Uniform Sampling Methodology to Construct Projection Matrices for Angle-of-Arrival Estimation Applications

This manuscript firstly proposes a reduced size, low-complexity Angle of Arrival (AoA) approach, called Reduced Uniform Projection Matrix (RUPM). The RUPM method applies a Uniform Sampling Matrix (USM) criterion to sample certain columns from the obtained covariance matrix in order to efficiently fi...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) Vol. 8; no. 12; p. 1386
Main Authors: Al-Sadoon, Mohammed A. G., de Ree, Marcus, Abd-Alhameed, Raed A., Excell, Peter S.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.12.2019
Subjects:
ISSN:2079-9292, 2079-9292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This manuscript firstly proposes a reduced size, low-complexity Angle of Arrival (AoA) approach, called Reduced Uniform Projection Matrix (RUPM). The RUPM method applies a Uniform Sampling Matrix (USM) criterion to sample certain columns from the obtained covariance matrix in order to efficiently find the directions of the incident signals on an antenna array. The USM methodology is applied to reduce the dependency between the adjacent sampled columns within a covariance matrix; then, the sampled matrix is used to construct the projection matrix. The size of the obtained projection matrix is reduced to minimise the computational complexity in the searching grid stage. A theoretical analysis is presented to demonstrate that the USM methodology can increase the Degrees of Freedom (DOFs) with the same aperture size and number of sampled columns compared to the classical sampling criterion. Then, a polynomial root is constructed as an alternative efficient computational solution of the UPM method in a one-dimensional (1D) array spectrum peak searching problem. It is found that this distribution increases the number of produced nulls and enhances noise immunity. The advantage of the RUPM method is that it is appropriate to apply for any array configuration while the Root-UPM offers better estimation accuracy with less execution time under a uniform linear array condition. A computer simulation based on various scenarios is performed to demonstrate the theoretical claims. The proposed direction-finding methods are compared with several AoA methods in terms of the required execution time, Signal-to-Noise Ratio (SNR) and different numbers of data measurements. The results verify that the new methods can achieve significantly better performance with reduced computational demands.
AbstractList This manuscript firstly proposes a reduced size, low-complexity Angle of Arrival (AoA) approach, called Reduced Uniform Projection Matrix (RUPM). The RUPM method applies a Uniform Sampling Matrix (USM) criterion to sample certain columns from the obtained covariance matrix in order to efficiently find the directions of the incident signals on an antenna array. The USM methodology is applied to reduce the dependency between the adjacent sampled columns within a covariance matrix; then, the sampled matrix is used to construct the projection matrix. The size of the obtained projection matrix is reduced to minimise the computational complexity in the searching grid stage. A theoretical analysis is presented to demonstrate that the USM methodology can increase the Degrees of Freedom (DOFs) with the same aperture size and number of sampled columns compared to the classical sampling criterion. Then, a polynomial root is constructed as an alternative efficient computational solution of the UPM method in a one-dimensional (1D) array spectrum peak searching problem. It is found that this distribution increases the number of produced nulls and enhances noise immunity. The advantage of the RUPM method is that it is appropriate to apply for any array configuration while the Root-UPM offers better estimation accuracy with less execution time under a uniform linear array condition. A computer simulation based on various scenarios is performed to demonstrate the theoretical claims. The proposed direction-finding methods are compared with several AoA methods in terms of the required execution time, Signal-to-Noise Ratio (SNR) and different numbers of data measurements. The results verify that the new methods can achieve significantly better performance with reduced computational demands.
Author de Ree, Marcus
Abd-Alhameed, Raed A.
Excell, Peter S.
Al-Sadoon, Mohammed A. G.
Author_xml – sequence: 1
  givenname: Mohammed A. G.
  orcidid: 0000-0002-9873-8251
  surname: Al-Sadoon
  fullname: Al-Sadoon, Mohammed A. G.
– sequence: 2
  givenname: Marcus
  orcidid: 0000-0002-7453-4019
  surname: de Ree
  fullname: de Ree, Marcus
– sequence: 3
  givenname: Raed A.
  orcidid: 0000-0003-2972-9965
  surname: Abd-Alhameed
  fullname: Abd-Alhameed, Raed A.
– sequence: 4
  givenname: Peter S.
  orcidid: 0000-0002-7602-2957
  surname: Excell
  fullname: Excell, Peter S.
BookMark eNp9UMtKAzEUDVLBWvsDrgKuR_OYR7IcSn1Ai4J2PaSZpGaYJmOSCv1709aFKHg39y7O455zCUbWWQXANUa3lHJ0p3olo3fWyMAwwZSVZ2BMUMUzTjgZ_bgvwDSEDqXhCUbRGHQra7TzW_gqtkNv7AYuVXx3revdZg-jgzNnQ_Q7GeGLd10yMs7CpYjeSBVgosLabnqVOZ3V3ptP0cN5iGYrjsB6SKLyeIcrcK5FH9T0e0_A6n7-NnvMFs8PT7N6kUmKecywplpVUiGmhCpk0bZVXjFESqkVXiuMNF6vqcaM8rJFuChkWVLBmKhKgVnKNQE3J93Bu4-dCrHp3M7bZNmQImd5zig5oNgJJb0LwSvdSBOPj0YvTN9g1BzKbf6Wm6jkF3XwKbDf_0f6AhlZhW4
CitedBy_id crossref_primary_10_1016_j_phycom_2022_101878
crossref_primary_10_3390_electronics11060890
crossref_primary_10_3390_electronics14091731
crossref_primary_10_1109_ACCESS_2020_2993908
crossref_primary_10_3390_electronics11111739
Cites_doi 10.1109/ITECHA.2017.8101948
10.1109/TCOMM.2016.2533490
10.1109/TSP.2012.2222378
10.3390/s17112631
10.1109/JSTSP.2016.2523442
10.1109/29.32276
10.1109/5.58320
10.1109/TASSP.1986.1164943
10.1109/TIT.2011.2171529
10.1109/LSP.2013.2272462
10.1007/978-3-030-05195-2_41
10.1109/TWC.2017.2754369
10.1109/TMC.2007.70780
10.1155/2007/73871
10.1109/ITECHA.2017.8101947
10.1016/0165-1684(94)00122-G
10.1109/UCET.2019.8881846
10.1109/WINCOM.2018.8629717
10.3390/electronics8111209
10.1109/TWC.2018.2818142
10.1109/TSP.2012.2201152
10.1109/TIT.2006.871582
10.1007/s10479-016-2331-0
10.1109/PROC.1969.7278
10.1109/TAP.1986.1143830
10.1109/79.526899
10.1109/TAES.1983.309427
10.3390/inventions4030043
10.1109/ICUT.2009.5405682
10.3390/s151026267
10.1145/1109557.1109681
10.1049/el.2010.0346
10.3390/electronics8050557
10.1109/ICETS.2018.8724621
10.3390/electronics7120424
10.1109/TSP.2006.885771
10.1109/FOCS.2010.38
10.1109/LSP.2016.2636319
10.1109/TII.2016.2569416
10.1109/78.365290
10.3390/electronics8030294
10.1109/WINCOM.2018.8629656
10.1109/TSP.2005.850882
10.1137/120867287
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics8121386
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Music
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics8121386
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-1f3fe7ce08eae5c5dd7478026cfe1be10f1bb3f18396d0155c663a88a76a18913
IEDL.DBID BENPR
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506678200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Fri Jul 25 04:25:28 EDT 2025
Sat Nov 29 07:14:50 EST 2025
Tue Nov 18 22:01:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1f3fe7ce08eae5c5dd7478026cfe1be10f1bb3f18396d0155c663a88a76a18913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9873-8251
0000-0002-7602-2957
0000-0002-7453-4019
0000-0003-2972-9965
OpenAccessLink https://www.proquest.com/docview/2548448321?pq-origsite=%requestingapplication%
PQID 2548448321
PQPubID 2032404
ParticipantIDs proquest_journals_2548448321
crossref_citationtrail_10_3390_electronics8121386
crossref_primary_10_3390_electronics8121386
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Dai (ref_25) 2015; 15
Seow (ref_13) 2008; 7
ref_14
Avron (ref_5) 2013; 34
ref_33
ref_10
ref_32
ref_31
Wan (ref_9) 2016; 12
ref_30
Zeng (ref_2) 2016; 64
ref_19
ref_18
ref_39
Yang (ref_27) 2012; 60
ref_38
ref_37
Semira (ref_44) 2007; 2007
Kumaresan (ref_41) 1983; 19
Lin (ref_3) 2018; 17
Zhu (ref_7) 2017; 16
Yang (ref_28) 2013; 61
Comon (ref_35) 1990; 78
Krim (ref_40) 1996; 13
Schreiber (ref_34) 1986; 34
Roy (ref_17) 1989; 37
Dai (ref_45) 2017; 24
ref_47
ref_24
Marcos (ref_42) 1995; 42
ref_46
Zhang (ref_8) 2010; 46
ref_20
Kim (ref_21) 2012; 58
Elfergani (ref_12) 2016; 15
ref_29
(ref_6) 2018; 265
Ghali (ref_11) 2011; 8
Donoho (ref_23) 2006; 52
Capon (ref_15) 1969; 57
Raghavan (ref_1) 2016; 10
Yang (ref_36) 1995; 43
Malioutov (ref_22) 2005; 53
Schmidt (ref_16) 1986; 34
Zhao (ref_26) 2013; 20
ref_4
Grover (ref_43) 2007; 55
References_xml – ident: ref_30
  doi: 10.1109/ITECHA.2017.8101948
– volume: 64
  start-page: 1557
  year: 2016
  ident: ref_2
  article-title: Millimeter Wave MIMO With Lens Antenna Array: A New Path Division Multiplexing Paradigm
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2016.2533490
– volume: 61
  start-page: 38
  year: 2013
  ident: ref_28
  article-title: Off-grid direction of arrival estimation using sparse Bayesian inference
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2222378
– ident: ref_18
  doi: 10.3390/s17112631
– volume: 10
  start-page: 543
  year: 2016
  ident: ref_1
  article-title: Beamforming Tradeoffs for Initial UE Discovery in Millimeter-Wave MIMO Systems
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2016.2523442
– volume: 37
  start-page: 984
  year: 1989
  ident: ref_17
  article-title: ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.32276
– volume: 78
  start-page: 1327
  year: 1990
  ident: ref_35
  article-title: Tracking a few extreme singular values and vectors in signal processing
  publication-title: Proc. IEEE
  doi: 10.1109/5.58320
– volume: 34
  start-page: 1038
  year: 1986
  ident: ref_34
  article-title: Implementation of adaptive array algorithms
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1986.1164943
– volume: 58
  start-page: 278
  year: 2012
  ident: ref_21
  article-title: Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2171529
– volume: 20
  start-page: 889
  year: 2013
  ident: ref_26
  article-title: An improved auto-calibration algorithm based on sparse Bayesian learning framework
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2013.2272462
– ident: ref_47
  doi: 10.1007/978-3-030-05195-2_41
– volume: 16
  start-page: 7890
  year: 2017
  ident: ref_7
  article-title: Two-dimensional AoD and AoA acquisition for wideband millimetre-wave systems with dual-polarized MIMO
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2017.2754369
– volume: 7
  start-page: 647
  year: 2008
  ident: ref_13
  article-title: Non-line-of-sight localization in multipath environments
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2007.70780
– volume: 2007
  start-page: 12
  year: 2007
  ident: ref_44
  article-title: High-resolution source localization algorithm based on the conjugate gradient
  publication-title: Eurasip J. Adv. Signal Process.
  doi: 10.1155/2007/73871
– ident: ref_39
  doi: 10.1109/ITECHA.2017.8101947
– volume: 42
  start-page: 121
  year: 1995
  ident: ref_42
  article-title: The propagator method for source bearing estimation
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(94)00122-G
– ident: ref_32
  doi: 10.1109/UCET.2019.8881846
– ident: ref_46
  doi: 10.1109/WINCOM.2018.8629717
– ident: ref_29
  doi: 10.3390/electronics8111209
– volume: 17
  start-page: 3959
  year: 2018
  ident: ref_3
  article-title: Estimation of broadband multiuser millimetre-wave massive MIMO-OFDM channels by exploiting their sparse structure
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2018.2818142
– volume: 60
  start-page: 4658
  year: 2012
  ident: ref_27
  article-title: Robustly stable signal recovery in compressed sensing with structured matrix perturbation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2201152
– volume: 52
  start-page: 1289
  year: 2006
  ident: ref_23
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 265
  start-page: 205
  year: 2018
  ident: ref_6
  article-title: Optimal column subset selection for image classification by genetic algorithms
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-016-2331-0
– volume: 57
  start-page: 1408
  year: 1969
  ident: ref_15
  article-title: High-Resolution Frequency-Wavenumber Spectrum Analysis
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1969.7278
– volume: 34
  start-page: 276
  year: 1986
  ident: ref_16
  article-title: Multiple emitter location and signal parameter estimation
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.1986.1143830
– volume: 13
  start-page: 67
  year: 1996
  ident: ref_40
  article-title: Two decades of array signal processing research: The parametric approach
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.526899
– volume: 19
  start-page: 134
  year: 1983
  ident: ref_41
  article-title: Estimating the Angles of Arrival of Multiple Plane Waves
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.1983.309427
– ident: ref_37
  doi: 10.3390/inventions4030043
– ident: ref_10
  doi: 10.1109/ICUT.2009.5405682
– volume: 15
  start-page: 26267
  year: 2015
  ident: ref_25
  article-title: Sparse Bayesian learning for DOA estimation with mutual coupling
  publication-title: Sensors
  doi: 10.3390/s151026267
– ident: ref_38
  doi: 10.1145/1109557.1109681
– volume: 46
  start-page: 860
  year: 2010
  ident: ref_8
  article-title: Angle estimation in MIMO radar using reduced-dimension capon
  publication-title: Electron. Lett.
  doi: 10.1049/el.2010.0346
– ident: ref_33
– ident: ref_24
  doi: 10.3390/electronics8050557
– ident: ref_31
  doi: 10.1109/ICETS.2018.8724621
– ident: ref_19
  doi: 10.3390/electronics7120424
– volume: 55
  start-page: 758
  year: 2007
  ident: ref_43
  article-title: Subspace Direction Finding With an Auxiliary-Vector Basis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.885771
– ident: ref_4
  doi: 10.1109/FOCS.2010.38
– volume: 24
  start-page: 46
  year: 2017
  ident: ref_45
  article-title: Root sparse Bayesian learning for off-grid DOA estimation
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2636319
– volume: 15
  start-page: 206
  year: 2016
  ident: ref_12
  article-title: Weight Optimization for Adaptive Antenna Arrays Using LMS and SMI Algorithms
  publication-title: WSEAS Trans. Commun.
– volume: 12
  start-page: 2353
  year: 2016
  ident: ref_9
  article-title: The Application of DOA Estimation Approach in Patient Tracking Systems with High Patient Density
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2569416
– volume: 43
  start-page: 95
  year: 1995
  ident: ref_36
  article-title: Projection approximation subspace tracking
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.365290
– ident: ref_20
  doi: 10.3390/electronics8030294
– ident: ref_14
  doi: 10.1109/WINCOM.2018.8629656
– volume: 53
  start-page: 3010
  year: 2005
  ident: ref_22
  article-title: A sparse signal reconstruction perspective for source localization with sensor arrays
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.850882
– volume: 34
  start-page: 1464
  year: 2013
  ident: ref_5
  article-title: Faster subset selection for matrices and applications
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/120867287
– volume: 8
  start-page: 45
  year: 2011
  ident: ref_11
  article-title: Weights Optimization of 1D and 2D Adaptive Arrays Using Neural Network Approach
  publication-title: J. Telecommun. Inf. Technol.
SSID ssj0000913830
Score 2.1746304
Snippet This manuscript firstly proposes a reduced size, low-complexity Angle of Arrival (AoA) approach, called Reduced Uniform Projection Matrix (RUPM). The RUPM...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1386
SubjectTerms Angle of arrival
Antenna arrays
Antennas
Complexity
Covariance matrix
Criteria
Linear arrays
Methodology
Methods
Music
Noise
Polynomials
Projection
Propagation
Sampling methods
Searching
Sensors
Signal processing
Signal to noise ratio
Size reduction
Title Uniform Sampling Methodology to Construct Projection Matrices for Angle-of-Arrival Estimation Applications
URI https://www.proquest.com/docview/2548448321
Volume 8
WOSCitedRecordID wos000506678200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BywADb0R5yQMbsoibJnEnVFARSLSKeAlYIse5VCCUlqZi5Ldzl6RQhMTCkiGxpchnn787-74P4NAkGHh-aqTRQVu2Yo_WnO8FMmm1XQ9pB_KL-or7q6Df1w8P7bBKuOXVtcqpTywcdTK0nCM_pkBGUyjhNtXJ6E2yahSfrlYSGvNQZ6ayVg3qp91-eP2VZWHWS-06ZbWMS_H98be6TK6ZzoyLqGd3pJ8Oudhlzlf--3-rsFzhS9EpJ8QazGG2DkszrIPrUC-0nTfghfAmQ1ZxY_haeTYQvUJOuki0i8lQsJhnQS8rwjJfQzYUvYLTH3NBXUUnG7yiHKayMx4_05wVXfIYZTGk6MwcjW_C3Xn39uxCVtIL0tKanEiVuikGFh2NBj3rJQnz7FO8ZlNUMSonVXHspgyv_IRhlyXkYrQ2gW8Un3xuQS0bZrgNwmkaQp0K0Qaa6dSoidOMXYz9lrUK_Qao6fBHtuIlZ3mM14jiEzZZ9NtkDTj66jMqWTn-bL03NVlUrdA8-rbXzt-fd2GRQFK7vMKyBzUad9yHBfs-ec7HB9WEO4D53keXnqH3RO_Cy174-AlKwuf6
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BUgl66IOCSKHtHtpTtcJrx_b6gFBUQEQkUaQCoid3vR5HIOSEOGrVP9XfyIwfEFSJG4eevWvJ3m_nsbPzfQCfTYqhH2RGGh1Gspv4tOcCP5RpN_J8JA8UlP0VF4NwNNKXl9F4Bf42vTB8rbKxiaWhTqeWz8j3KJHRlEp4rjqY3UpWjeLqaiOhUcHiFP_8ppSt2O8f0vp-cd3jo7NvJ7JWFZCW4LaQKvMyDC06Gg361k9TppCnVMRmqBJUTqaSxMs4cghSjigsOWWjtQkDo7ioR-9dhXaXwK5b0B73h-Mf96c6zLKpPafqzvG8yNl7ULMpNNOncdP2sgd87ABKr3b8-n_7H2_gVR0_i14F-LewgvkGvFxiVdyAdqld_Q6uKZ7mkFx8N3xtPp-IYSmXXRYSxGIqWKy0pM8V4-o8ijAqhqVmARaCpopePrlBOc1kbz6_oj0pjsgiVs2eordU-t-E82f56C1o5dMct0E4rqGoWiHaUDNdHA1x3MTDJOhaqzDogGqWO7Y17zrLf9zElH8xROJ_IdKBr_dzZhXryJOjdxuIxLUFKuIHfLx_-vEnWDs5Gw7iQX90ugPrFBBG1XWdXWjRGuAHeGF_La6K-cca7AJ-Pjee7gC-b0GR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BTtwwEB1RQFU5tIVSAaWtD-2psjZONolzQGgFrEDAaiVohXpJHWeCQCgLmxWIX-PrmHESWITEjUPPsSMlfuOZsWfeA_hhcozDqDDS6DiR3Swkm4vCWObdJAiRPFDk-iv-HMSDgT45SYYzcNf2wnBZZbsnuo06H1k-I-9QIqMplQh81Smasojhdn_z8kqyghTftLZyGjVE9vH2htK3amNvm9b6p-_3d463dmWjMCAtQW8iVREUGFv0NBoMbZjnTCdPaYktUGWovEJlWVBwFBHlHF1YctBGaxNHRvEFH733DczFlGOydQ3Dvw_nO8y3qQOv7tMJgsTrPOraVJqJ1Lh9e9oXPnUFzr_1P_zPf-YjvG-iatGrzWARZrBcgoUprsUlmHOK1p_gnKJsDtTFkeFi-vJUHDoRbXe9ICYjwRKmjlRXDOtTKkKuOHRKBlgJmip65ekFylEhe-PxGVmq2KF9sm4BFb2pgoBl-P0qH_0ZZstRiSsgPN9QrK0QbayZRI6GeH4WYBZ1rVUYrYJqlz61DRs7i4JcpJSVMVzS53BZhV8Pcy5rLpIXR6-3cEmbfalKH7Gy9vLj7_CWQJQe7A32v8A7ihKTuoZnHWZpCfArzNvryVk1_uZQL-Dfa4PpHh8ASPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniform+Sampling+Methodology+to+Construct+Projection+Matrices+for+Angle-of-Arrival+Estimation+Applications&rft.jtitle=Electronics+%28Basel%29&rft.au=Al-Sadoon%2C+Mohammed+A+G&rft.au=de+Ree%2C+Marcus&rft.au=Abd-Alhameed%2C+Raed+A&rft.au=Excell%2C+Peter+S&rft.date=2019-12-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=8&rft.issue=12&rft.spage=1386&rft_id=info:doi/10.3390%2Felectronics8121386&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon