A novel evolutionary status guided hyper-heuristic algorithm for continuous optimization
This paper proposes a novel evolutionary status guided hyper-heuristic algorithm named ES-HHA for continuous optimization. A representative hyper-heuristic algorithm consists of two components: the low-level component and the high-level component. In the low-level component, to balance the exploitat...
Gespeichert in:
| Veröffentlicht in: | Cluster computing Jg. 27; H. 9; S. 12209 - 12238 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.12.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1386-7857, 1573-7543 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper proposes a novel evolutionary status guided hyper-heuristic algorithm named ES-HHA for continuous optimization. A representative hyper-heuristic algorithm consists of two components: the low-level component and the high-level component. In the low-level component, to balance the exploitation and exploration during optimization, we design an exploitative operator pool and an explorative operator pool as low-level heuristics (LLHs), where the former is constructed using local search based operators, and the latter consists of various mutation operators from differential evolution (DE). In the high-level component, we design a probabilistic selection function based on the fitness distance correlation (FDC) and the population diversity (PD). Since these two metrics can reflect the complexity of the fitness landscape and the status of the evolutionary swarm, the integration of these two metrics is expected to determine the sequence of heuristics automatically and intelligently. To evaluate the performance of our proposal, we implement comprehensive numerical experiments on CEC2014, CEC2022, and eight engineering optimization tasks. A total of 14 famous optimization approaches are adopted as competitors. Furthermore, the ablation experiment is conducted to evaluate the high-level component independently, while the sensitivity experiment contributes to determining the optimal hyperparameter setting. The experimental results and statistical analysis show that ES-HHA is competitive, and the evolutionary status guided probabilistic selection function can determine the optimization intelligently. |
|---|---|
| AbstractList | This paper proposes a novel evolutionary status guided hyper-heuristic algorithm named ES-HHA for continuous optimization. A representative hyper-heuristic algorithm consists of two components: the low-level component and the high-level component. In the low-level component, to balance the exploitation and exploration during optimization, we design an exploitative operator pool and an explorative operator pool as low-level heuristics (LLHs), where the former is constructed using local search based operators, and the latter consists of various mutation operators from differential evolution (DE). In the high-level component, we design a probabilistic selection function based on the fitness distance correlation (FDC) and the population diversity (PD). Since these two metrics can reflect the complexity of the fitness landscape and the status of the evolutionary swarm, the integration of these two metrics is expected to determine the sequence of heuristics automatically and intelligently. To evaluate the performance of our proposal, we implement comprehensive numerical experiments on CEC2014, CEC2022, and eight engineering optimization tasks. A total of 14 famous optimization approaches are adopted as competitors. Furthermore, the ablation experiment is conducted to evaluate the high-level component independently, while the sensitivity experiment contributes to determining the optimal hyperparameter setting. The experimental results and statistical analysis show that ES-HHA is competitive, and the evolutionary status guided probabilistic selection function can determine the optimization intelligently. |
| Author | Zhong, Rui Yu, Jun |
| Author_xml | – sequence: 1 givenname: Rui surname: Zhong fullname: Zhong, Rui organization: Graduate School of Information Science and Technology, Hokkaido University – sequence: 2 givenname: Jun surname: Yu fullname: Yu, Jun email: yujun@ie.niigata-u.ac.jp organization: Institute of Science and Technology, Niigata University |
| BookMark | eNp9kE1rwyAYx2V0sLbbF9hJ2DmbRo3xWMreoLDLBruJSUxrSTVTU-g-_WwzGOzQkw_4_z0vvxmYWGc1ALcY3WOE-EPAiJVFhnKaIcoEyfILMMWMk4wzSiapJumbl4xfgVkIW4SQ4LmYgs8FtG6vO6j3rhuicVb5AwxRxSHA9WAa3cDNodc-2-jBmxBNDVW3dt7EzQ62zsPa2Wjs4FLe9dHszLc6trkGl63qgr75fefg4-nxffmSrd6eX5eLVVYTLGKGW8FF2aAqXdHWpKJCcc4ZKRDhGKui1bzhokKKKKrKsmqVUpQTxHTOKpJTMgd3Y9_eu69Bhyi3bvA2jZQEI8GoKDBLqXJM1d6F4HUraxNPe0avTCcxkkePcvQok0d58ijzhOb_0N6bXbJ0HiIjFFLYrrX_2-oM9QOUOIji |
| CitedBy_id | crossref_primary_10_1007_s10115_024_02179_3 crossref_primary_10_1007_s11227_024_06859_3 crossref_primary_10_1007_s10586_024_04785_w crossref_primary_10_1007_s10586_024_04915_4 crossref_primary_10_1007_s11227_024_06862_8 crossref_primary_10_1038_s41598_025_87013_8 crossref_primary_10_1007_s10586_025_05169_4 |
| Cites_doi | 10.1007/0-387-25383-1_6 10.1016/j.ins.2023.01.120 10.1016/j.aej.2024.04.075 10.1007/s40747-023-01262-6 10.1016/j.cor.2013.09.010 10.1057/jors.2013.71 10.1109/TEVC.2022.3201691 10.1007/3-540-44629-X_11 10.1162/106365601750190398 10.1016/j.eswa.2023.120069 10.1016/j.enconman.2024.118387 10.1109/SSCI.2016.7850081 10.1016/j.aej.2023.12.028 10.1016/S0045-7825(01)00323-1 10.1016/j.knosys.2015.12.022 10.1016/j.advengsoft.2013.12.007 10.1016/j.aej.2022.06.017 10.1016/j.neucom.2019.12.141 10.1023/A:1015059928466 10.1016/j.engappai.2023.106004 10.1016/j.ejor.2021.10.032 10.5281/zenodo.7953206 10.1109/ICNN.1995.488968 10.1016/j.asoc.2019.105974 10.1109/UKCI.2013.6651310 10.1007/s00366-022-01604-x 10.1016/j.seta.2021.101938 10.1038/nature09116 10.1007/s10489-020-01893-z 10.1109/CEC.2014.6900380 10.1016/j.sysarc.2023.102871 10.1109/ACCESS.2017.2773825 10.1007/3-540-45712-7_45 10.1007/s00521-022-07530-9 10.1109/SSCI44817.2019.9003005 10.5281/zenodo.3620960 10.1007/s44196-023-00346-y 10.1142/S1469026822500109 10.1007/0-306-48056-5_16 10.1016/j.asoc.2022.109097 10.1016/j.enconman.2019.111932 10.1109/ICSMC.2011.6083925 10.1201/9781003337003-6 10.1016/j.swevo.2017.12.007 10.1007/BFb0055880 10.1016/j.swevo.2019.03.014 10.1016/j.ins.2020.11.023 10.1007/978-3-030-29414-4_8 10.1023/A:1008202821328 10.1109/TCC.2014.2315797 10.1007/s00158-022-03432-5 10.1007/3-540-46004-7_1 10.1038/scientificamerican0792-66 10.1016/B978-155860890-0/50008-6 10.1016/j.advengsoft.2016.01.008 10.1007/s40747-022-00937-w 10.1016/j.knosys.2015.07.006 10.1038/s41598-022-25031-6 10.1007/s10586-024-04508-1 10.1016/j.ins.2018.01.005 10.1109/4235.585893 10.1038/s41598-022-27344-y 10.1016/j.asoc.2020.106760 10.1016/j.engappai.2020.103731 10.1016/j.cageo.2020.104434 10.1109/CEC55065.2022.9870275 10.1109/CEC.2007.4424896 10.1007/0-387-25383-1_4 10.1109/IAdCC.2013.6514331 10.1109/CEC48606.2020.9185591 10.1016/j.ins.2014.02.155 10.1016/j.knosys.2022.109190 10.1007/978-1-4471-2155-8_71 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s10586-024-04593-2 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| EndPage | 12238 |
| ExternalDocumentID | 10_1007_s10586_024_04593_2 |
| GrantInformation_xml | – fundername: JST SPRING grantid: JPMJSP2119 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29B 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9O PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ ADHKG ADKFA AFDZB AFFHD AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-1f9798d0b007fc3b49a77753603711a6fe7d79b0a3a4a88bfaaa47305e25b3243 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001240748400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-7857 |
| IngestDate | Tue Dec 02 07:41:11 EST 2025 Sat Nov 29 05:40:21 EST 2025 Tue Nov 18 22:18:19 EST 2025 Fri Feb 21 02:41:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Hyper-heuristic algorithm Evolutionary status Low-level heuristics (LLHs) Fitness distance correlation (FDC) Population diversity (PD) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-1f9798d0b007fc3b49a77753603711a6fe7d79b0a3a4a88bfaaa47305e25b3243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3109549615 |
| PQPubID | 2043865 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_3109549615 crossref_citationtrail_10_1007_s10586_024_04593_2 crossref_primary_10_1007_s10586_024_04593_2 springer_journals_10_1007_s10586_024_04593_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20241200 2024-12-00 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Sudholt, D.: The Benefits of Population Diversity in Evolutionary Algorithms: A Survey of Rigorous Runtime Analyses, pp. 359–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_8 ZhangYLiSWangYYanYZhaoJGaoZSelf-adaptive enhanced learning differential evolution with surprisingly efficient decomposition approach for parameter identification of photovoltaic modelsEnergy Convers. Manag.202430810.1016/j.enconman.2024.118387 LiWMengXHuangYFitness distance correlation and mixed search strategy for differential evolutionNeurocomputing202145851452510.1016/j.neucom.2019.12.141 StornRPriceKDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ. Glob. Optim.199711341359147955310.1023/A:1008202821328 NguyenTA framework of optimization functions using Numpy (OpFuNu) for optimization problemsZenodo202010.5281/zenodo.3620960 Özcan, E., Kheiri, A.: A hyper-heuristic based on random gradient, greedy and dominance. In: Computer and Information Sciences II, pp. 557–563. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2155-8_71 Yaguchi, K., Tamura, K., Yasuda, K., Ishigame, A.: Basic study of proximate optimality principle based combinatorial optimization method. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1753–1758 (2011). https://doi.org/10.1109/ICSMC.2011.6083925 AcharyaDDasDA novel human conception optimizer for solving optimization problemsSci. Rep.202210.1038/s41598-022-25031-6 Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a tool for rapid prototyping in scheduling and optimisation. In: Applications of Evolutionary Computing, pp. 1–10. Springer, Berlin (2002). https://doi.org/10.1007/3-540-46004-7_1 SongYZhaoGZhangBChenHDengWDengWAn enhanced distributed differential evolution algorithm for portfolio optimization problemsEng. Appl. Artif. Intell.202312110.1016/j.engappai.2023.106004 Chen, J., Bai, R., Dong, H., Qu, R., Kendall, G.: A dynamic truck dispatching problem in marine container terminal. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016). https://doi.org/10.1109/SSCI.2016.7850081 WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.199711678210.1109/4235.585893 PolákováRTvrdíkJBujokPDifferential evolution with adaptive mechanism of population size according to current population diversitySwarm Evol. Comput.20195010.1016/j.swevo.2019.03.014 HollandJHGenetic algorithmsSci. Am.19922671667310.1038/scientificamerican0792-66 Dowsland, K.A.: Off-the-peg or made-to-measure? Timetabling and scheduling with sa and ts. In: Burke, E., Carter, M. (eds.) Practice and Theory of Automated Timetabling II, pp. 37–52. Springer, Berlin, Heidelberg (1998). https://doi.org/10.1007/BFb0055880 HumphriesNQueirozNDyerJPadeNMusylMSchaeferKFullerDBrunnschweilerJDoyleTHoughtonJHaysGJonesCNobleLWearmouthVSouthallESimsDEnvironmental context explains lévy and brownian movement patterns of marine predatorsNature20104651066910.1038/nature09116 MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008 Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) Practice and Theory of Automated Timetabling III, pp. 176–190. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44629-X_11 AziziMAickelinUKhorshidiHBaghalzadeh ShishehgarkhanehMEnergy valley optimizer: a novel metaheuristic algorithm for global and engineering optimizationSci. Rep.20231322610.1038/s41598-022-27344-y ThieuNVENOPPY: a python library for engineering optimization problemsZenodo202310.5281/zenodo.7953206 ZhongRFanQZhangCYuJHybrid remora crayfish optimization for engineering and wireless sensor network coverage optimizationCluster Comput.202410.1007/s10586-024-04508-1 HolmSA simple sequentially rejective multiple test procedureScand. J. Stat.1979626570538597 LiRZhangHZhuangQLiRChenYBp neural network and improved differential evolution for transient electromagnetic inversionComput. Geosci.202013710.1016/j.cageo.2020.104434 OparaKArabasJComparison of mutation strategies in differential evolution—a probabilistic perspectiveSwarm Evol. Comput.201839536910.1016/j.swevo.2017.12.007 KoulinasGKotsikasLAnagnostopoulosKA particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problemInf. Sci.201427768069310.1016/j.ins.2014.02.155 Ursem, R.K.: Diversity-guided evolutionary algorithms. In: Parallel Problem Solving from Nature—PPSN VII, pp. 462–471. Springer, Berlin (2002) Dechter, R.: Chapter 7—stochastic greedy local search. In: Dechter, R. (ed.) Constraint Processing. The Morgan Kaufmann Series in Artificial Intelligence, pp. 191–208. Morgan Kaufmann, San Francisco (2003). https://doi.org/10.1016/B978-155860890-0/50008-6 YuJVegetation evolution: an optimization algorithm inspired by the life cycle of plantsInt. J. Comput. Intell. Appl.202210.1142/S1469026822500109 MahmudSAbbasiAChakraborttyRKRyanMJA self-adaptive hyper-heuristic based multi-objective optimisation approach for integrated supply chain scheduling problemsKnowl.-Based Syst.202225110.1016/j.knosys.2022.109190 Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-Heuristics: An Emerging Direction in Modern Search Technology, pp. 457–474. Springer (2003). https://doi.org/10.1007/0-306-48056-5_16 MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. Softw.201469466110.1016/j.advengsoft.2013.12.007 YuYWangKZhangTWangYPengCGaoSA population diversity-controlled differential evolution for parameter estimation of solar photovoltaic modelsSustain. Energy Technol. Assess.20225110.1016/j.seta.2021.101938 Prakash, T., Singh, P.P., Singh, V.P., Singh, S.N.: A novel brown-bear optimization algorithm for solving economic dispatch problem. In: Advanced Control & Optimization Paradigms for Energy System Operation and Management, pp. 137–164. River Publishers (2023) ChenYGouLLiHA differential evolution based henry gas solubility optimizer for dynamic performance optimization problems of pro systemAppl. Soft Comput.202212510.1016/j.asoc.2022.109097 HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol. Comput.20019215919510.1162/106365601750190398 QiaoYLuoWLinXXuPPreussMDbcc2: an improved difficulty-based cooperative co-evolution for many-modal optimizationComplex Intell. Syst.202310.1007/s40747-022-00937-w XuPLuoWLinXChangYTangKDifficulty and contribution based cooperative coevolution for large-scale optimizationIEEE Trans. Evolut. Comput.202210.1109/TEVC.2022.3201691 CaoPZhangYZhouKTangJA reinforcement learning hyper-heuristic in multi-objective optimization with application to structural damage identificationStruct. Multidiscip. Optim.202210.1007/s00158-022-03432-5 Bai, R., Kendall, G.: An Investigation of Automated Planograms Using a Simulated Annealing Based Hyper-Heuristic, pp. 87–108. Springer, Boston (2005). https://doi.org/10.1007/0-387-25383-1_4 ZhangY-JWangY-FYanY-XZhaoJGaoZ-MSelf-adaptive hybrid mutation slime mould algorithm: case studies on uav path planning, engineering problems, photovoltaic models and infinite impulse responseAlex. Eng. J.20249836438910.1016/j.aej.2024.04.075 TanZLiKWangYDifferential evolution with adaptive mutation strategy based on fitness landscape analysisInf. Sci.2021549142163418829310.1016/j.ins.2020.11.023 GhoshADasSMallipeddiRDasAKDashSSA modified differential evolution with distance-based selection for continuous optimization in presence of noiseIEEE Access20175269442696410.1109/ACCESS.2017.2773825 PierezanJMaidlGMassashi YamaoEdos Santos CoelhoLCocco MarianiVCultural coyote optimization algorithm applied to a heavy duty gas turbine operationEnergy Convers. Manag.201919910.1016/j.enconman.2019.111932 Kumari, A.C., Srinivas, K., Gupta, M.P.: Software module clustering using a hyper-heuristic based multi-objective genetic algorithm. In: 2013 3rd IEEE International Advance Computing Conference (IACC), pp. 813–818 (2013). https://doi.org/10.1109/IAdCC.2013.6514331 ZhongRPengFYuJMunetomoMQ-learning based vegetation evolution for numerical optimization and wireless sensor network coverage optimizationAlex. Eng. J.20248714816310.1016/j.aej.2023.12.028 LiuJLiDWuYLiuDLion swarm optimization algorithm for comparative study with application to optimal dispatch of cascade hydropower stationsAppl. Soft Comput.20208710.1016/j.asoc.2019.105974 SeyyedabbasiAKianiFSand cat swarm optimization: a nature-inspired algorithm to solve global optimization problemsEng. Comput.202210.1007/s00366-022-01604-x Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–19484 (1995). https://doi.org/10.1109/ICNN.1995.488968 DengLLiuSSnow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering designExpert Syst. Appl.202322510.1016/j.eswa.2023.120069 Van ThieuNMirjaliliSMealpy: an open-source library for latest meta-heuristic algorithms in pythonJ. Syst. Architect.202313910.1016/j.sysarc.2023.102871 RuiZJunYChaoZMasaharuMSurrogate ensemble-assisted hyper-heuristic algorithm for expensive optimization problemsInt. J. Comput. Intell. Syst.202310.1007/s44196-023-00346-y ZhangY-JWangY-FYanY-XZhaoJGaoZ-MLmraoa: an improved arithmetic optimization algorithm with multi-leader and high-speed jumping based on opposition-based learning solving engineering and numerical problemsAlex. Eng. J.202261123671240310.1016/j.aej.2022.06.017 LocatelliMMaischbergerMSchoenFDifferential evolution methods based on local searchesComput. Oper. Res.20144316918010.1016/j.cor.2013.09.010 Pant, M., Radha, T., Singh, V.P.: A simple diversity guided particle swarm optimization. In: 2007 IEEE Congress on Evolutionary Computation, pp. 3294–3299 (2007). https://doi.org/10.1109/CEC.2007.4424896 ZhongRZhangEMunetomoMCooperative coevolutionary surrogate ensemble-assisted differential ev S Mirjalili (4593_CR60) 2016; 96 J Liu (4593_CR75) 2020; 87 DH Wolpert (4593_CR72) 1997; 1 VA de Santiago Júnior (4593_CR74) 2020; 97 NV Thieu (4593_CR50) 2023 S Mirjalili (4593_CR73) 2014; 69 H-G Beyer (4593_CR56) 2002; 1 J Yu (4593_CR34) 2022 4593_CR17 R Poláková (4593_CR28) 2019; 50 S Mirjalili (4593_CR59) 2016; 95 4593_CR16 4593_CR19 4593_CR18 M Locatelli (4593_CR33) 2014; 43 R Storn (4593_CR55) 1997; 11 N Hansen (4593_CR57) 2001; 9 4593_CR1 4593_CR2 4593_CR11 R Zhong (4593_CR77) 2024 4593_CR10 4593_CR54 4593_CR12 N Humphries (4593_CR37) 2010; 465 Y-J Zhang (4593_CR39) 2022; 61 Y Yu (4593_CR29) 2022; 51 CA Coello Coello (4593_CR52) 2002; 191 G Koulinas (4593_CR7) 2014; 277 P Xu (4593_CR21) 2022 SS Choong (4593_CR5) 2018; 436–437 A Ezugwu (4593_CR51) 2022; 34 Z Rui (4593_CR15) 2023 Y Song (4593_CR66) 2023; 121 J Pierezan (4593_CR76) 2019; 199 S Holm (4593_CR71) 1979; 6 Y Zhang (4593_CR42) 2024; 308 K Opara (4593_CR45) 2018; 39 C Li (4593_CR30) 2023 R Li (4593_CR65) 2020; 137 EH Houssein (4593_CR36) 2020; 94 A Seyyedabbasi (4593_CR38) 2022 4593_CR70 EK Burke (4593_CR4) 2013; 64 A Ghosh (4593_CR26) 2017; 5 W Li (4593_CR22) 2021; 458 M Azizi (4593_CR43) 2023; 13 L Deng (4593_CR62) 2023; 225 D Acharya (4593_CR61) 2022 4593_CR31 P Cao (4593_CR14) 2022 T Nguyen (4593_CR49) 2020 4593_CR32 4593_CR35 Y Chen (4593_CR41) 2022; 125 4593_CR6 4593_CR3 Y Qiao (4593_CR20) 2023 JH Holland (4593_CR53) 1992; 267 Z Tan (4593_CR23) 2021; 549 N Van Thieu (4593_CR48) 2023; 139 C-W Tsai (4593_CR8) 2014; 2 4593_CR27 Y-J Zhang (4593_CR44) 2024; 98 R Zhong (4593_CR46) 2023 R Zhong (4593_CR47) 2024; 87 Y Zhang (4593_CR9) 2022; 300 4593_CR64 4593_CR63 4593_CR24 4593_CR68 4593_CR67 S Mirjalili (4593_CR58) 2015; 89 S Mahmud (4593_CR13) 2022; 251 4593_CR25 FA Hashim (4593_CR40) 2021; 51 4593_CR69 |
| References_xml | – reference: ZhongRPengFYuJMunetomoMQ-learning based vegetation evolution for numerical optimization and wireless sensor network coverage optimizationAlex. Eng. J.20248714816310.1016/j.aej.2023.12.028 – reference: AziziMAickelinUKhorshidiHBaghalzadeh ShishehgarkhanehMEnergy valley optimizer: a novel metaheuristic algorithm for global and engineering optimizationSci. Rep.20231322610.1038/s41598-022-27344-y – reference: QiaoYLuoWLinXXuPPreussMDbcc2: an improved difficulty-based cooperative co-evolution for many-modal optimizationComplex Intell. Syst.202310.1007/s40747-022-00937-w – reference: SeyyedabbasiAKianiFSand cat swarm optimization: a nature-inspired algorithm to solve global optimization problemsEng. Comput.202210.1007/s00366-022-01604-x – reference: ZhangY-JWangY-FYanY-XZhaoJGaoZ-MSelf-adaptive hybrid mutation slime mould algorithm: case studies on uav path planning, engineering problems, photovoltaic models and infinite impulse responseAlex. Eng. J.20249836438910.1016/j.aej.2024.04.075 – reference: de Santiago JúniorVAÖzcanEde CarvalhoVRHyper-heuristics based on reinforcement learning, balanced heuristic selection and group decision acceptanceAppl. Soft Comput.20209710.1016/j.asoc.2020.106760 – reference: ZhangYLiSWangYYanYZhaoJGaoZSelf-adaptive enhanced learning differential evolution with surprisingly efficient decomposition approach for parameter identification of photovoltaic modelsEnergy Convers. Manag.202430810.1016/j.enconman.2024.118387 – reference: Van ThieuNMirjaliliSMealpy: an open-source library for latest meta-heuristic algorithms in pythonJ. Syst. Architect.202313910.1016/j.sysarc.2023.102871 – reference: SongYZhaoGZhangBChenHDengWDengWAn enhanced distributed differential evolution algorithm for portfolio optimization problemsEng. Appl. Artif. Intell.202312110.1016/j.engappai.2023.106004 – reference: ChoongSSWongL-PLimCPAutomatic design of hyper-heuristic based on reinforcement learningInf. Sci.2018436–43789107376381710.1016/j.ins.2018.01.005 – reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. Softw.201469466110.1016/j.advengsoft.2013.12.007 – reference: Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665 (2014). https://doi.org/10.1109/CEC.2014.6900380 – reference: Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–19484 (1995). https://doi.org/10.1109/ICNN.1995.488968 – reference: MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl.-Based Syst.20158922824910.1016/j.knosys.2015.07.006 – reference: Pant, M., Radha, T., Singh, V.P.: A simple diversity guided particle swarm optimization. In: 2007 IEEE Congress on Evolutionary Computation, pp. 3294–3299 (2007). https://doi.org/10.1109/CEC.2007.4424896 – reference: OparaKArabasJComparison of mutation strategies in differential evolution—a probabilistic perspectiveSwarm Evol. Comput.201839536910.1016/j.swevo.2017.12.007 – reference: ZhangY-JWangY-FYanY-XZhaoJGaoZ-MLmraoa: an improved arithmetic optimization algorithm with multi-leader and high-speed jumping based on opposition-based learning solving engineering and numerical problemsAlex. Eng. J.202261123671240310.1016/j.aej.2022.06.017 – reference: Jackson, W.G., Özcan, E., Drake, J.H.: Late acceptance-based selection hyper-heuristics for cross-domain heuristic search. In: 2013 13th UK Workshop on Computational Intelligence (UKCI), pp. 228–235 (2013). https://doi.org/10.1109/UKCI.2013.6651310 – reference: DengLLiuSSnow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering designExpert Syst. Appl.202322510.1016/j.eswa.2023.120069 – reference: YuJVegetation evolution: an optimization algorithm inspired by the life cycle of plantsInt. J. Comput. Intell. Appl.202210.1142/S1469026822500109 – reference: HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol. Comput.20019215919510.1162/106365601750190398 – reference: Bai, R., Kendall, G.: An Investigation of Automated Planograms Using a Simulated Annealing Based Hyper-Heuristic, pp. 87–108. Springer, Boston (2005). https://doi.org/10.1007/0-387-25383-1_4 – reference: ZhangYBaiRQuRTuCJinJA deep reinforcement learning based hyper-heuristic for combinatorial optimisation with uncertaintiesEur. J. Oper. Res.20223002418427439091910.1016/j.ejor.2021.10.032 – reference: LocatelliMMaischbergerMSchoenFDifferential evolution methods based on local searchesComput. Oper. Res.20144316918010.1016/j.cor.2013.09.010 – reference: Coello CoelloCATheoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the artComput. Methods Appl. Mech. Eng.20021911112451287187768410.1016/S0045-7825(01)00323-1 – reference: FISHER, H.: Probabilistic learning combinations of local job-shop scheduling rules. Industrial Scheduling (1963) – reference: HollandJHGenetic algorithmsSci. Am.19922671667310.1038/scientificamerican0792-66 – reference: BurkeEKGendreauMHydeMKendallGOchoaGÖzcanEQuRHyper-heuristics: a survey of the state of the artJ. Oper. Res. Soc.201364121695172410.1057/jors.2013.71 – reference: TanZLiKWangYDifferential evolution with adaptive mutation strategy based on fitness landscape analysisInf. Sci.2021549142163418829310.1016/j.ins.2020.11.023 – reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.199711678210.1109/4235.585893 – reference: NguyenTA framework of optimization functions using Numpy (OpFuNu) for optimization problemsZenodo202010.5281/zenodo.3620960 – reference: Ursem, R.K.: Diversity-guided evolutionary algorithms. In: Parallel Problem Solving from Nature—PPSN VII, pp. 462–471. Springer, Berlin (2002) – reference: PierezanJMaidlGMassashi YamaoEdos Santos CoelhoLCocco MarianiVCultural coyote optimization algorithm applied to a heavy duty gas turbine operationEnergy Convers. Manag.201919910.1016/j.enconman.2019.111932 – reference: LiRZhangHZhuangQLiRChenYBp neural network and improved differential evolution for transient electromagnetic inversionComput. Geosci.202013710.1016/j.cageo.2020.104434 – reference: HolmSA simple sequentially rejective multiple test procedureScand. J. Stat.1979626570538597 – reference: ChenYGouLLiHA differential evolution based henry gas solubility optimizer for dynamic performance optimization problems of pro systemAppl. Soft Comput.202212510.1016/j.asoc.2022.109097 – reference: GhoshADasSMallipeddiRDasAKDashSSA modified differential evolution with distance-based selection for continuous optimization in presence of noiseIEEE Access20175269442696410.1109/ACCESS.2017.2773825 – reference: Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-Heuristics: An Emerging Direction in Modern Search Technology, pp. 457–474. Springer (2003). https://doi.org/10.1007/0-306-48056-5_16 – reference: PolákováRTvrdíkJBujokPDifferential evolution with adaptive mechanism of population size according to current population diversitySwarm Evol. Comput.20195010.1016/j.swevo.2019.03.014 – reference: HumphriesNQueirozNDyerJPadeNMusylMSchaeferKFullerDBrunnschweilerJDoyleTHoughtonJHaysGJonesCNobleLWearmouthVSouthallESimsDEnvironmental context explains lévy and brownian movement patterns of marine predatorsNature20104651066910.1038/nature09116 – reference: RuiZJunYChaoZMasaharuMSurrogate ensemble-assisted hyper-heuristic algorithm for expensive optimization problemsInt. J. Comput. Intell. Syst.202310.1007/s44196-023-00346-y – reference: Yaguchi, K., Tamura, K., Yasuda, K., Ishigame, A.: Basic study of proximate optimality principle based combinatorial optimization method. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1753–1758 (2011). https://doi.org/10.1109/ICSMC.2011.6083925 – reference: ZhongRZhangEMunetomoMCooperative coevolutionary surrogate ensemble-assisted differential evolution with efficient dual differential grouping for large-scale expensive optimization problemsComplex Intell. Syst.202310.1007/s40747-023-01262-6 – reference: Luo, W., Qiao, Y., Lin, X., Xu, P., Preuss, M.: Many-modal optimization by difficulty-based cooperative co-evolution. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1907–1914 (2019). https://doi.org/10.1109/SSCI44817.2019.9003005 – reference: Kumari, A.C., Srinivas, K., Gupta, M.P.: Software module clustering using a hyper-heuristic based multi-objective genetic algorithm. In: 2013 3rd IEEE International Advance Computing Conference (IACC), pp. 813–818 (2013). https://doi.org/10.1109/IAdCC.2013.6514331 – reference: EzugwuAAgushakaOAbualigahLMirjaliliSGandomiAPrairie dog optimization algorithmNeural Comput. Appl.202234200172006510.1007/s00521-022-07530-9 – reference: Cowling, P.I., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: International Conference on the Practice and Theory of Automated Timetabling (2000) – reference: LiCSunG-JDengLLi-yanQYangGA population state evaluation-based improvement framework for differential evolutionInf. Sci.202310.1016/j.ins.2023.01.120 – reference: Özcan, E., Kheiri, A.: A hyper-heuristic based on random gradient, greedy and dominance. In: Computer and Information Sciences II, pp. 557–563. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2155-8_71 – reference: Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann Publishers Inc., San Francisco (1995) – reference: CaoPZhangYZhouKTangJA reinforcement learning hyper-heuristic in multi-objective optimization with application to structural damage identificationStruct. Multidiscip. Optim.202210.1007/s00158-022-03432-5 – reference: Cruz-Duarte, J.M., Amaya, I., Ortiz-Bayliss, J.C., Conant-Pablos, S.E., Terashima-Marín, H.: A primary study on hyper-heuristics to customise metaheuristics for continuous optimisation. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2020). https://doi.org/10.1109/CEC48606.2020.9185591 – reference: Sudholt, D.: The Benefits of Population Diversity in Evolutionary Algorithms: A Survey of Rigorous Runtime Analyses, pp. 359–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_8 – reference: HashimFAHussainKHousseinEMabroukMAl-AtabanyWArchimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problemsAppl. Intell.20215112110.1007/s10489-020-01893-z – reference: TsaiC-WHuangW-CChiangM-HChiangM-CYangC-SA hyper-heuristic scheduling algorithm for cloudIEEE Trans. Cloud Comput.20142223625010.1109/TCC.2014.2315797 – reference: LiWMengXHuangYFitness distance correlation and mixed search strategy for differential evolutionNeurocomputing202145851452510.1016/j.neucom.2019.12.141 – reference: Prakash, T., Singh, P.P., Singh, V.P., Singh, S.N.: A novel brown-bear optimization algorithm for solving economic dispatch problem. In: Advanced Control & Optimization Paradigms for Energy System Operation and Management, pp. 137–164. River Publishers (2023) – reference: ZhongRFanQZhangCYuJHybrid remora crayfish optimization for engineering and wireless sensor network coverage optimizationCluster Comput.202410.1007/s10586-024-04508-1 – reference: MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl.-Based Syst.20169612013310.1016/j.knosys.2015.12.022 – reference: Burke, E.K., Silva, J.D.L., Soubeiga, E.: Multi-objective hyper-heuristic approaches for space allocation and timetabling, pp. 129–158. Springer, Boston (2005). https://doi.org/10.1007/0-387-25383-1_6 – reference: LiuJLiDWuYLiuDLion swarm optimization algorithm for comparative study with application to optimal dispatch of cascade hydropower stationsAppl. Soft Comput.20208710.1016/j.asoc.2019.105974 – reference: BeyerH-GSchwefelH-PEvolution strategies—a comprehensive introductionNat. Comput.20021352190749210.1023/A:1015059928466 – reference: Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) Practice and Theory of Automated Timetabling III, pp. 176–190. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44629-X_11 – reference: XuPLuoWLinXChangYTangKDifficulty and contribution based cooperative coevolution for large-scale optimizationIEEE Trans. Evolut. Comput.202210.1109/TEVC.2022.3201691 – reference: StornRPriceKDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ. Glob. Optim.199711341359147955310.1023/A:1008202821328 – reference: MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008 – reference: Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a tool for rapid prototyping in scheduling and optimisation. In: Applications of Evolutionary Computing, pp. 1–10. Springer, Berlin (2002). https://doi.org/10.1007/3-540-46004-7_1 – reference: Dechter, R.: Chapter 7—stochastic greedy local search. In: Dechter, R. (ed.) Constraint Processing. The Morgan Kaufmann Series in Artificial Intelligence, pp. 191–208. Morgan Kaufmann, San Francisco (2003). https://doi.org/10.1016/B978-155860890-0/50008-6 – reference: HousseinEHSaadMRHashimFAShabanHHassaballahMLévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problemsEng. Appl. Artif. Intell.20209410.1016/j.engappai.2020.103731 – reference: Tapia-Avitia, J.M., Cruz-Duarte, J.M., Amaya, I., Ortiz-Bayliss, J.C., Terashima-Marin, H., Pillay, N.: A primary study on hyper-heuristics powered by artificial neural networks for customising population-based metaheuristics in continuous optimisation problems. In: 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2022). https://doi.org/10.1109/CEC55065.2022.9870275 – reference: YuYWangKZhangTWangYPengCGaoSA population diversity-controlled differential evolution for parameter estimation of solar photovoltaic modelsSustain. Energy Technol. Assess.20225110.1016/j.seta.2021.101938 – reference: ThieuNVENOPPY: a python library for engineering optimization problemsZenodo202310.5281/zenodo.7953206 – reference: Dowsland, K.A.: Off-the-peg or made-to-measure? Timetabling and scheduling with sa and ts. In: Burke, E., Carter, M. (eds.) Practice and Theory of Automated Timetabling II, pp. 37–52. Springer, Berlin, Heidelberg (1998). https://doi.org/10.1007/BFb0055880 – reference: MahmudSAbbasiAChakraborttyRKRyanMJA self-adaptive hyper-heuristic based multi-objective optimisation approach for integrated supply chain scheduling problemsKnowl.-Based Syst.202225110.1016/j.knosys.2022.109190 – reference: AcharyaDDasDA novel human conception optimizer for solving optimization problemsSci. Rep.202210.1038/s41598-022-25031-6 – reference: KoulinasGKotsikasLAnagnostopoulosKA particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problemInf. Sci.201427768069310.1016/j.ins.2014.02.155 – reference: Chen, J., Bai, R., Dong, H., Qu, R., Kendall, G.: A dynamic truck dispatching problem in marine container terminal. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016). https://doi.org/10.1109/SSCI.2016.7850081 – ident: 4593_CR11 doi: 10.1007/0-387-25383-1_6 – ident: 4593_CR18 – year: 2023 ident: 4593_CR30 publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.01.120 – volume: 98 start-page: 364 year: 2024 ident: 4593_CR44 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2024.04.075 – year: 2023 ident: 4593_CR46 publication-title: Complex Intell. Syst. doi: 10.1007/s40747-023-01262-6 – volume: 43 start-page: 169 year: 2014 ident: 4593_CR33 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2013.09.010 – volume: 64 start-page: 1695 issue: 12 year: 2013 ident: 4593_CR4 publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.2013.71 – year: 2022 ident: 4593_CR21 publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2022.3201691 – ident: 4593_CR67 doi: 10.1007/3-540-44629-X_11 – volume: 9 start-page: 159 issue: 2 year: 2001 ident: 4593_CR57 publication-title: Evol. Comput. doi: 10.1162/106365601750190398 – volume: 225 year: 2023 ident: 4593_CR62 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120069 – volume: 308 year: 2024 ident: 4593_CR42 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2024.118387 – ident: 4593_CR10 doi: 10.1109/SSCI.2016.7850081 – volume: 87 start-page: 148 year: 2024 ident: 4593_CR47 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2023.12.028 – volume: 191 start-page: 1245 issue: 11 year: 2002 ident: 4593_CR52 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(01)00323-1 – volume: 96 start-page: 120 year: 2016 ident: 4593_CR60 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 69 start-page: 46 year: 2014 ident: 4593_CR73 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 61 start-page: 12367 year: 2022 ident: 4593_CR39 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.06.017 – volume: 458 start-page: 514 year: 2021 ident: 4593_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.141 – volume: 1 start-page: 3 year: 2002 ident: 4593_CR56 publication-title: Nat. Comput. doi: 10.1023/A:1015059928466 – volume: 121 year: 2023 ident: 4593_CR66 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106004 – volume: 300 start-page: 418 issue: 2 year: 2022 ident: 4593_CR9 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2021.10.032 – year: 2023 ident: 4593_CR50 publication-title: Zenodo doi: 10.5281/zenodo.7953206 – ident: 4593_CR54 doi: 10.1109/ICNN.1995.488968 – volume: 6 start-page: 65 issue: 2 year: 1979 ident: 4593_CR71 publication-title: Scand. J. Stat. – volume: 87 year: 2020 ident: 4593_CR75 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105974 – ident: 4593_CR68 doi: 10.1109/UKCI.2013.6651310 – year: 2022 ident: 4593_CR38 publication-title: Eng. Comput. doi: 10.1007/s00366-022-01604-x – volume: 51 year: 2022 ident: 4593_CR29 publication-title: Sustain. Energy Technol. Assess. doi: 10.1016/j.seta.2021.101938 – ident: 4593_CR2 doi: 10.1007/3-540-44629-X_11 – volume: 465 start-page: 1066 year: 2010 ident: 4593_CR37 publication-title: Nature doi: 10.1038/nature09116 – volume: 51 start-page: 1 year: 2021 ident: 4593_CR40 publication-title: Appl. Intell. doi: 10.1007/s10489-020-01893-z – ident: 4593_CR64 doi: 10.1109/CEC.2014.6900380 – volume: 139 year: 2023 ident: 4593_CR48 publication-title: J. Syst. Architect. doi: 10.1016/j.sysarc.2023.102871 – volume: 5 start-page: 26944 year: 2017 ident: 4593_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2773825 – ident: 4593_CR19 doi: 10.1007/3-540-45712-7_45 – volume: 34 start-page: 20017 year: 2022 ident: 4593_CR51 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07530-9 – ident: 4593_CR24 doi: 10.1109/SSCI44817.2019.9003005 – year: 2020 ident: 4593_CR49 publication-title: Zenodo doi: 10.5281/zenodo.3620960 – year: 2023 ident: 4593_CR15 publication-title: Int. J. Comput. Intell. Syst. doi: 10.1007/s44196-023-00346-y – year: 2022 ident: 4593_CR34 publication-title: Int. J. Comput. Intell. Appl. doi: 10.1142/S1469026822500109 – ident: 4593_CR31 doi: 10.1007/0-306-48056-5_16 – ident: 4593_CR1 – volume: 125 year: 2022 ident: 4593_CR41 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109097 – volume: 199 year: 2019 ident: 4593_CR76 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.111932 – ident: 4593_CR35 doi: 10.1109/ICSMC.2011.6083925 – ident: 4593_CR63 doi: 10.1201/9781003337003-6 – volume: 39 start-page: 53 year: 2018 ident: 4593_CR45 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.12.007 – ident: 4593_CR3 doi: 10.1007/BFb0055880 – volume: 50 year: 2019 ident: 4593_CR28 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.03.014 – volume: 549 start-page: 142 year: 2021 ident: 4593_CR23 publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.11.023 – ident: 4593_CR27 doi: 10.1007/978-3-030-29414-4_8 – volume: 11 start-page: 341 year: 1997 ident: 4593_CR55 publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 2 start-page: 236 issue: 2 year: 2014 ident: 4593_CR8 publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2014.2315797 – year: 2022 ident: 4593_CR14 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-022-03432-5 – ident: 4593_CR70 doi: 10.1007/3-540-46004-7_1 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 4593_CR53 publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – ident: 4593_CR32 doi: 10.1016/B978-155860890-0/50008-6 – volume: 95 start-page: 51 year: 2016 ident: 4593_CR59 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – year: 2023 ident: 4593_CR20 publication-title: Complex Intell. Syst. doi: 10.1007/s40747-022-00937-w – volume: 89 start-page: 228 year: 2015 ident: 4593_CR58 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – year: 2022 ident: 4593_CR61 publication-title: Sci. Rep. doi: 10.1038/s41598-022-25031-6 – year: 2024 ident: 4593_CR77 publication-title: Cluster Comput. doi: 10.1007/s10586-024-04508-1 – volume: 436–437 start-page: 89 year: 2018 ident: 4593_CR5 publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.01.005 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 4593_CR72 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 13 start-page: 226 year: 2023 ident: 4593_CR43 publication-title: Sci. Rep. doi: 10.1038/s41598-022-27344-y – volume: 97 year: 2020 ident: 4593_CR74 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106760 – volume: 94 year: 2020 ident: 4593_CR36 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103731 – volume: 137 year: 2020 ident: 4593_CR65 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2020.104434 – ident: 4593_CR17 doi: 10.1109/CEC55065.2022.9870275 – ident: 4593_CR25 doi: 10.1109/CEC.2007.4424896 – ident: 4593_CR6 doi: 10.1007/0-387-25383-1_4 – ident: 4593_CR12 doi: 10.1109/IAdCC.2013.6514331 – ident: 4593_CR16 doi: 10.1109/CEC48606.2020.9185591 – volume: 277 start-page: 680 year: 2014 ident: 4593_CR7 publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.155 – volume: 251 year: 2022 ident: 4593_CR13 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109190 – ident: 4593_CR69 doi: 10.1007/978-1-4471-2155-8_71 |
| SSID | ssj0009729 |
| Score | 2.3896353 |
| Snippet | This paper proposes a novel evolutionary status guided hyper-heuristic algorithm named ES-HHA for continuous optimization. A representative hyper-heuristic... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12209 |
| SubjectTerms | Ablation Computer Communication Networks Computer Science Design Design optimization Distance learning Evolutionary algorithms Evolutionary computation Genetic algorithms Heuristic Heuristic methods Mutation Operating Systems Operators (mathematics) Optimization techniques Performance evaluation Processor Architectures Statistical analysis Task complexity |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA46PXhxfuJ0Sg7eNLg2TZOcZIjDg4wdVIaXkqbpNtja2Y-B_96kSy0K7uK1TdPS9zPJ-z4PANdU-I6STCIVG1BtTgli0mco1J4Pu4r3eNXH_fZMh0M2HvOR3XDLbVll7RMrRx2l0uyR3xkES72W0QH4fvmBDGuUOV21FBrbYMegJBjqhhF5b0B3acVS5mDmI8oItU0ztnWOMFN-a8owCMfI_RmYmmzz1wFpFXcG7f9-8QHYtxkn7K9V5BBsqeQItGs2B2iN-xiM-zBJV2oO1cqqo8g-oWk4KnM4KWeRiuBUr1ozNFXlGt8ZivlEv7GYLqDOfaEpe58lZarHp9oTLWyL5wl4HTy-PDwhy7uApDbIAjkxp5xFPW2RNJY49LigVC9rfAPv5wg_VjSiPOwJLDzBWBgLITztKYhySagTNHwKWkmaqDMAdQZh-Mw9JxbKU24seq5UHo4wpfoK8TvAqX96IC0oueHGmAcNnLIRVKAFFVSCCtwOuPl-ZrmG5Ng4ultLJ7DmmQeNaDrgtpZvc_vv2c43z3YB9lyjUlW5Sxe0iqxUl2BXropZnl1VyvkFLzrp5Q priority: 102 providerName: ProQuest |
| Title | A novel evolutionary status guided hyper-heuristic algorithm for continuous optimization |
| URI | https://link.springer.com/article/10.1007/s10586-024-04593-2 https://www.proquest.com/docview/3109549615 |
| Volume | 27 |
| WOSCitedRecordID | wos001240748400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7543 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: P5Z dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7543 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: K7- dateStart: 19980101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1573-7543 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: BENPR dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60evBifWJ9lD1404XmubvHKhZBKcVHKV7CJtnYQptI2hT8986mG6uigl5ySGaXMO9lZ74BOGXSt1TEI6oSDaotmEd55HMaoudzbCVaouzj7t-ybpcPBqJnmsKmVbV7dSVZeuoPzW4e1wWzunDCEw5Fx7uG4Y7rgQ139_0l1C4rZ5NZDlIz7jHTKvP9Hp_D0TLH_HItWkabTv1__7kFmya7JO2FOmzDikp3oF5NbiDGkHdh0CZpNldjouZG9WT-SnRzUTElz8UoVjEZ4gk1p0NVLLCciRw_Z_loNpwQzHOJLnEfpUWG9Bl6nYlp59yDx87Vw-U1NTMWaITGN6NWIpjgcQutjyWRE7pCMoZHGF9D-VnSTxSLmQhb0pGu5DxMpJQuegVP2V6IyZizD7U0S9UBEMwW9Oxy10qkcpWdyJYdKdeJHcbwjec3wKpYHUQGgFzPwRgHS-hkzboAWReUrAvsBpy9r3lZwG_8Sn1cSTAwpjgNNPQpHoIxc2vAeSWx5eefdzv8G_kRbNha6GWpyzHUZnmhTmA9ms9G07wJaxdX3d5dE1ZvGMVnz3tqlmr7Bg5w40I |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH7aCtK4MH4MUbaBD3ACa42dxPZhmqaNaVNLxWGg3oLjOGulLhlt06n_FH8jz6lDxCR224FrYlty_L3n5_i97wN4L3QcWCMNtbkj1VYiotLEkqbo-TizqqfqOu7vAzEcytFIfd2AX00tjEurbHxi7aiz0rh_5AeOwRLPMrgBH938pE41yt2uNhIaa1j07eoWj2zzw4tTXN8PjJ19vjw5p15VgBqE24IGuRJKZj3Em8gNT0OlhcCgPXbkdYGOcysyodKe5jrUUqa51jpEO4gsi1IMPziOuwmPQi6Fs6u-oC3Jr6hV0QIuYypkJHyRji_Vi6RL93VpH5HilP29EbbR7Z0L2XqfO9v-377QM3jqI2pyvDaB57Bhixew3ahVEO-8XsLomBTl0k6JXXpz07MVcQVV1ZxcVZPMZmSMp_IZHdtqzV9N9PQKZ7gYXxOM7YlL658UVYntS_S0176EdQe-Pcj8XkGnKAv7GghGSE6vPQxybUPLct1jxoY840LgkyjuQtAscmI86brT_pgmLV20A0aCwEhqYCSsCx__9LlZU47c23qvQUPi3c88aaHQhU8NntrX_x7tzf2jvYOt88svg2RwMezvwhPm4Fyn9uxBZzGr7D48NsvFZD57WxsGgR8PjbPfMSNFCw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRXxxfuJ0ah5807J-J3kc6lAcY6COvZW0TbfC1o6uHfjfe-mHnaKC-NpeQrjkLnfkfr9D6IpwWxMe9RQRSFJtRiyFejZVXPB8hi6YynIc96hPBgM6HrPhGoo_r3avniQLTINkaYrSzsIPOmvAN4vK4llZRGExQwEnvGnKQnqZrz-Patpdkvcp0wyQJtQiJWzm-zk-X011vPnliTS_eXrN_695D-2WUSfuFsdkH22I6AA1q44OuDTwQzTu4iheiRkWq_JI8uQNS9BRtsSTLPSFj6eQuSbKVGQFxzPms0mchOl0jiH-xXJNYZTFIB-DN5qXMM8j9Nq7f7l9UMreC4oHRpkqWsAIo74KVkkCz3BNxgmB1MaWFH8atwNBfMJclRvc5JS6AefcBG9hCd1yIUgzjlEjiiNxgjBEEbKnuakFXJhCD7iqe8I0fIMQ-GLZLaRVane8kphc9seYOTWlslSdA6pzctU5egtdf4xZFLQcv0q3q910ShNdOpISFZJjiOha6Kbavfr3z7Od_k38Em0P73pO_3HwdIZ2dLn_eTVMGzXSJBPnaMtbpeEyuchP7jugCeug |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+evolutionary+status+guided+hyper-heuristic+algorithm+for+continuous+optimization&rft.jtitle=Cluster+computing&rft.au=Zhong%2C+Rui&rft.au=Yu%2C+Jun&rft.date=2024-12-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=27&rft.issue=9&rft.spage=12209&rft.epage=12238&rft_id=info:doi/10.1007%2Fs10586-024-04593-2&rft.externalDocID=10_1007_s10586_024_04593_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |