Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks

In the cophasing of the segmented optical mirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optics letters Ročník 44; číslo 5; s. 1170
Hlavní autori: Li, Dequan, Xu, Shuyan, Wang, Dong, Yan, Dejie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.03.2019
ISSN:1539-4794, 1539-4794
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the cophasing of the segmented optical mirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses or prisms), but they greatly increase the complexity and manufacturing cost of the optical system. In this Letter, we introduce the convolutional neural network (CNN) to distinguish the piston error range of each submirror. To get rid of the dependence of the CNN dataset on the imaging target, we construct the feature vector by the in-focal and defocused images. The method surpasses the fundamental limit of the detection range by using different wavelengths. Finally, the results of the simulation experiment indicate that the method is effective.
AbstractList In the cophasing of the segmented optical mirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses or prisms), but they greatly increase the complexity and manufacturing cost of the optical system. In this Letter, we introduce the convolutional neural network (CNN) to distinguish the piston error range of each submirror. To get rid of the dependence of the CNN dataset on the imaging target, we construct the feature vector by the in-focal and defocused images. The method surpasses the fundamental limit of the detection range by using different wavelengths. Finally, the results of the simulation experiment indicate that the method is effective.In the cophasing of the segmented optical mirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses or prisms), but they greatly increase the complexity and manufacturing cost of the optical system. In this Letter, we introduce the convolutional neural network (CNN) to distinguish the piston error range of each submirror. To get rid of the dependence of the CNN dataset on the imaging target, we construct the feature vector by the in-focal and defocused images. The method surpasses the fundamental limit of the detection range by using different wavelengths. Finally, the results of the simulation experiment indicate that the method is effective.
In the cophasing of the segmented optical mirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses or prisms), but they greatly increase the complexity and manufacturing cost of the optical system. In this Letter, we introduce the convolutional neural network (CNN) to distinguish the piston error range of each submirror. To get rid of the dependence of the CNN dataset on the imaging target, we construct the feature vector by the in-focal and defocused images. The method surpasses the fundamental limit of the detection range by using different wavelengths. Finally, the results of the simulation experiment indicate that the method is effective.
Author Yan, Dejie
Li, Dequan
Xu, Shuyan
Wang, Dong
Author_xml – sequence: 1
  givenname: Dequan
  surname: Li
  fullname: Li, Dequan
– sequence: 2
  givenname: Shuyan
  surname: Xu
  fullname: Xu, Shuyan
– sequence: 3
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
– sequence: 4
  givenname: Dejie
  surname: Yan
  fullname: Yan, Dejie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30821740$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAQhi1URD9gY0YeWVJsx43jEVV8SZG6wBwZ-1wCiR1sp6j_nhSKxPTc6X2fG26OJs47QOiSkiXNC36zqZacLwmhVJATNKOrXGZcSD75N0_RPMZ3Qkgh8vwMTXNSMio4maGuUmELWdSqBdw3MXmHIQQfsIEEOjXjPvLN-dZv99iOQYRtBy6Bwb5PzSjirjkYEe8ahbV3O98OB3FMHAzhB-nLh494jk6taiNcHLlAL_d3z-vHrNo8PK1vq0znVKaMGmoJF8JKw5iCUmhZsLKwimhrhZSaEVESRilwUXBjhF1RWxqmudSCUs4W6Pr3bh_85wAx1V0TNbStcuCHWDNaihUjkhVj9epYHV47MHUfmk6Fff33IvYNp9JrfA
CitedBy_id crossref_primary_10_3390_photonics11111064
crossref_primary_10_1016_j_optcom_2022_129182
crossref_primary_10_1016_j_optcom_2021_127617
crossref_primary_10_1364_AO_484829
crossref_primary_10_3390_app10093207
crossref_primary_10_3390_aerospace12050399
crossref_primary_10_1364_AO_454425
crossref_primary_10_3390_s24010279
crossref_primary_10_1109_JPHOT_2022_3194509
crossref_primary_10_1109_JPHOT_2024_3497182
crossref_primary_10_1364_AO_379194
crossref_primary_10_3788_COL202321_060101
crossref_primary_10_1109_ACCESS_2020_3002901
crossref_primary_10_1364_AO_402943
crossref_primary_10_3390_rs14184681
crossref_primary_10_3390_universe10050210
crossref_primary_10_1016_j_optlaseng_2020_106005
crossref_primary_10_1364_AO_567827
crossref_primary_10_1109_JSTARS_2024_3448536
crossref_primary_10_1364_OL_562369
crossref_primary_10_1016_j_optlastec_2023_109737
crossref_primary_10_1016_j_optlaseng_2025_109168
crossref_primary_10_3390_appliedphys1010004
crossref_primary_10_3390_s24134236
ContentType Journal Article
DBID NPM
7X8
DOI 10.1364/OL.44.001170
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1539-4794
ExternalDocumentID 30821740
Genre Journal Article
GroupedDBID ---
-~X
.DC
123
29N
4.4
53G
8SL
AAWJZ
ACBEA
ACGFO
AEDJG
AENEX
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
CS3
DSZJF
DU5
EBS
EJD
F5P
NPM
ODPQJ
OFLFD
OPJBK
OPLUZ
P2P
RNS
ROL
ROS
SJN
TAE
TN5
TR6
WH7
Y7S
YNT
7X8
AGQFO
AMMXN
ID FETCH-LOGICAL-c319t-1d1f0477f9d22ae87c96286fa0cff799c20780211e4764dd7f51f8d2c49c71142
IEDL.DBID 7X8
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460109200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1539-4794
IngestDate Fri Jul 11 07:32:24 EDT 2025
Thu Apr 03 07:10:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1d1f0477f9d22ae87c96286fa0cff799c20780211e4764dd7f51f8d2c49c71142
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30821740
PQID 2187520926
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2187520926
pubmed_primary_30821740
PublicationCentury 2000
PublicationDate 2019-Mar-01
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-Mar-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics letters
PublicationTitleAlternate Opt Lett
PublicationYear 2019
SSID ssj0006733
Score 2.4790688
Snippet In the cophasing of the segmented optical mirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1170
Title Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks
URI https://www.ncbi.nlm.nih.gov/pubmed/30821740
https://www.proquest.com/docview/2187520926
Volume 44
WOSCitedRecordID wos000460109200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAgsTC-1FeMhKraR5uHE8IISqGUjqA1C1y_EAdmoQ49PdzdlKYkJBYkiGyZPnu7C93n79D6CbJlTRGGKJ4rAkduiKhZglRQgeJMSpSeeCbTbDJJJ3N-LRLuNmOVrnaE_1GrUrpcuQDOIqYo2xEyV31QVzXKFdd7VporKNeDFDGUbrY7EctPGG-lTwENXcZJNoR3-OEDl7Gt5S2SpXB7-DSHzKj3f9Obw_tdPAS37f-sI_WdHGAtjzNU9pDtBg74jexYBiNK6cqUGBd12WNlW48KavAzXeyHQOgxVa_e91OhcvK573xYu5GWLycC-xI653zwhcnjulfnlpuj9Db6PH14Yl0DReIhEhsSKhCE1DGDFdRJHTKJHc3V40IwJ6McxkBoABQEGrKEqoUM8PQpCqSlEvmLuUeo42iLPQpwlwxqk3I1FBQKvI4pTzXgA0BjUS55LKPrlfrmIFDuyqFKHT5abOfleyjk9YYWdUqb2ROWwd-oYKzP4w-R9sAbnjLF7tAPQPhrC_Rplw2c1tfeU-B52T6_AU4HMuN
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+piston+error+detection+technology+for+segmented+optical+mirrors+via+convolutional+neural+networks&rft.jtitle=Optics+letters&rft.au=Li%2C+Dequan&rft.au=Xu%2C+Shuyan&rft.au=Wang%2C+Dong&rft.au=Yan%2C+Dejie&rft.date=2019-03-01&rft.eissn=1539-4794&rft.volume=44&rft.issue=5&rft.spage=1170&rft_id=info:doi/10.1364%2FOL.44.001170&rft_id=info%3Apmid%2F30821740&rft_id=info%3Apmid%2F30821740&rft.externalDocID=30821740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-4794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-4794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-4794&client=summon