Hilbert-Type Operators Acting on Bergman Spaces Hilbert-Type Operators Acting on Bergman Spaces

If μ is a positive Borel measure on the interval [0, 1) we let H μ be the Hankel matrix H μ = ( μ n , k ) n , k ≥ 0 with entries μ n , k = μ n + k , where, for n = 0 , 1 , 2 , … , μ n denotes the moment of order n of μ . This matrix formally induces an operator, called also H μ , on the space of all...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational methods and function theory Ročník 25; číslo 4; s. 863 - 888
Hlavní autoři: Aguilar-Hernández, Tanausú, Galanopoulos, Petros, Girela, Daniel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2025
Springer Nature B.V
Témata:
ISSN:1617-9447, 2195-3724
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract If μ is a positive Borel measure on the interval [0, 1) we let H μ be the Hankel matrix H μ = ( μ n , k ) n , k ≥ 0 with entries μ n , k = μ n + k , where, for n = 0 , 1 , 2 , … , μ n denotes the moment of order n of μ . This matrix formally induces an operator, called also H μ , on the space of all analytic functions in the unit disc D as follows: If f is an analytic function in D , f ( z ) = ∑ k = 0 ∞ a k z k , z ∈ D , H μ ( f ) is formally defined by H μ ( f ) ( z ) = ∑ n = 0 ∞ ∑ k = 0 ∞ μ n + k a k z n , z ∈ D . This is a natural generalization of the classical Hilbert operator. This paper is devoted to studying the operators H μ acting on the Bergman spaces A p , 1 ≤ p < ∞ . Among other results, we give a complete characterization of those μ for which H μ is bounded or compact on the space A p when p is either 1 or greater than 2. We also give a number of results concerning the boundedness and compactness of H μ on A p for the other values of p , as well as on its membership in the Schatten classes S p ( A 2 ) .
AbstractList If μ is a positive Borel measure on the interval [0, 1) we let H μ be the Hankel matrix H μ = ( μ n , k ) n , k ≥ 0 with entries μ n , k = μ n + k , where, for n = 0 , 1 , 2 , … , μ n denotes the moment of order n of μ . This matrix formally induces an operator, called also H μ , on the space of all analytic functions in the unit disc D as follows: If f is an analytic function in D , f ( z ) = ∑ k = 0 ∞ a k z k , z ∈ D , H μ ( f ) is formally defined by H μ ( f ) ( z ) = ∑ n = 0 ∞ ∑ k = 0 ∞ μ n + k a k z n , z ∈ D . This is a natural generalization of the classical Hilbert operator. This paper is devoted to studying the operators H μ acting on the Bergman spaces A p , 1 ≤ p < ∞ . Among other results, we give a complete characterization of those μ for which H μ is bounded or compact on the space A p when p is either 1 or greater than 2. We also give a number of results concerning the boundedness and compactness of H μ on A p for the other values of p , as well as on its membership in the Schatten classes S p ( A 2 ) .
If μ is a positive Borel measure on the interval [0, 1) we let Hμ be the Hankel matrix Hμ=(μn,k)n,k≥0 with entries μn,k=μn+k, where, for n=0,1,2,…, μn denotes the moment of order n of μ. This matrix formally induces an operator, called also Hμ, on the space of all analytic functions in the unit disc D as follows: If f is an analytic function in D, f(z)=∑k=0∞akzk, z∈D, Hμ(f) is formally defined by Hμ(f)(z)=∑n=0∞∑k=0∞μn+kakzn,z∈D.This is a natural generalization of the classical Hilbert operator. This paper is devoted to studying the operators Hμ acting on the Bergman spaces Ap, 1≤p<∞. Among other results, we give a complete characterization of those μ for which Hμ is bounded or compact on the space Ap when p is either 1 or greater than 2. We also give a number of results concerning the boundedness and compactness of Hμ on Ap for the other values of p, as well as on its membership in the Schatten classes Sp(A2).
Author Galanopoulos, Petros
Girela, Daniel
Aguilar-Hernández, Tanausú
Author_xml – sequence: 1
  givenname: Tanausú
  orcidid: 0000-0001-7354-5210
  surname: Aguilar-Hernández
  fullname: Aguilar-Hernández, Tanausú
  organization: Departamento de Matemática Aplicada II and IMUS, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla
– sequence: 2
  givenname: Petros
  orcidid: 0000-0002-4131-4474
  surname: Galanopoulos
  fullname: Galanopoulos, Petros
  organization: Department of Mathematics, Aristotle University of Thessaloniki
– sequence: 3
  givenname: Daniel
  orcidid: 0000-0001-8981-7890
  surname: Girela
  fullname: Girela, Daniel
  email: girela@uma.es
  organization: Análisis Matemático, Universidad de Málaga
BookMark eNp9kD9vwjAQxa2KSgXaL9ApUmeX8_9kpKiFSkgMpbPlOA4KAie1zcC3b2gqVerAcre83717b4JGvvUOoUcCzwRAzSIHRgQGyjGAkIDFDRpTUgjMFOUjNCaSKFxwru7QJMZ9L-IFY2M0WzWH0oWEt-fOZZvOBZPaELO5TY3fZa3PXlzYHY3PPjpjXbxHt7U5RPfwu6fo8-11u1jh9Wb5vpivsWWkSJhUBTBeUGqo5Yw4yCsjJLOyZtzlloBwStRVTY00CqCU-WUKQasc8ros2RQ9DXe70H6dXEx6356C7y01o1KJPmkfeYrooLKhjTG4WnehOZpw1gT0pRg9FKN7uf4pRoseyv9BtkkmNa1PwTSH6ygb0Nj7-J0Lf19dob4Bqil3KA
CitedBy_id crossref_primary_10_1090_proc_17266
Cites_doi 10.1016/j.jfa.2008.02.009
10.1090/S0002-9904-1969-12181-6
10.1090/S0002-9939-1975-0374886-9
10.1215/S0012-7094-77-04409-X
10.1007/s00365-012-9157-z
10.1090/S0002-9947-1966-0187099-X
10.1307/mmj/1029004756
10.1090/surv/138
10.4064/sm200-3-1
10.4153/CJM-1986-043-4
10.2307/1970375
10.4064/sm-140-2-191-198
10.1016/j.jmaa.2017.04.002
10.1016/j.jmaa.2013.11.046
10.1007/978-1-4612-0497-8
10.1007/s13163-018-0288-z
10.1007/s00025-023-01887-6
10.5186/aasfm.2012.3715
10.1112/plms/s3-63.3.595
10.1090/S0002-9947-03-03354-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s40315-024-00560-5
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2195-3724
EndPage 888
ExternalDocumentID 10_1007_s40315_024_00560_5
GroupedDBID 06D
0R~
199
203
2LR
30V
4.4
406
95.
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AM4
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARMRJ
ASPBG
ATHPR
AUKKA
AVWKF
AXYYD
AYFIA
AYJHY
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
KOV
L7B
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
ROL
RSV
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
VH1
W48
ZMTXR
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c319t-1d9034922a2c431e08da563c6f34e8c105e75fdf2a6a700b68700b552d808fbb3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001304472700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1617-9447
IngestDate Fri Nov 28 03:13:00 EST 2025
Sat Nov 29 07:06:10 EST 2025
Tue Nov 18 21:19:07 EST 2025
Sat Oct 25 07:48:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Compact operator
Schatten classes
The Hilbert matrix
47B35
Bounded operator
Generalized Hilbert operator
Duality
Bergman spaces
Carleson measures
30H20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1d9034922a2c431e08da563c6f34e8c105e75fdf2a6a700b68700b552d808fbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4131-4474
0000-0001-7354-5210
0000-0001-8981-7890
PQID 3267502440
PQPubID 2043941
PageCount 26
ParticipantIDs proquest_journals_3267502440
crossref_primary_10_1007_s40315_024_00560_5
crossref_citationtrail_10_1007_s40315_024_00560_5
springer_journals_10_1007_s40315_024_00560_5
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational methods and function theory
PublicationTitleAbbrev Comput. Methods Funct. Theory
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References R Zhao (560_CR24) 2003; 69
DH Luecking (560_CR19) 1991; 63
D Girela (560_CR12) 2019; 32
WW Hastings (560_CR14) 1975; 52
E Diamantopoulos (560_CR5) 2004; 48
P Galanopoulos (560_CR11) 2010; 200
L Carleson (560_CR3) 1962; 76
PL Duren (560_CR10) 2004
560_CR13
H Hedenmalm (560_CR15) 2000
B Lanucha (560_CR18) 2012; 37
DH Luecking (560_CR20) 1993; 40
JM Anderson (560_CR2) 1974; 270
A Aleman (560_CR1) 2012; 36
Ch Chatzifountas (560_CR4) 2014; 413
C Horowitz (560_CR16) 1977; 44
560_CR25
M Jevtić (560_CR17) 2017; 453
BD MacCluer (560_CR21) 1986; 38
M Dostanić (560_CR6) 2008; 254
E Diamantopoulos (560_CR7) 2000; 140
560_CR9
M Tjani (560_CR22) 2003; 355
H Widom (560_CR23) 1966; 121
PL Duren (560_CR8) 1969; 75
References_xml – volume: 254
  start-page: 2800
  year: 2008
  ident: 560_CR6
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2008.02.009
– volume: 75
  start-page: 143
  year: 1969
  ident: 560_CR8
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1969-12181-6
– volume: 69
  start-page: 605
  issue: 3–4
  year: 2003
  ident: 560_CR24
  publication-title: Acta Sci. Math. (Szeged)
– volume: 52
  start-page: 237
  year: 1975
  ident: 560_CR14
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1975-0374886-9
– volume-title: Bergman Spaces, Mathematical Surveys and Monographs
  year: 2004
  ident: 560_CR10
– volume: 48
  start-page: 1067
  issue: 3
  year: 2004
  ident: 560_CR5
  publication-title: Ill. J. Math.
– volume: 44
  start-page: 201
  issue: 1
  year: 1977
  ident: 560_CR16
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-77-04409-X
– volume: 36
  start-page: 353
  issue: 3
  year: 2012
  ident: 560_CR1
  publication-title: Const. Approx.
  doi: 10.1007/s00365-012-9157-z
– volume: 121
  start-page: 1
  year: 1966
  ident: 560_CR23
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1966-0187099-X
– volume: 40
  start-page: 333
  issue: 2
  year: 1993
  ident: 560_CR20
  publication-title: Mich. Math. J.
  doi: 10.1307/mmj/1029004756
– ident: 560_CR25
  doi: 10.1090/surv/138
– volume: 200
  start-page: 201
  issue: 3
  year: 2010
  ident: 560_CR11
  publication-title: Studia Math.
  doi: 10.4064/sm200-3-1
– volume: 38
  start-page: 878
  issue: 4
  year: 1986
  ident: 560_CR21
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1986-043-4
– volume: 76
  start-page: 547
  year: 1962
  ident: 560_CR3
  publication-title: Ann. Math.
  doi: 10.2307/1970375
– volume: 140
  start-page: 191
  issue: 2
  year: 2000
  ident: 560_CR7
  publication-title: Studia Math.
  doi: 10.4064/sm-140-2-191-198
– volume: 453
  start-page: 241
  issue: 1
  year: 2017
  ident: 560_CR17
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2017.04.002
– volume: 413
  start-page: 154
  issue: 1
  year: 2014
  ident: 560_CR4
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.11.046
– volume-title: Theory of Bergman Spaces, Graduate Texts in Mathematics 199
  year: 2000
  ident: 560_CR15
  doi: 10.1007/978-1-4612-0497-8
– volume: 32
  start-page: 799
  issue: 3
  year: 2019
  ident: 560_CR12
  publication-title: Rev. Mat. Complut.
  doi: 10.1007/s13163-018-0288-z
– ident: 560_CR13
  doi: 10.1007/s00025-023-01887-6
– volume: 37
  start-page: 161
  year: 2012
  ident: 560_CR18
  publication-title: Ann. Acad. Sci. Fenn. Math.
  doi: 10.5186/aasfm.2012.3715
– volume: 63
  start-page: 595
  issue: 3
  year: 1991
  ident: 560_CR19
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/s3-63.3.595
– volume: 270
  start-page: 12
  year: 1974
  ident: 560_CR2
  publication-title: J. Reine Angew. Math.
– volume: 355
  start-page: 4683
  issue: 11
  year: 2003
  ident: 560_CR22
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-03-03354-3
– ident: 560_CR9
SSID ssj0054933
Score 2.3437407
Snippet If μ is a positive Borel measure on the interval [0, 1) we let H μ be the Hankel matrix H μ = ( μ n , k ) n , k ≥ 0 with entries μ n , k = μ n + k , where, for...
If μ is a positive Borel measure on the interval [0, 1) we let Hμ be the Hankel matrix Hμ=(μn,k)n,k≥0 with entries μn,k=μn+k, where, for n=0,1,2,…, μn denotes...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 863
SubjectTerms Analysis
Analytic functions
Computational Mathematics and Numerical Analysis
Functions of a Complex Variable
Hankel matrices
Mathematical analysis
Mathematical functions
Mathematics
Mathematics and Statistics
Operators (mathematics)
Subtitle Hilbert-Type Operators Acting on Bergman Spaces
Title Hilbert-Type Operators Acting on Bergman Spaces
URI https://link.springer.com/article/10.1007/s40315-024-00560-5
https://www.proquest.com/docview/3267502440
Volume 25
WOSCitedRecordID wos001304472700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2195-3724
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054933
  issn: 1617-9447
  databaseCode: RSV
  dateStart: 20010901
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoB64QUT6SJMeB2LahYEYoN2qNE3RJOimtfD7cbK2EwiQ4FJVamJVThx_SezPAKcu1zJRSUgkV_a0ShChqTlt8lORejxKhLTFJvhgIEaj6K5KCivqaPf6StKu1E2yW2AKEhD0KcTwV1LClmEF3Z0w5ng_fKrXX9zw2ALyBriTKAh4lSrzvYzP7miBMb9ci1pv09v8339uwUaFLp3ufDpsw5LOd2D9pqFmLXbhoj82tFYlMTtQ53aq7T174XSVCYB2JrlzqWfPrzJ3hlMTrrUHj73rh6s-qaomEIXmVBI3jQznjOdJTyE60FSkkoW-CjM_0EIhntKcZWnmyVBySpNQmCdjXiqoyJLE34dWPsn1ATgsQgkB9sJxw5csoQrlhdoVnGs_5W1wa-XFqqIUN5UtXuKGDNkqI0ZlxFYZMWvDWdNnOifU-LV1px6TuDKuIkbEiTgHcQltw3k9BovPP0s7_FvzI1jzTLVfG7zSgVY5e9PHsKrey3ExO7GT7gPvIMxv
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-J0ah9802D6mfRximPiNsVN2VtI01QG2o21-vebZG2HooK-lEKTo9wluV9yl98BnNpE8khEAeJEmNMqiqjE-rTJjWnskDCi3BSbIL0eHQ7D--JSWFZmu5chSbNSV5fdPF2QACmfgjR_JUb-Iix5ymPpRL6H_lO5_qoNjykgr4E7Cj2PFFdlvpfx2R3NMeaXsKjxNq2N__3nJqwX6NJqzobDFizIdBvWuhU1a7YDF-2RprXKkd6BWncTaeLsmdUUOgHaGqfWpZw-v_LU6k90utYuPLauB1dtVFRNQEJNpxzZcag5ZxyHO0KhA4lpzP3AFUHiepIKhack8ZM4cXjACcZRQPXT952YYppEkbsHtXScyn2w_FBJ8FQvZTf1kkRYKHmBtCkh0o1JHexSeUwUlOK6ssULq8iQjTKYUgYzymB-Hc6qPpMZocavrRulTVgxuTKmEKfCOQqX4DqclzaYf_5Z2sHfmp_ASnvQ7bDOTe_2EFYdXfnXJLI0oJZP3-QRLIv3fJRNj80A_ACOBc9T
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah9807D0mvRxXsZEnYOp7K2kSSoD7cZa_f0mWdupqCC-lECTQzlJmi_JOd8HcGwTyWIeB4gRbk6rKKIS69MmV1DhkDCmzIhNkG6XDgZh70MWv4l2L68kpzkNmqUpzZtjkTSrxDdPixMgtb4gzWWJkT8PC54WDdL79f5j-S9Wmx8jJq9BPAo9jxRpM9_b-Lw0zfDmlytSs_K01_7_zeuwWqBOqzUdJhswJ9NNWLmtKFuzLWh2hpruKkd6Z2rdjaW5f8-sFteB0dYotc7k5OmFpVZ_rMO4tuGhfXl_3kGFmgLiaprlyBah5qJxHOZwhRokpoL5gcuDxPUk5QpnSeInInFYwAjGcUD10_cdQTFN4tjdgVo6SuUuWH6oLHiqlepPVUhizJW9QNqUEOkKUge7dGTEC6pxrXjxHFUkycYZkXJGZJwR-XU4qdqMp0Qbv9ZulP0TFZMuixQSVfhH4RVch9OyP2avf7a297fqR7DUu2hHN1fd631YdrQgsIlvaUAtn7zKA1jkb_kwmxyasfgOqtvYNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hilbert-Type+Operators+Acting+on+Bergman+Spaces&rft.jtitle=Computational+methods+and+function+theory&rft.au=Aguilar-Hern%C3%A1ndez%2C+Tanaus%C3%BA&rft.au=Galanopoulos%2C+Petros&rft.au=Girela%2C+Daniel&rft.date=2025-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1617-9447&rft.eissn=2195-3724&rft.volume=25&rft.issue=4&rft.spage=863&rft.epage=888&rft_id=info:doi/10.1007%2Fs40315-024-00560-5&rft.externalDocID=10_1007_s40315_024_00560_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-9447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-9447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-9447&client=summon