident: 3941_CR39 publication-title: IEEE Wirel Commun doi: 10.1109/MWC.2019.1700441 – ident: 3941_CR44 doi: 10.1016/j.dcan.2018.10.008 – volume: 67 start-page: 58 year: 2018 ident: 3941_CR47 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2018.02.047 – volume: 34 start-page: 3590 issue: 12 year: 2016 ident: 3941_CR67 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2016.2611964 – volume: 6 start-page: 47980 year: 2018 ident: 3941_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2866491 – volume: 117 start-page: 486 year: 2021 ident: 3941_CR15 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2020.12.021 – ident: 3941_CR6 doi: 10.1145/2342509.2342513 – ident: 3941_CR9 doi: 10.1109/ICFEC.2017.20 – volume: 87 start-page: 278 year: 2018 ident: 3941_CR45 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2018.04.057 – ident: 3941_CR30 doi: 10.1002/cpe.5581 – volume: 21 start-page: 1481 issue: 7 year: 2017 ident: 3941_CR59 publication-title: IEEE Commun Lett doi: 10.1109/LCOMM.2017.2690678 – volume: 9 start-page: 306 year: 2017 ident: 3941_CR4 publication-title: Veh Commun – ident: 3941_CR81 – ident: 3941_CR1 – ident: 3941_CR41 doi: 10.1109/SOSE.2013.73 – volume: 16 start-page: 425 issue: 3 year: 2018 ident: 3941_CR46 publication-title: J Grid Comput doi: 10.1007/s10723-015-9356-5 – ident: 3941_CR70 doi: 10.1109/CloudCom.2017.45 – volume-title: Stochastic optimization methods for resource management in edge computing systems year: 2019 ident: 3941_CR86 – ident: 3941_CR35 doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.51 – ident: 3941_CR78 doi: 10.3390/s19092122 – volume: 65 start-page: 3702 issue: 12 year: 2016 ident: 3941_CR74 publication-title: IEEE Trans Comput doi: 10.1109/TC.2016.2536019 – year: 2017 ident: 3941_CR23 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2017.09.002 – volume: 14 start-page: e0224934 issue: 11 year: 2019 ident: 3941_CR36 publication-title: PLoS ONE doi: 10.1371/journal.pone.0224934 – volume: 8 start-page: 351 issue: 6 year: 2008 ident: 3941_CR83 publication-title: IJCSNS – volume: 98 start-page: 27 year: 2017 ident: 3941_CR20 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2017.09.002 – ident: 3941_CR27 doi: 10.1145/3287921.3287984 – year: 2019 ident: 3941_CR10 publication-title: ACM Comput Surv doi: 10.1145/3326066 – volume: 182 start-page: 107496 year: 2020 ident: 3941_CR16 publication-title: Comput Netw doi: 10.1016/j.comnet.2020.107496 – volume: 19 start-page: 1628 issue: 3 year: 2017 ident: 3941_CR7 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2017.2682318 – ident: 3941_CR8 doi: 10.1007/978-981-10-5861-5_5 – ident: 3941_CR88 – volume: 72 start-page: 105 issue: 1–2 year: 2017 ident: 3941_CR75 publication-title: Ann Telecommun doi: 10.1007/s12243-016-0524-9 – volume: 18 start-page: 1 year: 2019 ident: 3941_CR14 publication-title: J Grid Comput doi: 10.1007/s10723-019-09491-1 – volume: 5 start-page: 3246 issue: 4 year: 2018 ident: 3941_CR61 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2838022 – ident: 3941_CR77 doi: 10.1109/IEEE.EDGE.2017.12 – volume: 20 start-page: 1826 issue: 3 year: 2018 ident: 3941_CR22 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2018.2814571 – volume: 64 start-page: 4268 issue: 10 year: 2016 ident: 3941_CR64 publication-title: IEEE Trans Commun – ident: 3941_CR58 doi: 10.1109/ACSSC.2015.7421170 – ident: 3941_CR37 doi: 10.1109/NAS.2015.7255196 – start-page: 17 volume-title: IoT resource estimation challenges and modeling in Fog year: 2018 ident: 3941_CR43 doi: 10.1007/978-3-319-57639-8-2 – volume: 52 start-page: 71 year: 2019 ident: 3941_CR24 publication-title: Pervasive Mobile Comput doi: 10.1016/j.pmcj.2018.12.007 – volume: 67 start-page: 12452 issue: 12 year: 2018 ident: 3941_CR31 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2018.2871414 – volume: 26 start-page: 1619 issue: 4 year: 2018 ident: 3941_CR63 publication-title: IEEE/ACM Trans Netw doi: 10.1109/TNET.2018.2841758 – ident: 3941_CR72 doi: 10.1109/SOCA.2016.10 – volume: 19 start-page: 1 issue: 1 year: 2018 ident: 3941_CR52 publication-title: ACM Trans Internet Technol doi: 10.1145/3186592 – volume: 7 start-page: 301 issue: 2 year: 2016 ident: 3941_CR50 publication-title: IEEE Trans Cloud Comput doi: 10.1109/TCC.2016.2560808 – volume: 14 start-page: 4665 issue: 10 year: 2018 ident: 3941_CR53 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2842821 – volume: 12 start-page: 712 issue: 5 year: 2018 ident: 3941_CR79 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2018.2827070 – ident: 3941_CR49 doi: 10.1145/3167132.3167215 – volume: 52 start-page: 615 issue: 4 year: 2017 ident: 3941_CR54 publication-title: SIGPLAN Not. doi: 10.1145/3093336.3037698 – ident: 3941_CR32 doi: 10.1109/HotWeb.2015.22 – ident: 3941_CR87 – ident: 3941_CR68 doi: 10.1109/NCA.2017.8171359 – volume: 7 start-page: 149182 year: 2019 ident: 3941_CR85 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946683 – start-page: 3 volume-title: Fog computing: concepts, frameworks and technologies, chap. 1 year: 2018 ident: 3941_CR3 doi: 10.1007/978-3-319-94890-4_1 – volume: 5 start-page: 283 issue: 1 year: 2018 ident: 3941_CR62 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2017.2780236 – ident: 3941_CR12 doi: 10.1145/2757384.2757397 – ident: 3941_CR28 – ident: 3941_CR73 doi: 10.1109/GLOCOM.2018.8647488 – ident: 3941_CR84 doi: 10.1109/ICNN.1995.488968 – volume: 5 start-page: 266 issue: 6 year: 2015 ident: 3941_CR26 publication-title: Int J Emerg Technol Adv Eng – ident: 3941_CR33 doi: 10.1016/B978-0-12-805395-9.00004-6 – ident: 3941_CR38 doi: 10.1109/IE.2014.54 – volume-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence year: 1992 ident: 3941_CR82 doi: 10.7551/mitpress/1090.001.0001 |
| SSID | ssj0004373 |
| Score | 2.5495155 |
| Snippet | In recent years, fog computing has emerged as a computing paradigm to support the computationally intensive and latency-critical applications for resource... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1983 |
| SubjectTerms | Cloud computing Compilers Computation offloading Computer Science Internet of Things Interpreters Network latency Placement Processor Architectures Programming Languages Storage facilities |
| Title | A survey on computation offloading and service placement in fog computing-based IoT |
| URI | https://link.springer.com/article/10.1007/s11227-021-03941-y https://www.proquest.com/docview/2622622809 |
| Volume | 78 |
| WOSCitedRecordID | wos000665687500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PXhxfuJ0Sg7eNNCmXZochzgUZIibY7eS5kMG0sq6Dfbfm6SpRVFBoZeSl1Dey8vvNe8LgEulE405oUhLrFBMVIR4xAOUhSISmXmVrhnM5CEZDul0yh59UlhZR7vXLkl3UjfJbiHGCbIhBUHE4hCtN8GWgTtqGzY8jSZNNmRU-ZWZ-TGivRj7VJnv1_gMR42N-cUt6tBm0P7fd-6BXW9dwn61HfbBhsoPQLvu3AC9Ih-CUR-Wy_lKrWGRQ-GGnYRgofVr4cLqIc8lLKuTBLrILXuPCGc51MWLn2PIkIVBCe-L8RF4HtyOb-6Qb6-AhNG7BcKhUjxkWvRiksVUsUQQontCGpNFaWVwKs60tZCEIImRmZIqkMJYMCHXRIYyOgatvMjVCYCE2Mp3WFPBSKwSkRncC6gOKOOSC4E7IKy5nApfe9y2wHhNm6rJlmup4VrquJauO-DqY85bVXnjV-puLbzUa2GZYoLtQwPWAde1sJrhn1c7_Rv5GdjBNivCBXN3QWsxX6pzsC1Wi1k5v3C78x1CEd_2 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1Dz4poE27dL2cYhjwznEzbG30uZDBqOVdRvsvzdJW4uigkJfSi6h3OXyu-a-AK6F9CSJqI8lJwK7VDg4ciILxzZzWKxeuWkGM-57g4E_mQRPRVJYVka7ly5Jc1JXyW42IR7WIQWWE7g2Xm_ClqsQS1fMfx6Oq2xIJ_crB-rHyG-5pEiV-X6Nz3BU2Zhf3KIGbTr1_33nPuwV1iVq59vhADZEcgj1snMDKhT5CIZtlC3nK7FGaYKYGTYSQqmUs9SE1aMo4SjLTxJkIrf0PSKaJkimr8UcRYY1DHLUS0fH8NK5H911cdFeATOldwtMbCEiO5Cs5dLY9UXgMUpli3FlsggpFE65sdQWEmPUUzITXFicKQvGjiTlNndOoJakiTgFRKmufEekzwLqCo_FCvcsX1p-EPGIMdIAu-RyyIra47oFxiysqiZrroWKa6HhWrhuwM3HnLe88sav1M1SeGGhhVlIKNGPbwUNuC2FVQ3_vNrZ38ivYKc7euyH_d7g4Rx2ic6QMIHdTagt5ktxAdtstZhm80uzU98ByoTi2g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4psE27dL2cajD4RiDzbG30uZDBqMd-4L99yZpa1VUEKEvJZdQ7nK9S-5-dwDXQnqSRNTHkhOBXSocHDmRhWObOSxWr9w0gxl2vG7XH42C3gcUv8l2L0KSGaZBV2lKFndTLu9K4JtNiId1eoHlBK6N15uw5epEen1e7w9LZKSTxZgDdUjyGy7JYTPfr_HZNJX-5pcQqbE8rer_v3kf9nKvEzWzbXIAGyI5hGrR0QHlCn4E_SaaL2crsUZpgpgZNpJDqZST1KTboyjhaJ79YZDJ6NL3i2icIJm-5nMUGdbmkaN2OjiGl9bj4P4J520XMFP6uMDEFiKyA8kaLo1dXwQeo1Q2GFeujJBC2S83ltpzYox6SpaCC4sz5dnYkaTc5s4JVJI0EaeAKNUV8Yj0WUBd4bFY2UPLl5YfRDxijNTALjgesrwmuW6NMQnLasqaa6HiWmi4Fq5rcPM-Z5pV5PiVul4IMsy1cx4SSvTjW0ENbgvBlcM_r3b2N_Ir2Ok9tMJOu_t8DrtEAydMvncdKovZUlzANlstxvPZpdm0b2Qh674 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+computation+offloading+and+service+placement+in+fog+computing-based+IoT&rft.jtitle=The+Journal+of+supercomputing&rft.au=Gasmi%2C+Kaouther&rft.au=Dilek%2C+Selma&rft.au=Tosun%2C+Suleyman&rft.au=Ozdemir%2C+Suat&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=2&rft.spage=1983&rft.epage=2014&rft_id=info:doi/10.1007%2Fs11227-021-03941-y&rft.externalDocID=10_1007_s11227_021_03941_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |