A conjugate gradient projection method with restart procedure for solving constraint equations and image restorations

The conjugate gradient projection method is one of the most effective methods for solving large-scale nonlinear monotone convex constrained equations. In this paper, a new search direction with restart procedure is proposed, and a self-adjusting line search criterion is improved, then a three-term c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of applied mathematics & computing Ročník 70; číslo 3; s. 2255 - 2284
Hlavní autoři: Jiang, Xianzhen, Huang, Zefeng, Yang, Huihui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2024
Springer Nature B.V
Témata:
ISSN:1598-5865, 1865-2085
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The conjugate gradient projection method is one of the most effective methods for solving large-scale nonlinear monotone convex constrained equations. In this paper, a new search direction with restart procedure is proposed, and a self-adjusting line search criterion is improved, then a three-term conjugate gradient projection method is designed to solve the large-scale nonlinear monotone convex constrained equations and image restorations. Without using the Lipschitz continuity of these equations, the presented method is proved to be globally convergent. Moreover, its R-linear convergence rate is attained under Lipschitz continuity and the usual assumptions. Finally, large-scale numerical experiments for the convex constraint equations and image restorations have been performed, which show that the new method is effective.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-024-02044-0