Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks
In the cophasing of the segmented optical mirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses...
Uloženo v:
| Vydáno v: | Optics letters Ročník 44; číslo 5; s. 1170 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.03.2019
|
| ISSN: | 1539-4794, 1539-4794 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the cophasing of the segmented optical mirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses or prisms), but they greatly increase the complexity and manufacturing cost of the optical system. In this Letter, we introduce the convolutional neural network (CNN) to distinguish the piston error range of each submirror. To get rid of the dependence of the CNN dataset on the imaging target, we construct the feature vector by the in-focal and defocused images. The method surpasses the fundamental limit of the detection range by using different wavelengths. Finally, the results of the simulation experiment indicate that the method is effective. |
|---|---|
| AbstractList | In the cophasing of the segmented optical mirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses or prisms), but they greatly increase the complexity and manufacturing cost of the optical system. In this Letter, we introduce the convolutional neural network (CNN) to distinguish the piston error range of each submirror. To get rid of the dependence of the CNN dataset on the imaging target, we construct the feature vector by the in-focal and defocused images. The method surpasses the fundamental limit of the detection range by using different wavelengths. Finally, the results of the simulation experiment indicate that the method is effective.In the cophasing of the segmented optical mirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses or prisms), but they greatly increase the complexity and manufacturing cost of the optical system. In this Letter, we introduce the convolutional neural network (CNN) to distinguish the piston error range of each submirror. To get rid of the dependence of the CNN dataset on the imaging target, we construct the feature vector by the in-focal and defocused images. The method surpasses the fundamental limit of the detection range by using different wavelengths. Finally, the results of the simulation experiment indicate that the method is effective. In the cophasing of the segmented optical mirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses or prisms), but they greatly increase the complexity and manufacturing cost of the optical system. In this Letter, we introduce the convolutional neural network (CNN) to distinguish the piston error range of each submirror. To get rid of the dependence of the CNN dataset on the imaging target, we construct the feature vector by the in-focal and defocused images. The method surpasses the fundamental limit of the detection range by using different wavelengths. Finally, the results of the simulation experiment indicate that the method is effective. |
| Author | Yan, Dejie Li, Dequan Xu, Shuyan Wang, Dong |
| Author_xml | – sequence: 1 givenname: Dequan surname: Li fullname: Li, Dequan – sequence: 2 givenname: Shuyan surname: Xu fullname: Xu, Shuyan – sequence: 3 givenname: Dong surname: Wang fullname: Wang, Dong – sequence: 4 givenname: Dejie surname: Yan fullname: Yan, Dejie |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30821740$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkD1PwzAQhi1URD9gY0YeWVJsx43jEVV8SZG6wBwZ-1wCiR1sp6j_nhSKxPTc6X2fG26OJs47QOiSkiXNC36zqZacLwmhVJATNKOrXGZcSD75N0_RPMZ3Qkgh8vwMTXNSMio4maGuUmELWdSqBdw3MXmHIQQfsIEEOjXjPvLN-dZv99iOQYRtBy6Bwb5PzSjirjkYEe8ahbV3O98OB3FMHAzhB-nLh494jk6taiNcHLlAL_d3z-vHrNo8PK1vq0znVKaMGmoJF8JKw5iCUmhZsLKwimhrhZSaEVESRilwUXBjhF1RWxqmudSCUs4W6Pr3bh_85wAx1V0TNbStcuCHWDNaihUjkhVj9epYHV47MHUfmk6Fff33IvYNp9JrfA |
| CitedBy_id | crossref_primary_10_3390_photonics11111064 crossref_primary_10_1016_j_optcom_2022_129182 crossref_primary_10_1016_j_optcom_2021_127617 crossref_primary_10_1364_AO_484829 crossref_primary_10_3390_app10093207 crossref_primary_10_3390_aerospace12050399 crossref_primary_10_1364_AO_454425 crossref_primary_10_3390_s24010279 crossref_primary_10_1109_JPHOT_2022_3194509 crossref_primary_10_1109_JPHOT_2024_3497182 crossref_primary_10_1364_AO_379194 crossref_primary_10_3788_COL202321_060101 crossref_primary_10_1109_ACCESS_2020_3002901 crossref_primary_10_1364_AO_402943 crossref_primary_10_3390_rs14184681 crossref_primary_10_3390_universe10050210 crossref_primary_10_1016_j_optlaseng_2020_106005 crossref_primary_10_1364_AO_567827 crossref_primary_10_1109_JSTARS_2024_3448536 crossref_primary_10_1364_OL_562369 crossref_primary_10_1016_j_optlastec_2023_109737 crossref_primary_10_1016_j_optlaseng_2025_109168 crossref_primary_10_3390_appliedphys1010004 crossref_primary_10_3390_s24134236 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1364/OL.44.001170 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1539-4794 |
| ExternalDocumentID | 30821740 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .DC 123 29N 4.4 53G 8SL AAWJZ ACBEA ACGFO AEDJG AENEX AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN CS3 DSZJF DU5 EBS EJD F5P NPM ODPQJ OFLFD OPJBK OPLUZ P2P RNS ROL ROS SJN TAE TN5 TR6 WH7 Y7S YNT 7X8 AGQFO AMMXN |
| ID | FETCH-LOGICAL-c319t-1d1f0477f9d22ae87c96286fa0cff799c20780211e4764dd7f51f8d2c49c71142 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460109200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1539-4794 |
| IngestDate | Fri Jul 11 07:32:24 EDT 2025 Thu Apr 03 07:10:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-1d1f0477f9d22ae87c96286fa0cff799c20780211e4764dd7f51f8d2c49c71142 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 30821740 |
| PQID | 2187520926 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2187520926 pubmed_primary_30821740 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Mar-01 20190301 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-Mar-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Optics letters |
| PublicationTitleAlternate | Opt Lett |
| PublicationYear | 2019 |
| SSID | ssj0006733 |
| Score | 2.4789932 |
| Snippet | In the cophasing of the segmented optical mirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1170 |
| Title | Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30821740 https://www.proquest.com/docview/2187520926 |
| Volume | 44 |
| WOSCitedRecordID | wos000460109200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAgsTC-1FeMhJraJI6cTwhhKgYSukAUrcosc-oQ5MQh_5-zk4KExISSzJElizfnf3l_N13hNwoyaWAXHgyj8Bj2nYD5JnwgPsBoP-AL1yh8JhPJslsJqZdws10tMrVnug2alVKmyMf4FHELWUjjO-qD892jbK3q10LjXXSGyKUsZQuPvtRC4-5ayWPQS1sBol1xPdhzAYv41vGWqVK_3dw6Q6Z0e5_p7dHdjp4Se9bf9gna1AckC1H85TmkCzGlvjtGTQM0MqqChQU6rqsqYLGkbIK2nwn2ykCWmrg3el2KlpWLu9NF3M7wtDlPKOWtN45L36x4pju5ajl5oi8jR5fH568ruGCJzESGy9QgfYZ51qoMMwgQTPaylWd-VJrLoQMEVAgKAiA8ZgpxXUU6ESFkgnJbVHuMdkoygJOCQ0yrmMeayFYwiKAHFF8kCdxFOaJgFD1yfVqHVN0aHtLkRVQfpr0ZyX75KQ1Rlq1yhup1dbBXyj_7A-jz8k2ghvR8sUuSE9jOMMl2ZTLZm7qK-cp-JxMn78AL1rKkQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+piston+error+detection+technology+for+segmented+optical+mirrors+via+convolutional+neural+networks&rft.jtitle=Optics+letters&rft.au=Li%2C+Dequan&rft.au=Xu%2C+Shuyan&rft.au=Wang%2C+Dong&rft.au=Yan%2C+Dejie&rft.date=2019-03-01&rft.issn=1539-4794&rft.eissn=1539-4794&rft.volume=44&rft.issue=5&rft.spage=1170&rft_id=info:doi/10.1364%2FOL.44.001170&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-4794&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-4794&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-4794&client=summon |