A novel evolutionary status guided hyper-heuristic algorithm for continuous optimization

This paper proposes a novel evolutionary status guided hyper-heuristic algorithm named ES-HHA for continuous optimization. A representative hyper-heuristic algorithm consists of two components: the low-level component and the high-level component. In the low-level component, to balance the exploitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cluster computing Jg. 27; H. 9; S. 12209 - 12238
Hauptverfasser: Zhong, Rui, Yu, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.12.2024
Springer Nature B.V
Schlagworte:
ISSN:1386-7857, 1573-7543
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper proposes a novel evolutionary status guided hyper-heuristic algorithm named ES-HHA for continuous optimization. A representative hyper-heuristic algorithm consists of two components: the low-level component and the high-level component. In the low-level component, to balance the exploitation and exploration during optimization, we design an exploitative operator pool and an explorative operator pool as low-level heuristics (LLHs), where the former is constructed using local search based operators, and the latter consists of various mutation operators from differential evolution (DE). In the high-level component, we design a probabilistic selection function based on the fitness distance correlation (FDC) and the population diversity (PD). Since these two metrics can reflect the complexity of the fitness landscape and the status of the evolutionary swarm, the integration of these two metrics is expected to determine the sequence of heuristics automatically and intelligently. To evaluate the performance of our proposal, we implement comprehensive numerical experiments on CEC2014, CEC2022, and eight engineering optimization tasks. A total of 14 famous optimization approaches are adopted as competitors. Furthermore, the ablation experiment is conducted to evaluate the high-level component independently, while the sensitivity experiment contributes to determining the optimal hyperparameter setting. The experimental results and statistical analysis show that ES-HHA is competitive, and the evolutionary status guided probabilistic selection function can determine the optimization intelligently.
AbstractList This paper proposes a novel evolutionary status guided hyper-heuristic algorithm named ES-HHA for continuous optimization. A representative hyper-heuristic algorithm consists of two components: the low-level component and the high-level component. In the low-level component, to balance the exploitation and exploration during optimization, we design an exploitative operator pool and an explorative operator pool as low-level heuristics (LLHs), where the former is constructed using local search based operators, and the latter consists of various mutation operators from differential evolution (DE). In the high-level component, we design a probabilistic selection function based on the fitness distance correlation (FDC) and the population diversity (PD). Since these two metrics can reflect the complexity of the fitness landscape and the status of the evolutionary swarm, the integration of these two metrics is expected to determine the sequence of heuristics automatically and intelligently. To evaluate the performance of our proposal, we implement comprehensive numerical experiments on CEC2014, CEC2022, and eight engineering optimization tasks. A total of 14 famous optimization approaches are adopted as competitors. Furthermore, the ablation experiment is conducted to evaluate the high-level component independently, while the sensitivity experiment contributes to determining the optimal hyperparameter setting. The experimental results and statistical analysis show that ES-HHA is competitive, and the evolutionary status guided probabilistic selection function can determine the optimization intelligently.
Author Zhong, Rui
Yu, Jun
Author_xml – sequence: 1
  givenname: Rui
  surname: Zhong
  fullname: Zhong, Rui
  organization: Graduate School of Information Science and Technology, Hokkaido University
– sequence: 2
  givenname: Jun
  surname: Yu
  fullname: Yu, Jun
  email: yujun@ie.niigata-u.ac.jp
  organization: Institute of Science and Technology, Niigata University
BookMark eNp9kE1rwyAYx2V0sLbbF9hJ2DmbRo3xWMreoLDLBruJSUxrSTVTU-g-_WwzGOzQkw_4_z0vvxmYWGc1ALcY3WOE-EPAiJVFhnKaIcoEyfILMMWMk4wzSiapJumbl4xfgVkIW4SQ4LmYgs8FtG6vO6j3rhuicVb5AwxRxSHA9WAa3cDNodc-2-jBmxBNDVW3dt7EzQ62zsPa2Wjs4FLe9dHszLc6trkGl63qgr75fefg4-nxffmSrd6eX5eLVVYTLGKGW8FF2aAqXdHWpKJCcc4ZKRDhGKui1bzhokKKKKrKsmqVUpQTxHTOKpJTMgd3Y9_eu69Bhyi3bvA2jZQEI8GoKDBLqXJM1d6F4HUraxNPe0avTCcxkkePcvQok0d58ijzhOb_0N6bXbJ0HiIjFFLYrrX_2-oM9QOUOIji
CitedBy_id crossref_primary_10_1007_s10115_024_02179_3
crossref_primary_10_1007_s11227_024_06859_3
crossref_primary_10_1007_s10586_024_04785_w
crossref_primary_10_1007_s10586_024_04915_4
crossref_primary_10_1007_s11227_024_06862_8
crossref_primary_10_1038_s41598_025_87013_8
crossref_primary_10_1007_s10586_025_05169_4
Cites_doi 10.1007/0-387-25383-1_6
10.1016/j.ins.2023.01.120
10.1016/j.aej.2024.04.075
10.1007/s40747-023-01262-6
10.1016/j.cor.2013.09.010
10.1057/jors.2013.71
10.1109/TEVC.2022.3201691
10.1007/3-540-44629-X_11
10.1162/106365601750190398
10.1016/j.eswa.2023.120069
10.1016/j.enconman.2024.118387
10.1109/SSCI.2016.7850081
10.1016/j.aej.2023.12.028
10.1016/S0045-7825(01)00323-1
10.1016/j.knosys.2015.12.022
10.1016/j.advengsoft.2013.12.007
10.1016/j.aej.2022.06.017
10.1016/j.neucom.2019.12.141
10.1023/A:1015059928466
10.1016/j.engappai.2023.106004
10.1016/j.ejor.2021.10.032
10.5281/zenodo.7953206
10.1109/ICNN.1995.488968
10.1016/j.asoc.2019.105974
10.1109/UKCI.2013.6651310
10.1007/s00366-022-01604-x
10.1016/j.seta.2021.101938
10.1038/nature09116
10.1007/s10489-020-01893-z
10.1109/CEC.2014.6900380
10.1016/j.sysarc.2023.102871
10.1109/ACCESS.2017.2773825
10.1007/3-540-45712-7_45
10.1007/s00521-022-07530-9
10.1109/SSCI44817.2019.9003005
10.5281/zenodo.3620960
10.1007/s44196-023-00346-y
10.1142/S1469026822500109
10.1007/0-306-48056-5_16
10.1016/j.asoc.2022.109097
10.1016/j.enconman.2019.111932
10.1109/ICSMC.2011.6083925
10.1201/9781003337003-6
10.1016/j.swevo.2017.12.007
10.1007/BFb0055880
10.1016/j.swevo.2019.03.014
10.1016/j.ins.2020.11.023
10.1007/978-3-030-29414-4_8
10.1023/A:1008202821328
10.1109/TCC.2014.2315797
10.1007/s00158-022-03432-5
10.1007/3-540-46004-7_1
10.1038/scientificamerican0792-66
10.1016/B978-155860890-0/50008-6
10.1016/j.advengsoft.2016.01.008
10.1007/s40747-022-00937-w
10.1016/j.knosys.2015.07.006
10.1038/s41598-022-25031-6
10.1007/s10586-024-04508-1
10.1016/j.ins.2018.01.005
10.1109/4235.585893
10.1038/s41598-022-27344-y
10.1016/j.asoc.2020.106760
10.1016/j.engappai.2020.103731
10.1016/j.cageo.2020.104434
10.1109/CEC55065.2022.9870275
10.1109/CEC.2007.4424896
10.1007/0-387-25383-1_4
10.1109/IAdCC.2013.6514331
10.1109/CEC48606.2020.9185591
10.1016/j.ins.2014.02.155
10.1016/j.knosys.2022.109190
10.1007/978-1-4471-2155-8_71
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s10586-024-04593-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
EndPage 12238
ExternalDocumentID 10_1007_s10586_024_04593_2
GrantInformation_xml – fundername: JST SPRING
  grantid: JPMJSP2119
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
ADKFA
AFDZB
AFFHD
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-1f9798d0b007fc3b49a77753603711a6fe7d79b0a3a4a88bfaaa47305e25b3243
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001240748400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-7857
IngestDate Tue Dec 02 07:41:11 EST 2025
Sat Nov 29 05:40:21 EST 2025
Tue Nov 18 22:18:19 EST 2025
Fri Feb 21 02:41:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Hyper-heuristic algorithm
Evolutionary status
Low-level heuristics (LLHs)
Fitness distance correlation (FDC)
Population diversity (PD)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1f9798d0b007fc3b49a77753603711a6fe7d79b0a3a4a88bfaaa47305e25b3243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3109549615
PQPubID 2043865
PageCount 30
ParticipantIDs proquest_journals_3109549615
crossref_citationtrail_10_1007_s10586_024_04593_2
crossref_primary_10_1007_s10586_024_04593_2
springer_journals_10_1007_s10586_024_04593_2
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Sudholt, D.: The Benefits of Population Diversity in Evolutionary Algorithms: A Survey of Rigorous Runtime Analyses, pp. 359–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_8
ZhangYLiSWangYYanYZhaoJGaoZSelf-adaptive enhanced learning differential evolution with surprisingly efficient decomposition approach for parameter identification of photovoltaic modelsEnergy Convers. Manag.202430810.1016/j.enconman.2024.118387
LiWMengXHuangYFitness distance correlation and mixed search strategy for differential evolutionNeurocomputing202145851452510.1016/j.neucom.2019.12.141
StornRPriceKDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ. Glob. Optim.199711341359147955310.1023/A:1008202821328
NguyenTA framework of optimization functions using Numpy (OpFuNu) for optimization problemsZenodo202010.5281/zenodo.3620960
Özcan, E., Kheiri, A.: A hyper-heuristic based on random gradient, greedy and dominance. In: Computer and Information Sciences II, pp. 557–563. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2155-8_71
Yaguchi, K., Tamura, K., Yasuda, K., Ishigame, A.: Basic study of proximate optimality principle based combinatorial optimization method. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1753–1758 (2011). https://doi.org/10.1109/ICSMC.2011.6083925
AcharyaDDasDA novel human conception optimizer for solving optimization problemsSci. Rep.202210.1038/s41598-022-25031-6
Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a tool for rapid prototyping in scheduling and optimisation. In: Applications of Evolutionary Computing, pp. 1–10. Springer, Berlin (2002). https://doi.org/10.1007/3-540-46004-7_1
SongYZhaoGZhangBChenHDengWDengWAn enhanced distributed differential evolution algorithm for portfolio optimization problemsEng. Appl. Artif. Intell.202312110.1016/j.engappai.2023.106004
Chen, J., Bai, R., Dong, H., Qu, R., Kendall, G.: A dynamic truck dispatching problem in marine container terminal. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016). https://doi.org/10.1109/SSCI.2016.7850081
WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.199711678210.1109/4235.585893
PolákováRTvrdíkJBujokPDifferential evolution with adaptive mechanism of population size according to current population diversitySwarm Evol. Comput.20195010.1016/j.swevo.2019.03.014
HollandJHGenetic algorithmsSci. Am.19922671667310.1038/scientificamerican0792-66
Dowsland, K.A.: Off-the-peg or made-to-measure? Timetabling and scheduling with sa and ts. In: Burke, E., Carter, M. (eds.) Practice and Theory of Automated Timetabling II, pp. 37–52. Springer, Berlin, Heidelberg (1998). https://doi.org/10.1007/BFb0055880
HumphriesNQueirozNDyerJPadeNMusylMSchaeferKFullerDBrunnschweilerJDoyleTHoughtonJHaysGJonesCNobleLWearmouthVSouthallESimsDEnvironmental context explains lévy and brownian movement patterns of marine predatorsNature20104651066910.1038/nature09116
MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008
Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) Practice and Theory of Automated Timetabling III, pp. 176–190. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44629-X_11
AziziMAickelinUKhorshidiHBaghalzadeh ShishehgarkhanehMEnergy valley optimizer: a novel metaheuristic algorithm for global and engineering optimizationSci. Rep.20231322610.1038/s41598-022-27344-y
ThieuNVENOPPY: a python library for engineering optimization problemsZenodo202310.5281/zenodo.7953206
ZhongRFanQZhangCYuJHybrid remora crayfish optimization for engineering and wireless sensor network coverage optimizationCluster Comput.202410.1007/s10586-024-04508-1
HolmSA simple sequentially rejective multiple test procedureScand. J. Stat.1979626570538597
LiRZhangHZhuangQLiRChenYBp neural network and improved differential evolution for transient electromagnetic inversionComput. Geosci.202013710.1016/j.cageo.2020.104434
OparaKArabasJComparison of mutation strategies in differential evolution—a probabilistic perspectiveSwarm Evol. Comput.201839536910.1016/j.swevo.2017.12.007
KoulinasGKotsikasLAnagnostopoulosKA particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problemInf. Sci.201427768069310.1016/j.ins.2014.02.155
Ursem, R.K.: Diversity-guided evolutionary algorithms. In: Parallel Problem Solving from Nature—PPSN VII, pp. 462–471. Springer, Berlin (2002)
Dechter, R.: Chapter 7—stochastic greedy local search. In: Dechter, R. (ed.) Constraint Processing. The Morgan Kaufmann Series in Artificial Intelligence, pp. 191–208. Morgan Kaufmann, San Francisco (2003). https://doi.org/10.1016/B978-155860890-0/50008-6
YuJVegetation evolution: an optimization algorithm inspired by the life cycle of plantsInt. J. Comput. Intell. Appl.202210.1142/S1469026822500109
MahmudSAbbasiAChakraborttyRKRyanMJA self-adaptive hyper-heuristic based multi-objective optimisation approach for integrated supply chain scheduling problemsKnowl.-Based Syst.202225110.1016/j.knosys.2022.109190
Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-Heuristics: An Emerging Direction in Modern Search Technology, pp. 457–474. Springer (2003). https://doi.org/10.1007/0-306-48056-5_16
MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. Softw.201469466110.1016/j.advengsoft.2013.12.007
YuYWangKZhangTWangYPengCGaoSA population diversity-controlled differential evolution for parameter estimation of solar photovoltaic modelsSustain. Energy Technol. Assess.20225110.1016/j.seta.2021.101938
Prakash, T., Singh, P.P., Singh, V.P., Singh, S.N.: A novel brown-bear optimization algorithm for solving economic dispatch problem. In: Advanced Control & Optimization Paradigms for Energy System Operation and Management, pp. 137–164. River Publishers (2023)
ChenYGouLLiHA differential evolution based henry gas solubility optimizer for dynamic performance optimization problems of pro systemAppl. Soft Comput.202212510.1016/j.asoc.2022.109097
HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol. Comput.20019215919510.1162/106365601750190398
QiaoYLuoWLinXXuPPreussMDbcc2: an improved difficulty-based cooperative co-evolution for many-modal optimizationComplex Intell. Syst.202310.1007/s40747-022-00937-w
XuPLuoWLinXChangYTangKDifficulty and contribution based cooperative coevolution for large-scale optimizationIEEE Trans. Evolut. Comput.202210.1109/TEVC.2022.3201691
CaoPZhangYZhouKTangJA reinforcement learning hyper-heuristic in multi-objective optimization with application to structural damage identificationStruct. Multidiscip. Optim.202210.1007/s00158-022-03432-5
Bai, R., Kendall, G.: An Investigation of Automated Planograms Using a Simulated Annealing Based Hyper-Heuristic, pp. 87–108. Springer, Boston (2005). https://doi.org/10.1007/0-387-25383-1_4
ZhangY-JWangY-FYanY-XZhaoJGaoZ-MSelf-adaptive hybrid mutation slime mould algorithm: case studies on uav path planning, engineering problems, photovoltaic models and infinite impulse responseAlex. Eng. J.20249836438910.1016/j.aej.2024.04.075
TanZLiKWangYDifferential evolution with adaptive mutation strategy based on fitness landscape analysisInf. Sci.2021549142163418829310.1016/j.ins.2020.11.023
GhoshADasSMallipeddiRDasAKDashSSA modified differential evolution with distance-based selection for continuous optimization in presence of noiseIEEE Access20175269442696410.1109/ACCESS.2017.2773825
PierezanJMaidlGMassashi YamaoEdos Santos CoelhoLCocco MarianiVCultural coyote optimization algorithm applied to a heavy duty gas turbine operationEnergy Convers. Manag.201919910.1016/j.enconman.2019.111932
Kumari, A.C., Srinivas, K., Gupta, M.P.: Software module clustering using a hyper-heuristic based multi-objective genetic algorithm. In: 2013 3rd IEEE International Advance Computing Conference (IACC), pp. 813–818 (2013). https://doi.org/10.1109/IAdCC.2013.6514331
ZhongRPengFYuJMunetomoMQ-learning based vegetation evolution for numerical optimization and wireless sensor network coverage optimizationAlex. Eng. J.20248714816310.1016/j.aej.2023.12.028
LiuJLiDWuYLiuDLion swarm optimization algorithm for comparative study with application to optimal dispatch of cascade hydropower stationsAppl. Soft Comput.20208710.1016/j.asoc.2019.105974
SeyyedabbasiAKianiFSand cat swarm optimization: a nature-inspired algorithm to solve global optimization problemsEng. Comput.202210.1007/s00366-022-01604-x
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–19484 (1995). https://doi.org/10.1109/ICNN.1995.488968
DengLLiuSSnow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering designExpert Syst. Appl.202322510.1016/j.eswa.2023.120069
Van ThieuNMirjaliliSMealpy: an open-source library for latest meta-heuristic algorithms in pythonJ. Syst. Architect.202313910.1016/j.sysarc.2023.102871
RuiZJunYChaoZMasaharuMSurrogate ensemble-assisted hyper-heuristic algorithm for expensive optimization problemsInt. J. Comput. Intell. Syst.202310.1007/s44196-023-00346-y
ZhangY-JWangY-FYanY-XZhaoJGaoZ-MLmraoa: an improved arithmetic optimization algorithm with multi-leader and high-speed jumping based on opposition-based learning solving engineering and numerical problemsAlex. Eng. J.202261123671240310.1016/j.aej.2022.06.017
LocatelliMMaischbergerMSchoenFDifferential evolution methods based on local searchesComput. Oper. Res.20144316918010.1016/j.cor.2013.09.010
Pant, M., Radha, T., Singh, V.P.: A simple diversity guided particle swarm optimization. In: 2007 IEEE Congress on Evolutionary Computation, pp. 3294–3299 (2007). https://doi.org/10.1109/CEC.2007.4424896
ZhongRZhangEMunetomoMCooperative coevolutionary surrogate ensemble-assisted differential ev
S Mirjalili (4593_CR60) 2016; 96
J Liu (4593_CR75) 2020; 87
DH Wolpert (4593_CR72) 1997; 1
VA de Santiago Júnior (4593_CR74) 2020; 97
NV Thieu (4593_CR50) 2023
S Mirjalili (4593_CR73) 2014; 69
H-G Beyer (4593_CR56) 2002; 1
J Yu (4593_CR34) 2022
4593_CR17
R Poláková (4593_CR28) 2019; 50
S Mirjalili (4593_CR59) 2016; 95
4593_CR16
4593_CR19
4593_CR18
M Locatelli (4593_CR33) 2014; 43
R Storn (4593_CR55) 1997; 11
N Hansen (4593_CR57) 2001; 9
4593_CR1
4593_CR2
4593_CR11
R Zhong (4593_CR77) 2024
4593_CR10
4593_CR54
4593_CR12
N Humphries (4593_CR37) 2010; 465
Y-J Zhang (4593_CR39) 2022; 61
Y Yu (4593_CR29) 2022; 51
CA Coello Coello (4593_CR52) 2002; 191
G Koulinas (4593_CR7) 2014; 277
P Xu (4593_CR21) 2022
SS Choong (4593_CR5) 2018; 436–437
A Ezugwu (4593_CR51) 2022; 34
Z Rui (4593_CR15) 2023
Y Song (4593_CR66) 2023; 121
J Pierezan (4593_CR76) 2019; 199
S Holm (4593_CR71) 1979; 6
Y Zhang (4593_CR42) 2024; 308
K Opara (4593_CR45) 2018; 39
C Li (4593_CR30) 2023
R Li (4593_CR65) 2020; 137
EH Houssein (4593_CR36) 2020; 94
A Seyyedabbasi (4593_CR38) 2022
4593_CR70
EK Burke (4593_CR4) 2013; 64
A Ghosh (4593_CR26) 2017; 5
W Li (4593_CR22) 2021; 458
M Azizi (4593_CR43) 2023; 13
L Deng (4593_CR62) 2023; 225
D Acharya (4593_CR61) 2022
4593_CR31
P Cao (4593_CR14) 2022
T Nguyen (4593_CR49) 2020
4593_CR32
4593_CR35
Y Chen (4593_CR41) 2022; 125
4593_CR6
4593_CR3
Y Qiao (4593_CR20) 2023
JH Holland (4593_CR53) 1992; 267
Z Tan (4593_CR23) 2021; 549
N Van Thieu (4593_CR48) 2023; 139
C-W Tsai (4593_CR8) 2014; 2
4593_CR27
Y-J Zhang (4593_CR44) 2024; 98
R Zhong (4593_CR46) 2023
R Zhong (4593_CR47) 2024; 87
Y Zhang (4593_CR9) 2022; 300
4593_CR64
4593_CR63
4593_CR24
4593_CR68
4593_CR67
S Mirjalili (4593_CR58) 2015; 89
S Mahmud (4593_CR13) 2022; 251
4593_CR25
FA Hashim (4593_CR40) 2021; 51
4593_CR69
References_xml – reference: ZhongRPengFYuJMunetomoMQ-learning based vegetation evolution for numerical optimization and wireless sensor network coverage optimizationAlex. Eng. J.20248714816310.1016/j.aej.2023.12.028
– reference: AziziMAickelinUKhorshidiHBaghalzadeh ShishehgarkhanehMEnergy valley optimizer: a novel metaheuristic algorithm for global and engineering optimizationSci. Rep.20231322610.1038/s41598-022-27344-y
– reference: QiaoYLuoWLinXXuPPreussMDbcc2: an improved difficulty-based cooperative co-evolution for many-modal optimizationComplex Intell. Syst.202310.1007/s40747-022-00937-w
– reference: SeyyedabbasiAKianiFSand cat swarm optimization: a nature-inspired algorithm to solve global optimization problemsEng. Comput.202210.1007/s00366-022-01604-x
– reference: ZhangY-JWangY-FYanY-XZhaoJGaoZ-MSelf-adaptive hybrid mutation slime mould algorithm: case studies on uav path planning, engineering problems, photovoltaic models and infinite impulse responseAlex. Eng. J.20249836438910.1016/j.aej.2024.04.075
– reference: de Santiago JúniorVAÖzcanEde CarvalhoVRHyper-heuristics based on reinforcement learning, balanced heuristic selection and group decision acceptanceAppl. Soft Comput.20209710.1016/j.asoc.2020.106760
– reference: ZhangYLiSWangYYanYZhaoJGaoZSelf-adaptive enhanced learning differential evolution with surprisingly efficient decomposition approach for parameter identification of photovoltaic modelsEnergy Convers. Manag.202430810.1016/j.enconman.2024.118387
– reference: Van ThieuNMirjaliliSMealpy: an open-source library for latest meta-heuristic algorithms in pythonJ. Syst. Architect.202313910.1016/j.sysarc.2023.102871
– reference: SongYZhaoGZhangBChenHDengWDengWAn enhanced distributed differential evolution algorithm for portfolio optimization problemsEng. Appl. Artif. Intell.202312110.1016/j.engappai.2023.106004
– reference: ChoongSSWongL-PLimCPAutomatic design of hyper-heuristic based on reinforcement learningInf. Sci.2018436–43789107376381710.1016/j.ins.2018.01.005
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. Softw.201469466110.1016/j.advengsoft.2013.12.007
– reference: Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665 (2014). https://doi.org/10.1109/CEC.2014.6900380
– reference: Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–19484 (1995). https://doi.org/10.1109/ICNN.1995.488968
– reference: MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl.-Based Syst.20158922824910.1016/j.knosys.2015.07.006
– reference: Pant, M., Radha, T., Singh, V.P.: A simple diversity guided particle swarm optimization. In: 2007 IEEE Congress on Evolutionary Computation, pp. 3294–3299 (2007). https://doi.org/10.1109/CEC.2007.4424896
– reference: OparaKArabasJComparison of mutation strategies in differential evolution—a probabilistic perspectiveSwarm Evol. Comput.201839536910.1016/j.swevo.2017.12.007
– reference: ZhangY-JWangY-FYanY-XZhaoJGaoZ-MLmraoa: an improved arithmetic optimization algorithm with multi-leader and high-speed jumping based on opposition-based learning solving engineering and numerical problemsAlex. Eng. J.202261123671240310.1016/j.aej.2022.06.017
– reference: Jackson, W.G., Özcan, E., Drake, J.H.: Late acceptance-based selection hyper-heuristics for cross-domain heuristic search. In: 2013 13th UK Workshop on Computational Intelligence (UKCI), pp. 228–235 (2013). https://doi.org/10.1109/UKCI.2013.6651310
– reference: DengLLiuSSnow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering designExpert Syst. Appl.202322510.1016/j.eswa.2023.120069
– reference: YuJVegetation evolution: an optimization algorithm inspired by the life cycle of plantsInt. J. Comput. Intell. Appl.202210.1142/S1469026822500109
– reference: HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol. Comput.20019215919510.1162/106365601750190398
– reference: Bai, R., Kendall, G.: An Investigation of Automated Planograms Using a Simulated Annealing Based Hyper-Heuristic, pp. 87–108. Springer, Boston (2005). https://doi.org/10.1007/0-387-25383-1_4
– reference: ZhangYBaiRQuRTuCJinJA deep reinforcement learning based hyper-heuristic for combinatorial optimisation with uncertaintiesEur. J. Oper. Res.20223002418427439091910.1016/j.ejor.2021.10.032
– reference: LocatelliMMaischbergerMSchoenFDifferential evolution methods based on local searchesComput. Oper. Res.20144316918010.1016/j.cor.2013.09.010
– reference: Coello CoelloCATheoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the artComput. Methods Appl. Mech. Eng.20021911112451287187768410.1016/S0045-7825(01)00323-1
– reference: FISHER, H.: Probabilistic learning combinations of local job-shop scheduling rules. Industrial Scheduling (1963)
– reference: HollandJHGenetic algorithmsSci. Am.19922671667310.1038/scientificamerican0792-66
– reference: BurkeEKGendreauMHydeMKendallGOchoaGÖzcanEQuRHyper-heuristics: a survey of the state of the artJ. Oper. Res. Soc.201364121695172410.1057/jors.2013.71
– reference: TanZLiKWangYDifferential evolution with adaptive mutation strategy based on fitness landscape analysisInf. Sci.2021549142163418829310.1016/j.ins.2020.11.023
– reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.199711678210.1109/4235.585893
– reference: NguyenTA framework of optimization functions using Numpy (OpFuNu) for optimization problemsZenodo202010.5281/zenodo.3620960
– reference: Ursem, R.K.: Diversity-guided evolutionary algorithms. In: Parallel Problem Solving from Nature—PPSN VII, pp. 462–471. Springer, Berlin (2002)
– reference: PierezanJMaidlGMassashi YamaoEdos Santos CoelhoLCocco MarianiVCultural coyote optimization algorithm applied to a heavy duty gas turbine operationEnergy Convers. Manag.201919910.1016/j.enconman.2019.111932
– reference: LiRZhangHZhuangQLiRChenYBp neural network and improved differential evolution for transient electromagnetic inversionComput. Geosci.202013710.1016/j.cageo.2020.104434
– reference: HolmSA simple sequentially rejective multiple test procedureScand. J. Stat.1979626570538597
– reference: ChenYGouLLiHA differential evolution based henry gas solubility optimizer for dynamic performance optimization problems of pro systemAppl. Soft Comput.202212510.1016/j.asoc.2022.109097
– reference: GhoshADasSMallipeddiRDasAKDashSSA modified differential evolution with distance-based selection for continuous optimization in presence of noiseIEEE Access20175269442696410.1109/ACCESS.2017.2773825
– reference: Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-Heuristics: An Emerging Direction in Modern Search Technology, pp. 457–474. Springer (2003). https://doi.org/10.1007/0-306-48056-5_16
– reference: PolákováRTvrdíkJBujokPDifferential evolution with adaptive mechanism of population size according to current population diversitySwarm Evol. Comput.20195010.1016/j.swevo.2019.03.014
– reference: HumphriesNQueirozNDyerJPadeNMusylMSchaeferKFullerDBrunnschweilerJDoyleTHoughtonJHaysGJonesCNobleLWearmouthVSouthallESimsDEnvironmental context explains lévy and brownian movement patterns of marine predatorsNature20104651066910.1038/nature09116
– reference: RuiZJunYChaoZMasaharuMSurrogate ensemble-assisted hyper-heuristic algorithm for expensive optimization problemsInt. J. Comput. Intell. Syst.202310.1007/s44196-023-00346-y
– reference: Yaguchi, K., Tamura, K., Yasuda, K., Ishigame, A.: Basic study of proximate optimality principle based combinatorial optimization method. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1753–1758 (2011). https://doi.org/10.1109/ICSMC.2011.6083925
– reference: ZhongRZhangEMunetomoMCooperative coevolutionary surrogate ensemble-assisted differential evolution with efficient dual differential grouping for large-scale expensive optimization problemsComplex Intell. Syst.202310.1007/s40747-023-01262-6
– reference: Luo, W., Qiao, Y., Lin, X., Xu, P., Preuss, M.: Many-modal optimization by difficulty-based cooperative co-evolution. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1907–1914 (2019). https://doi.org/10.1109/SSCI44817.2019.9003005
– reference: Kumari, A.C., Srinivas, K., Gupta, M.P.: Software module clustering using a hyper-heuristic based multi-objective genetic algorithm. In: 2013 3rd IEEE International Advance Computing Conference (IACC), pp. 813–818 (2013). https://doi.org/10.1109/IAdCC.2013.6514331
– reference: EzugwuAAgushakaOAbualigahLMirjaliliSGandomiAPrairie dog optimization algorithmNeural Comput. Appl.202234200172006510.1007/s00521-022-07530-9
– reference: Cowling, P.I., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: International Conference on the Practice and Theory of Automated Timetabling (2000)
– reference: LiCSunG-JDengLLi-yanQYangGA population state evaluation-based improvement framework for differential evolutionInf. Sci.202310.1016/j.ins.2023.01.120
– reference: Özcan, E., Kheiri, A.: A hyper-heuristic based on random gradient, greedy and dominance. In: Computer and Information Sciences II, pp. 557–563. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2155-8_71
– reference: Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann Publishers Inc., San Francisco (1995)
– reference: CaoPZhangYZhouKTangJA reinforcement learning hyper-heuristic in multi-objective optimization with application to structural damage identificationStruct. Multidiscip. Optim.202210.1007/s00158-022-03432-5
– reference: Cruz-Duarte, J.M., Amaya, I., Ortiz-Bayliss, J.C., Conant-Pablos, S.E., Terashima-Marín, H.: A primary study on hyper-heuristics to customise metaheuristics for continuous optimisation. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2020). https://doi.org/10.1109/CEC48606.2020.9185591
– reference: Sudholt, D.: The Benefits of Population Diversity in Evolutionary Algorithms: A Survey of Rigorous Runtime Analyses, pp. 359–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_8
– reference: HashimFAHussainKHousseinEMabroukMAl-AtabanyWArchimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problemsAppl. Intell.20215112110.1007/s10489-020-01893-z
– reference: TsaiC-WHuangW-CChiangM-HChiangM-CYangC-SA hyper-heuristic scheduling algorithm for cloudIEEE Trans. Cloud Comput.20142223625010.1109/TCC.2014.2315797
– reference: LiWMengXHuangYFitness distance correlation and mixed search strategy for differential evolutionNeurocomputing202145851452510.1016/j.neucom.2019.12.141
– reference: Prakash, T., Singh, P.P., Singh, V.P., Singh, S.N.: A novel brown-bear optimization algorithm for solving economic dispatch problem. In: Advanced Control & Optimization Paradigms for Energy System Operation and Management, pp. 137–164. River Publishers (2023)
– reference: ZhongRFanQZhangCYuJHybrid remora crayfish optimization for engineering and wireless sensor network coverage optimizationCluster Comput.202410.1007/s10586-024-04508-1
– reference: MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl.-Based Syst.20169612013310.1016/j.knosys.2015.12.022
– reference: Burke, E.K., Silva, J.D.L., Soubeiga, E.: Multi-objective hyper-heuristic approaches for space allocation and timetabling, pp. 129–158. Springer, Boston (2005). https://doi.org/10.1007/0-387-25383-1_6
– reference: LiuJLiDWuYLiuDLion swarm optimization algorithm for comparative study with application to optimal dispatch of cascade hydropower stationsAppl. Soft Comput.20208710.1016/j.asoc.2019.105974
– reference: BeyerH-GSchwefelH-PEvolution strategies—a comprehensive introductionNat. Comput.20021352190749210.1023/A:1015059928466
– reference: Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) Practice and Theory of Automated Timetabling III, pp. 176–190. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44629-X_11
– reference: XuPLuoWLinXChangYTangKDifficulty and contribution based cooperative coevolution for large-scale optimizationIEEE Trans. Evolut. Comput.202210.1109/TEVC.2022.3201691
– reference: StornRPriceKDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ. Glob. Optim.199711341359147955310.1023/A:1008202821328
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008
– reference: Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a tool for rapid prototyping in scheduling and optimisation. In: Applications of Evolutionary Computing, pp. 1–10. Springer, Berlin (2002). https://doi.org/10.1007/3-540-46004-7_1
– reference: Dechter, R.: Chapter 7—stochastic greedy local search. In: Dechter, R. (ed.) Constraint Processing. The Morgan Kaufmann Series in Artificial Intelligence, pp. 191–208. Morgan Kaufmann, San Francisco (2003). https://doi.org/10.1016/B978-155860890-0/50008-6
– reference: HousseinEHSaadMRHashimFAShabanHHassaballahMLévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problemsEng. Appl. Artif. Intell.20209410.1016/j.engappai.2020.103731
– reference: Tapia-Avitia, J.M., Cruz-Duarte, J.M., Amaya, I., Ortiz-Bayliss, J.C., Terashima-Marin, H., Pillay, N.: A primary study on hyper-heuristics powered by artificial neural networks for customising population-based metaheuristics in continuous optimisation problems. In: 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2022). https://doi.org/10.1109/CEC55065.2022.9870275
– reference: YuYWangKZhangTWangYPengCGaoSA population diversity-controlled differential evolution for parameter estimation of solar photovoltaic modelsSustain. Energy Technol. Assess.20225110.1016/j.seta.2021.101938
– reference: ThieuNVENOPPY: a python library for engineering optimization problemsZenodo202310.5281/zenodo.7953206
– reference: Dowsland, K.A.: Off-the-peg or made-to-measure? Timetabling and scheduling with sa and ts. In: Burke, E., Carter, M. (eds.) Practice and Theory of Automated Timetabling II, pp. 37–52. Springer, Berlin, Heidelberg (1998). https://doi.org/10.1007/BFb0055880
– reference: MahmudSAbbasiAChakraborttyRKRyanMJA self-adaptive hyper-heuristic based multi-objective optimisation approach for integrated supply chain scheduling problemsKnowl.-Based Syst.202225110.1016/j.knosys.2022.109190
– reference: AcharyaDDasDA novel human conception optimizer for solving optimization problemsSci. Rep.202210.1038/s41598-022-25031-6
– reference: KoulinasGKotsikasLAnagnostopoulosKA particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problemInf. Sci.201427768069310.1016/j.ins.2014.02.155
– reference: Chen, J., Bai, R., Dong, H., Qu, R., Kendall, G.: A dynamic truck dispatching problem in marine container terminal. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016). https://doi.org/10.1109/SSCI.2016.7850081
– ident: 4593_CR11
  doi: 10.1007/0-387-25383-1_6
– ident: 4593_CR18
– year: 2023
  ident: 4593_CR30
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.01.120
– volume: 98
  start-page: 364
  year: 2024
  ident: 4593_CR44
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2024.04.075
– year: 2023
  ident: 4593_CR46
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-023-01262-6
– volume: 43
  start-page: 169
  year: 2014
  ident: 4593_CR33
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.09.010
– volume: 64
  start-page: 1695
  issue: 12
  year: 2013
  ident: 4593_CR4
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.2013.71
– year: 2022
  ident: 4593_CR21
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2022.3201691
– ident: 4593_CR67
  doi: 10.1007/3-540-44629-X_11
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  ident: 4593_CR57
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190398
– volume: 225
  year: 2023
  ident: 4593_CR62
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120069
– volume: 308
  year: 2024
  ident: 4593_CR42
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2024.118387
– ident: 4593_CR10
  doi: 10.1109/SSCI.2016.7850081
– volume: 87
  start-page: 148
  year: 2024
  ident: 4593_CR47
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.12.028
– volume: 191
  start-page: 1245
  issue: 11
  year: 2002
  ident: 4593_CR52
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(01)00323-1
– volume: 96
  start-page: 120
  year: 2016
  ident: 4593_CR60
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 69
  start-page: 46
  year: 2014
  ident: 4593_CR73
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 61
  start-page: 12367
  year: 2022
  ident: 4593_CR39
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.06.017
– volume: 458
  start-page: 514
  year: 2021
  ident: 4593_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.141
– volume: 1
  start-page: 3
  year: 2002
  ident: 4593_CR56
  publication-title: Nat. Comput.
  doi: 10.1023/A:1015059928466
– volume: 121
  year: 2023
  ident: 4593_CR66
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106004
– volume: 300
  start-page: 418
  issue: 2
  year: 2022
  ident: 4593_CR9
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2021.10.032
– year: 2023
  ident: 4593_CR50
  publication-title: Zenodo
  doi: 10.5281/zenodo.7953206
– ident: 4593_CR54
  doi: 10.1109/ICNN.1995.488968
– volume: 6
  start-page: 65
  issue: 2
  year: 1979
  ident: 4593_CR71
  publication-title: Scand. J. Stat.
– volume: 87
  year: 2020
  ident: 4593_CR75
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105974
– ident: 4593_CR68
  doi: 10.1109/UKCI.2013.6651310
– year: 2022
  ident: 4593_CR38
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01604-x
– volume: 51
  year: 2022
  ident: 4593_CR29
  publication-title: Sustain. Energy Technol. Assess.
  doi: 10.1016/j.seta.2021.101938
– ident: 4593_CR2
  doi: 10.1007/3-540-44629-X_11
– volume: 465
  start-page: 1066
  year: 2010
  ident: 4593_CR37
  publication-title: Nature
  doi: 10.1038/nature09116
– volume: 51
  start-page: 1
  year: 2021
  ident: 4593_CR40
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01893-z
– ident: 4593_CR64
  doi: 10.1109/CEC.2014.6900380
– volume: 139
  year: 2023
  ident: 4593_CR48
  publication-title: J. Syst. Architect.
  doi: 10.1016/j.sysarc.2023.102871
– volume: 5
  start-page: 26944
  year: 2017
  ident: 4593_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2773825
– ident: 4593_CR19
  doi: 10.1007/3-540-45712-7_45
– volume: 34
  start-page: 20017
  year: 2022
  ident: 4593_CR51
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07530-9
– ident: 4593_CR24
  doi: 10.1109/SSCI44817.2019.9003005
– year: 2020
  ident: 4593_CR49
  publication-title: Zenodo
  doi: 10.5281/zenodo.3620960
– year: 2023
  ident: 4593_CR15
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1007/s44196-023-00346-y
– year: 2022
  ident: 4593_CR34
  publication-title: Int. J. Comput. Intell. Appl.
  doi: 10.1142/S1469026822500109
– ident: 4593_CR31
  doi: 10.1007/0-306-48056-5_16
– ident: 4593_CR1
– volume: 125
  year: 2022
  ident: 4593_CR41
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109097
– volume: 199
  year: 2019
  ident: 4593_CR76
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111932
– ident: 4593_CR35
  doi: 10.1109/ICSMC.2011.6083925
– ident: 4593_CR63
  doi: 10.1201/9781003337003-6
– volume: 39
  start-page: 53
  year: 2018
  ident: 4593_CR45
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.12.007
– ident: 4593_CR3
  doi: 10.1007/BFb0055880
– volume: 50
  year: 2019
  ident: 4593_CR28
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.03.014
– volume: 549
  start-page: 142
  year: 2021
  ident: 4593_CR23
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.11.023
– ident: 4593_CR27
  doi: 10.1007/978-3-030-29414-4_8
– volume: 11
  start-page: 341
  year: 1997
  ident: 4593_CR55
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 2
  start-page: 236
  issue: 2
  year: 2014
  ident: 4593_CR8
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2014.2315797
– year: 2022
  ident: 4593_CR14
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-022-03432-5
– ident: 4593_CR70
  doi: 10.1007/3-540-46004-7_1
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 4593_CR53
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– ident: 4593_CR32
  doi: 10.1016/B978-155860890-0/50008-6
– volume: 95
  start-page: 51
  year: 2016
  ident: 4593_CR59
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– year: 2023
  ident: 4593_CR20
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-022-00937-w
– volume: 89
  start-page: 228
  year: 2015
  ident: 4593_CR58
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– year: 2022
  ident: 4593_CR61
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-25031-6
– year: 2024
  ident: 4593_CR77
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-024-04508-1
– volume: 436–437
  start-page: 89
  year: 2018
  ident: 4593_CR5
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.01.005
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 4593_CR72
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 13
  start-page: 226
  year: 2023
  ident: 4593_CR43
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-27344-y
– volume: 97
  year: 2020
  ident: 4593_CR74
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106760
– volume: 94
  year: 2020
  ident: 4593_CR36
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103731
– volume: 137
  year: 2020
  ident: 4593_CR65
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2020.104434
– ident: 4593_CR17
  doi: 10.1109/CEC55065.2022.9870275
– ident: 4593_CR25
  doi: 10.1109/CEC.2007.4424896
– ident: 4593_CR6
  doi: 10.1007/0-387-25383-1_4
– ident: 4593_CR12
  doi: 10.1109/IAdCC.2013.6514331
– ident: 4593_CR16
  doi: 10.1109/CEC48606.2020.9185591
– volume: 277
  start-page: 680
  year: 2014
  ident: 4593_CR7
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.155
– volume: 251
  year: 2022
  ident: 4593_CR13
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109190
– ident: 4593_CR69
  doi: 10.1007/978-1-4471-2155-8_71
SSID ssj0009729
Score 2.3896353
Snippet This paper proposes a novel evolutionary status guided hyper-heuristic algorithm named ES-HHA for continuous optimization. A representative hyper-heuristic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12209
SubjectTerms Ablation
Computer Communication Networks
Computer Science
Design
Design optimization
Distance learning
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Heuristic
Heuristic methods
Mutation
Operating Systems
Operators (mathematics)
Optimization techniques
Performance evaluation
Processor Architectures
Statistical analysis
Task complexity
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA46PXhxfuJ0Sg7eNLg2TZOcZIjDg4wdVIaXkqbpNtja2Y-B_96kSy0K7uK1TdPS9zPJ-z4PANdU-I6STCIVG1BtTgli0mco1J4Pu4r3eNXH_fZMh0M2HvOR3XDLbVll7RMrRx2l0uyR3xkES72W0QH4fvmBDGuUOV21FBrbYMegJBjqhhF5b0B3acVS5mDmI8oItU0ztnWOMFN-a8owCMfI_RmYmmzz1wFpFXcG7f9-8QHYtxkn7K9V5BBsqeQItGs2B2iN-xiM-zBJV2oO1cqqo8g-oWk4KnM4KWeRiuBUr1ozNFXlGt8ZivlEv7GYLqDOfaEpe58lZarHp9oTLWyL5wl4HTy-PDwhy7uApDbIAjkxp5xFPW2RNJY49LigVC9rfAPv5wg_VjSiPOwJLDzBWBgLITztKYhySagTNHwKWkmaqDMAdQZh-Mw9JxbKU24seq5UHo4wpfoK8TvAqX96IC0oueHGmAcNnLIRVKAFFVSCCtwOuPl-ZrmG5Ng4ultLJ7DmmQeNaDrgtpZvc_vv2c43z3YB9lyjUlW5Sxe0iqxUl2BXropZnl1VyvkFLzrp5Q
  priority: 102
  providerName: ProQuest
Title A novel evolutionary status guided hyper-heuristic algorithm for continuous optimization
URI https://link.springer.com/article/10.1007/s10586-024-04593-2
https://www.proquest.com/docview/3109549615
Volume 27
WOSCitedRecordID wos001240748400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: P5Z
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: K7-
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: BENPR
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60evBifWJ9lD1404XmubvHKhZBKcVHKV7CJtnYQptI2hT8986mG6uigl5ySGaXMO9lZ74BOGXSt1TEI6oSDaotmEd55HMaoudzbCVaouzj7t-ybpcPBqJnmsKmVbV7dSVZeuoPzW4e1wWzunDCEw5Fx7uG4Y7rgQ139_0l1C4rZ5NZDlIz7jHTKvP9Hp_D0TLH_HItWkabTv1__7kFmya7JO2FOmzDikp3oF5NbiDGkHdh0CZpNldjouZG9WT-SnRzUTElz8UoVjEZ4gk1p0NVLLCciRw_Z_loNpwQzHOJLnEfpUWG9Bl6nYlp59yDx87Vw-U1NTMWaITGN6NWIpjgcQutjyWRE7pCMoZHGF9D-VnSTxSLmQhb0pGu5DxMpJQuegVP2V6IyZizD7U0S9UBEMwW9Oxy10qkcpWdyJYdKdeJHcbwjec3wKpYHUQGgFzPwRgHS-hkzboAWReUrAvsBpy9r3lZwG_8Sn1cSTAwpjgNNPQpHoIxc2vAeSWx5eefdzv8G_kRbNha6GWpyzHUZnmhTmA9ms9G07wJaxdX3d5dE1ZvGMVnz3tqlmr7Bg5w40I
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH7aCtK4MH4MUbaBD3ACa42dxPZhmqaNaVNLxWGg3oLjOGulLhlt06n_FH8jz6lDxCR224FrYlty_L3n5_i97wN4L3QcWCMNtbkj1VYiotLEkqbo-TizqqfqOu7vAzEcytFIfd2AX00tjEurbHxi7aiz0rh_5AeOwRLPMrgBH938pE41yt2uNhIaa1j07eoWj2zzw4tTXN8PjJ19vjw5p15VgBqE24IGuRJKZj3Em8gNT0OlhcCgPXbkdYGOcysyodKe5jrUUqa51jpEO4gsi1IMPziOuwmPQi6Fs6u-oC3Jr6hV0QIuYypkJHyRji_Vi6RL93VpH5HilP29EbbR7Z0L2XqfO9v-377QM3jqI2pyvDaB57Bhixew3ahVEO-8XsLomBTl0k6JXXpz07MVcQVV1ZxcVZPMZmSMp_IZHdtqzV9N9PQKZ7gYXxOM7YlL658UVYntS_S0176EdQe-Pcj8XkGnKAv7GghGSE6vPQxybUPLct1jxoY840LgkyjuQtAscmI86brT_pgmLV20A0aCwEhqYCSsCx__9LlZU47c23qvQUPi3c88aaHQhU8NntrX_x7tzf2jvYOt88svg2RwMezvwhPm4Fyn9uxBZzGr7D48NsvFZD57WxsGgR8PjbPfMSNFCw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRXxxfuJ0ah5807J-J3kc6lAcY6COvZW0TbfC1o6uHfjfe-mHnaKC-NpeQrjkLnfkfr9D6IpwWxMe9RQRSFJtRiyFejZVXPB8hi6YynIc96hPBgM6HrPhGoo_r3avniQLTINkaYrSzsIPOmvAN4vK4llZRGExQwEnvGnKQnqZrz-Patpdkvcp0wyQJtQiJWzm-zk-X011vPnliTS_eXrN_695D-2WUSfuFsdkH22I6AA1q44OuDTwQzTu4iheiRkWq_JI8uQNS9BRtsSTLPSFj6eQuSbKVGQFxzPms0mchOl0jiH-xXJNYZTFIB-DN5qXMM8j9Nq7f7l9UMreC4oHRpkqWsAIo74KVkkCz3BNxgmB1MaWFH8atwNBfMJclRvc5JS6AefcBG9hCd1yIUgzjlEjiiNxgjBEEbKnuakFXJhCD7iqe8I0fIMQ-GLZLaRVane8kphc9seYOTWlslSdA6pzctU5egtdf4xZFLQcv0q3q910ShNdOpISFZJjiOha6Kbavfr3z7Od_k38Em0P73pO_3HwdIZ2dLn_eTVMGzXSJBPnaMtbpeEyuchP7jugCeug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+evolutionary+status+guided+hyper-heuristic+algorithm+for+continuous+optimization&rft.jtitle=Cluster+computing&rft.au=Zhong%2C+Rui&rft.au=Yu%2C+Jun&rft.date=2024-12-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=27&rft.issue=9&rft.spage=12209&rft.epage=12238&rft_id=info:doi/10.1007%2Fs10586-024-04593-2&rft.externalDocID=10_1007_s10586_024_04593_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon