A conjugate gradient projection method with restart procedure for solving constraint equations and image restorations
The conjugate gradient projection method is one of the most effective methods for solving large-scale nonlinear monotone convex constrained equations. In this paper, a new search direction with restart procedure is proposed, and a self-adjusting line search criterion is improved, then a three-term c...
Uloženo v:
| Vydáno v: | Journal of applied mathematics & computing Ročník 70; číslo 3; s. 2255 - 2284 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1598-5865, 1865-2085 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The conjugate gradient projection method is one of the most effective methods for solving large-scale nonlinear monotone convex constrained equations. In this paper, a new search direction with restart procedure is proposed, and a self-adjusting line search criterion is improved, then a three-term conjugate gradient projection method is designed to solve the large-scale nonlinear monotone convex constrained equations and image restorations. Without using the Lipschitz continuity of these equations, the presented method is proved to be globally convergent. Moreover, its R-linear convergence rate is attained under Lipschitz continuity and the usual assumptions. Finally, large-scale numerical experiments for the convex constraint equations and image restorations have been performed, which show that the new method is effective. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1598-5865 1865-2085 |
| DOI: | 10.1007/s12190-024-02044-0 |