Space-Efficient Algorithms for Longest Increasing Subsequence

Given a sequence of integers, we want to find a longest increasing subsequence of the sequence. It is known that this problem can be solved in O n log n time and space. Our goal in this paper is to reduce the space consumption while keeping the time complexity small. For n ≤ s ≤ n , we present algor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theory of computing systems Ročník 64; číslo 3; s. 522 - 541
Hlavní autoři: Kiyomi, Masashi, Ono, Hirotaka, Otachi, Yota, Schweitzer, Pascal, Tarui, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2020
Springer Nature B.V
Témata:
ISSN:1432-4350, 1433-0490
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Given a sequence of integers, we want to find a longest increasing subsequence of the sequence. It is known that this problem can be solved in O n log n time and space. Our goal in this paper is to reduce the space consumption while keeping the time complexity small. For n ≤ s ≤ n , we present algorithms that use O s log n bits and O 1 s ⋅ n 2 ⋅ log n time for computing the length of a longest increasing subsequence, and O 1 s ⋅ n 2 ⋅ log 2 n time for finding an actual subsequence. We also show that the time complexity of our algorithms is optimal up to polylogarithmic factors in the framework of sequential access algorithms with the prescribed amount of space.
AbstractList Given a sequence of integers, we want to find a longest increasing subsequence of the sequence. It is known that this problem can be solved in O n log n time and space. Our goal in this paper is to reduce the space consumption while keeping the time complexity small. For n ≤ s ≤ n , we present algorithms that use O s log n bits and O 1 s ⋅ n 2 ⋅ log n time for computing the length of a longest increasing subsequence, and O 1 s ⋅ n 2 ⋅ log 2 n time for finding an actual subsequence. We also show that the time complexity of our algorithms is optimal up to polylogarithmic factors in the framework of sequential access algorithms with the prescribed amount of space.
Given a sequence of integers, we want to find a longest increasing subsequence of the sequence. It is known that this problem can be solved in Onlogn time and space. Our goal in this paper is to reduce the space consumption while keeping the time complexity small. For n≤s≤n, we present algorithms that use Oslogn bits and O1s⋅n2⋅logn time for computing the length of a longest increasing subsequence, and O1s⋅n2⋅log2n time for finding an actual subsequence. We also show that the time complexity of our algorithms is optimal up to polylogarithmic factors in the framework of sequential access algorithms with the prescribed amount of space.
Author Schweitzer, Pascal
Tarui, Jun
Kiyomi, Masashi
Ono, Hirotaka
Otachi, Yota
Author_xml – sequence: 1
  givenname: Masashi
  surname: Kiyomi
  fullname: Kiyomi, Masashi
  organization: Yokohama City University
– sequence: 2
  givenname: Hirotaka
  surname: Ono
  fullname: Ono, Hirotaka
  organization: Nagoya University
– sequence: 3
  givenname: Yota
  orcidid: 0000-0002-0087-853X
  surname: Otachi
  fullname: Otachi, Yota
  email: otachi@cs.kumamoto-u.ac.jp
  organization: Kumamoto University
– sequence: 4
  givenname: Pascal
  surname: Schweitzer
  fullname: Schweitzer, Pascal
  organization: TU Kaiserslautern
– sequence: 5
  givenname: Jun
  surname: Tarui
  fullname: Tarui, Jun
  organization: The University of Electro-Communications
BookMark eNp9kMFKAzEURYNUsK3-gKsB19GXZCaZWbgopWqh4KK6DplMpqa0SU3ShX9v7AiCi67yCPe8-zgTNHLeGYRuCdwTAPEQASgtMZAaQ9NAjfkFGpOSMQxlA6PTTHHJKrhCkxi3AMBqgDF6XB-UNnjR91Zb41Ix2218sOljH4veh2Ll3cbEVCydDkZF6zbF-thG83k0TptrdNmrXTQ3v-8UvT8t3uYvePX6vJzPVlgz0iRMOuB1p6DtuK64ULTsOtEJoZiqecsqU9EWWK9r0lR9DmhOVCV4_hSMi0axKbob9h6Cz80xya0_BpcrJSW8qQBISXKKDikdfIzB9PIQ7F6FL0lA_miSgyaZNcmTJskzVP-DtE0qWe9SUHZ3HmUDGnNP1hT-rjpDfQOiF30e
CitedBy_id crossref_primary_10_1007_s00284_025_04125_0
Cites_doi 10.1080/00207169708804607
10.1137/1.9781611973105.122
10.1007/978-3-642-38236-9_4
10.1137/130942152
10.1007/978-3-319-62389-4_1
10.1007/978-3-319-13075-0_44
10.1016/S0020-0190(00)00124-1
10.1145/359581.359603
10.1090/S0273-0979-99-00796-X
10.4230/LIPIcs.STACS.2015.288
10.1137/1004036
10.1016/0012-365X(75)90103-X
10.1017/CBO9781139872003
10.1007/978-3-662-44777-2_67
10.1016/j.ic.2010.04.003
10.1137/1005107
10.1137/1.9781611973730.83
10.1145/800135.804426
10.1007/s10878-006-7125-x
10.1016/0304-3975(80)90061-4
10.4153/CJM-1961-015-3
10.4230/LIPIcs.STACS.2016.57
10.1016/S0022-0000(70)80006-X
10.1137/0211022
10.4230/LIPIcs.ICALP.2016.58
10.1145/129712.129772
10.4230/LIPIcs.STACS.2017.9
10.1137/090770801
10.1016/0022-0000(87)90002-X
10.1007/978-3-662-44777-2_24
10.1007/s00454-006-1275-6
10.1109/SFCS.1998.743455
10.1007/s00493-014-3035-1
10.1007/978-3-319-62389-4_8
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1007/s00224-018-09908-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1433-0490
EndPage 541
ExternalDocumentID 10_1007_s00224_018_09908_6
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: JP18K11169
  funderid: https://doi.org/10.13039/501100001691
– fundername: Japan Society for the Promotion of Science (JP)
  grantid: JP17H01698
– fundername: Japan Society for the Promotion of Science (JP)
  grantid: JP18H04091
– fundername: Ministry of Education, Culture, Sports, Science and Technology
  grantid: JP24106004
  funderid: https://doi.org/10.13039/501100001700
– fundername: Japan Society for the Promotion of Science (JP)
  grantid: JP18K11168
GroupedDBID --Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
2.D
203
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
MK~
ML~
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF-
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XOL
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-1d068da0bd6c567a24dd7d77a3a86b35e52b03fc8195f567c61a5762b073679a3
IEDL.DBID M2P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000523364400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-4350
IngestDate Tue Nov 04 22:18:37 EST 2025
Tue Nov 18 21:43:19 EST 2025
Sat Nov 29 03:28:55 EST 2025
Fri Feb 21 02:34:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Space-efficient algorithm
Patience sorting
Longest increasing subsequence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1d068da0bd6c567a24dd7d77a3a86b35e52b03fc8195f567c61a5762b073679a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0087-853X
PQID 2169500141
PQPubID 48907
PageCount 20
ParticipantIDs proquest_journals_2169500141
crossref_primary_10_1007_s00224_018_09908_6
crossref_citationtrail_10_1007_s00224_018_09908_6
springer_journals_10_1007_s00224_018_09908_6
PublicationCentury 2000
PublicationDate 20200400
2020-4-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 4
  year: 2020
  text: 20200400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Theory of computing systems
PublicationTitleAbbrev Theory Comput Syst
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cook, S.A.: Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space. In: STOC 1979, pp 338–345 (1979), https://doi.org/10.1145/800135.804426
ErgunFJowhariHOn the monotonicity of a data streamCombinatorica2015356641653343979010.1007/s00493-014-3035-11389.68037
Asano, T., Elmasry, A., Katajainen, J.: Priority queues and sorting for read-only data. In: TAMC 2013, pp 32–41 (2013). https://doi.org/10.1007/978-3-642-38236-9_4
MallowsCLProblem 62-2SIAM Rev.19635437537610.1137/1005107http://www.jstor.org/stable/2028347
KushilevitzENisanNCommunication complexity1997CambridgeCambridge University Press0869.68048
Gopalan, P., Jayram, T.S., Krauthgamer, R., Kumar, R.: Estimating the sortedness of a data stream. In: SODA 2007, pp 318–327 (2007). http://dl.acm.org/citation.cfm?id=1283417
Su, X., Woodruff, D.P.: The communication and streaming complexity of computing the longest common and increasing subsequences. In: SODA 2007, pp 336–345 (2007). http://dl.acm.org/citation.cfm?id=1283383.1283419
Pilipczuk, M., Wrochna, M.: On space efficiency of algorithms working on structural decompositions of graphs. In: STACS 2016, vol. 47, pp 57:1–57:15 (2016). https://doi.org/10.4230/LIPIcs.STACS.2016.57
Liben-NowellDVeeEAnZFinding longest increasing and common subsequences in streaming dataJ. Comb. Optim.2006112155175221291410.1007/s10878-006-7125-x1130.90040
RamananPTight $\Omega (n \lg n)$Ω(n lg n) lower bound for finding a longest increasing subsequenceInt. J. Comput. Math.1997653–4161164166951110.1080/002071697088046070890.68055
Asano, T., Izumi, T., Kiyomi, M., Konagaya, M., Ono, H., Otachi, Y., Schweitzer, P., Tarui, J., Uehara, R.: Depth-first search using O(n) bits. In: ISAAC 2014, pp 553–564 (2014). https://doi.org/10.1007/978-3-319-13075-0_44
BespamyatnikhSSegalMEnumerating longest increasing subsequences and patience sortingInf. Process. Lett.2000761–2711179755710.1016/S0020-0190(00)00124-11338.68205
MunroJIPatersonMSSelection and sorting with limited storageTheor. Comput. Sci.198012331532358931210.1016/0304-3975(80)90061-40441.68067
Naumovitz, T., Saks, M.: A polylogarithmic space deterministic streaming algorithm for approximating distance to monotonicity. In: SODA 2015, pp 1252–1262 (2015). https://doi.org/10.1137/1.9781611973730.83
Nisan, N.: RL ⊆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\subseteq $\end{document} SC. In: STOC 1992, pp 619–623 (1992). https://doi.org/10.1145/129712.129772
Ahn, H.-K., Baraldo, N., Oh, E., Silvestri, F.: A time-space trade-off for triangulations of points in the plane. In: COCOON 2017, pp 3–12 (2017). https://doi.org/10.1007/978-3-319-62389-4_1
Saks, M., Seshadhri, C.: Space efficient streaming algorithms for the distance to monotonicity and asymmetric edit distance. In: SODA 2013, pp 1698–1709 (2013). https://doi.org/10.1137/1.9781611973105.122
Elmasry, A., Hagerup, T., Kammer, F.: Space-efficient basic graph algorithms. In: STACS 2015, vol. 30, pp 288–301 (2015). https://doi.org/10.4230/LIPIcs.STACS.2015.288
RomikDThe surprising mathematics of longest increasing subsequences2015CambridgeCambridge University Press1345.05003https://doi.org/10.1017/CBO9781139872003
Chakraborty, S., Satti, S.R.: Space-efficient algorithms for maximum cardinality search, stack BFS, queue BFS and applications. In: COCOON 2017, pp 87–98 (2017). https://doi.org/10.1007/978-3-319-62389-4_8
Lincoln, A., Williams, V.V., Wang, J.R., Ryan Williams, R.: Deterministic time-space trade-offs for k-SUM. In: ICALP 2016, pp 58:1–58:14 (2016), https://doi.org/10.4230/LIPIcs.ICALP.2016.58
MallowsCLPatience sortingBulletin of the Institute of Mathematics and its Applications19739216224
Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: FOCS 1998, pp 264–268 (1998). https://doi.org/10.1109/SFCS.1998.743455
SavitchWJRelationships between nondeterministic and deterministic tape complexitiesJ. Comput. Syst. Sci.19704217719226670210.1016/S0022-0000(70)80006-X0188.33502
BorodinACookSA time-space tradeoff for sorting on a general sequential model of computationSIAM J. Comput.198211228729765290310.1137/02110220478.68061
Darwish, O., Elmasry, A.: Optimal time-space tradeoff for the 2D convex-hull problem. In: ESA 2014, pp 284–295 (2014). https://doi.org/10.1007/978-3-662-44777-2_24
FredericksonGNUpper bounds for time-space trade-offs in sorting and selectionJ Comput Syst Sci1987341192688129210.1016/0022-0000(87)90002-X0642.68122
FredmanMLOn computing the length of longest increasing subsequencesDiscret. Math.1975111293535438610.1016/0012-365X(75)90103-X0312.68027
SchenstedCLongest increasing and decreasing subsequencesCan. J. Math.196113217919112130510.4153/CJM-1961-015-30097.25202
CrochemoreMPoratEFast computation of a longest increasing subsequence and applicationInf. Comput.2010208910541059268083610.1016/j.ic.2010.04.0031214.68479
Wang, J.R.: Space-efficient randomized algorithms for K-SUM. In: ESA 2014, pp 810–829 (2014). https://doi.org/10.1007/978-3-662-44777-2_67
AldousDDiaconisPLongest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theoremBull. Am. Math. Soc.1999364413432169420410.1090/S0273-0979-99-00796-Xhttps://doi.org/10.1090/S0273-0979-99-00796-X
MallowsCLProblem 62-2, patience sortingSIAM Rev.19624214314910.1137/1004036http://www.jstor.org/stable/2028371
ChanTMChenEYMulti-pass geometric algorithmsDiscret. Comput. Geom.200737179102227986510.1007/s00454-006-1275-61106.68111
GálAGopalanPLower bounds on streaming algorithms for approximating the length of the longest increasing subsequenceSIAM J. Comput.201039834633479272161310.1137/090770801https://doi.org/10.1137/090770801
SaksMSeshadhriCEstimating the longest increasing sequence in polylogarithmic timeSIAM J. Comput.2017462774823363653710.1137/1309421521370.68342
Banyassady, B., Korman, M., Mulzer, W., Van Renssen, André, Roeloffzen, M., Seiferth, P., Stein, Y.: Improved time-space trade-offs for computing Voronoi diagrams. In: STACS 2017, vol. 66, pp 9:1–9:14 (2017). https://doi.org/10.4230/LIPIcs.STACS.2017.9
BursteinALankhamICombinatorics of patience sorting pilesSéminaire Lotharingien de Combinatoire200654AB54Ab22230261267.05005http://www.mat.univie.ac.at/∼slc/wpapers/s54Aburlank.html
HuntJWSzymanskiTGA fast algorithm for computing longest common subsequencesCommun. ACM197720535035343665510.1145/359581.3596030354.68078
WJ Savitch (9908_CR36) 1970; 4
9908_CR9
JW Hunt (9908_CR20) 1977; 20
GN Frederickson (9908_CR16) 1987; 34
D Romik (9908_CR33) 2015
M Saks (9908_CR35) 2017; 46
F Ergun (9908_CR15) 2015; 35
9908_CR23
E Kushilevitz (9908_CR21) 1997
9908_CR28
9908_CR29
C Schensted (9908_CR37) 1961; 13
9908_CR1
ML Fredman (9908_CR17) 1975; 11
9908_CR3
9908_CR4
A Borodin (9908_CR7) 1982; 11
9908_CR5
A Burstein (9908_CR8) 2006; 54A
P Ramanan (9908_CR32) 1997; 65
S Bespamyatnikh (9908_CR6) 2000; 76
JI Munro (9908_CR27) 1980; 12
D Liben-Nowell (9908_CR22) 2006; 11
D Aldous (9908_CR2) 1999; 36
CL Mallows (9908_CR26) 1973; 9
9908_CR31
9908_CR11
CL Mallows (9908_CR24) 1962; 4
9908_CR34
M Crochemore (9908_CR12) 2010; 208
9908_CR30
9908_CR39
9908_CR19
A Gál (9908_CR18) 2010; 39
9908_CR13
CL Mallows (9908_CR25) 1963; 5
TM Chan (9908_CR10) 2007; 37
9908_CR14
9908_CR38
References_xml – reference: SaksMSeshadhriCEstimating the longest increasing sequence in polylogarithmic timeSIAM J. Comput.2017462774823363653710.1137/1309421521370.68342
– reference: Wang, J.R.: Space-efficient randomized algorithms for K-SUM. In: ESA 2014, pp 810–829 (2014). https://doi.org/10.1007/978-3-662-44777-2_67
– reference: AldousDDiaconisPLongest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theoremBull. Am. Math. Soc.1999364413432169420410.1090/S0273-0979-99-00796-Xhttps://doi.org/10.1090/S0273-0979-99-00796-X
– reference: Pilipczuk, M., Wrochna, M.: On space efficiency of algorithms working on structural decompositions of graphs. In: STACS 2016, vol. 47, pp 57:1–57:15 (2016). https://doi.org/10.4230/LIPIcs.STACS.2016.57
– reference: Elmasry, A., Hagerup, T., Kammer, F.: Space-efficient basic graph algorithms. In: STACS 2015, vol. 30, pp 288–301 (2015). https://doi.org/10.4230/LIPIcs.STACS.2015.288
– reference: Nisan, N.: RL ⊆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\subseteq $\end{document} SC. In: STOC 1992, pp 619–623 (1992). https://doi.org/10.1145/129712.129772
– reference: HuntJWSzymanskiTGA fast algorithm for computing longest common subsequencesCommun. ACM197720535035343665510.1145/359581.3596030354.68078
– reference: Darwish, O., Elmasry, A.: Optimal time-space tradeoff for the 2D convex-hull problem. In: ESA 2014, pp 284–295 (2014). https://doi.org/10.1007/978-3-662-44777-2_24
– reference: GálAGopalanPLower bounds on streaming algorithms for approximating the length of the longest increasing subsequenceSIAM J. Comput.201039834633479272161310.1137/090770801https://doi.org/10.1137/090770801
– reference: Liben-NowellDVeeEAnZFinding longest increasing and common subsequences in streaming dataJ. Comb. Optim.2006112155175221291410.1007/s10878-006-7125-x1130.90040
– reference: Lincoln, A., Williams, V.V., Wang, J.R., Ryan Williams, R.: Deterministic time-space trade-offs for k-SUM. In: ICALP 2016, pp 58:1–58:14 (2016), https://doi.org/10.4230/LIPIcs.ICALP.2016.58
– reference: Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: FOCS 1998, pp 264–268 (1998). https://doi.org/10.1109/SFCS.1998.743455
– reference: Banyassady, B., Korman, M., Mulzer, W., Van Renssen, André, Roeloffzen, M., Seiferth, P., Stein, Y.: Improved time-space trade-offs for computing Voronoi diagrams. In: STACS 2017, vol. 66, pp 9:1–9:14 (2017). https://doi.org/10.4230/LIPIcs.STACS.2017.9
– reference: KushilevitzENisanNCommunication complexity1997CambridgeCambridge University Press0869.68048
– reference: SchenstedCLongest increasing and decreasing subsequencesCan. J. Math.196113217919112130510.4153/CJM-1961-015-30097.25202
– reference: Cook, S.A.: Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space. In: STOC 1979, pp 338–345 (1979), https://doi.org/10.1145/800135.804426
– reference: ErgunFJowhariHOn the monotonicity of a data streamCombinatorica2015356641653343979010.1007/s00493-014-3035-11389.68037
– reference: FredericksonGNUpper bounds for time-space trade-offs in sorting and selectionJ Comput Syst Sci1987341192688129210.1016/0022-0000(87)90002-X0642.68122
– reference: Gopalan, P., Jayram, T.S., Krauthgamer, R., Kumar, R.: Estimating the sortedness of a data stream. In: SODA 2007, pp 318–327 (2007). http://dl.acm.org/citation.cfm?id=1283417
– reference: MallowsCLProblem 62-2, patience sortingSIAM Rev.19624214314910.1137/1004036http://www.jstor.org/stable/2028371
– reference: BursteinALankhamICombinatorics of patience sorting pilesSéminaire Lotharingien de Combinatoire200654AB54Ab22230261267.05005http://www.mat.univie.ac.at/∼slc/wpapers/s54Aburlank.html
– reference: MallowsCLProblem 62-2SIAM Rev.19635437537610.1137/1005107http://www.jstor.org/stable/2028347
– reference: RamananPTight $\Omega (n \lg n)$Ω(n lg n) lower bound for finding a longest increasing subsequenceInt. J. Comput. Math.1997653–4161164166951110.1080/002071697088046070890.68055
– reference: Naumovitz, T., Saks, M.: A polylogarithmic space deterministic streaming algorithm for approximating distance to monotonicity. In: SODA 2015, pp 1252–1262 (2015). https://doi.org/10.1137/1.9781611973730.83
– reference: Asano, T., Elmasry, A., Katajainen, J.: Priority queues and sorting for read-only data. In: TAMC 2013, pp 32–41 (2013). https://doi.org/10.1007/978-3-642-38236-9_4
– reference: MunroJIPatersonMSSelection and sorting with limited storageTheor. Comput. Sci.198012331532358931210.1016/0304-3975(80)90061-40441.68067
– reference: RomikDThe surprising mathematics of longest increasing subsequences2015CambridgeCambridge University Press1345.05003https://doi.org/10.1017/CBO9781139872003
– reference: Su, X., Woodruff, D.P.: The communication and streaming complexity of computing the longest common and increasing subsequences. In: SODA 2007, pp 336–345 (2007). http://dl.acm.org/citation.cfm?id=1283383.1283419
– reference: Ahn, H.-K., Baraldo, N., Oh, E., Silvestri, F.: A time-space trade-off for triangulations of points in the plane. In: COCOON 2017, pp 3–12 (2017). https://doi.org/10.1007/978-3-319-62389-4_1
– reference: MallowsCLPatience sortingBulletin of the Institute of Mathematics and its Applications19739216224
– reference: SavitchWJRelationships between nondeterministic and deterministic tape complexitiesJ. Comput. Syst. Sci.19704217719226670210.1016/S0022-0000(70)80006-X0188.33502
– reference: Asano, T., Izumi, T., Kiyomi, M., Konagaya, M., Ono, H., Otachi, Y., Schweitzer, P., Tarui, J., Uehara, R.: Depth-first search using O(n) bits. In: ISAAC 2014, pp 553–564 (2014). https://doi.org/10.1007/978-3-319-13075-0_44
– reference: Chakraborty, S., Satti, S.R.: Space-efficient algorithms for maximum cardinality search, stack BFS, queue BFS and applications. In: COCOON 2017, pp 87–98 (2017). https://doi.org/10.1007/978-3-319-62389-4_8
– reference: CrochemoreMPoratEFast computation of a longest increasing subsequence and applicationInf. Comput.2010208910541059268083610.1016/j.ic.2010.04.0031214.68479
– reference: Saks, M., Seshadhri, C.: Space efficient streaming algorithms for the distance to monotonicity and asymmetric edit distance. In: SODA 2013, pp 1698–1709 (2013). https://doi.org/10.1137/1.9781611973105.122
– reference: BespamyatnikhSSegalMEnumerating longest increasing subsequences and patience sortingInf. Process. Lett.2000761–2711179755710.1016/S0020-0190(00)00124-11338.68205
– reference: FredmanMLOn computing the length of longest increasing subsequencesDiscret. Math.1975111293535438610.1016/0012-365X(75)90103-X0312.68027
– reference: ChanTMChenEYMulti-pass geometric algorithmsDiscret. Comput. Geom.200737179102227986510.1007/s00454-006-1275-61106.68111
– reference: BorodinACookSA time-space tradeoff for sorting on a general sequential model of computationSIAM J. Comput.198211228729765290310.1137/02110220478.68061
– volume: 65
  start-page: 161
  issue: 3–4
  year: 1997
  ident: 9908_CR32
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207169708804607
– ident: 9908_CR34
  doi: 10.1137/1.9781611973105.122
– volume: 9
  start-page: 216
  year: 1973
  ident: 9908_CR26
  publication-title: Bulletin of the Institute of Mathematics and its Applications
– ident: 9908_CR3
  doi: 10.1007/978-3-642-38236-9_4
– volume: 46
  start-page: 774
  issue: 2
  year: 2017
  ident: 9908_CR35
  publication-title: SIAM J. Comput.
  doi: 10.1137/130942152
– ident: 9908_CR1
  doi: 10.1007/978-3-319-62389-4_1
– ident: 9908_CR4
  doi: 10.1007/978-3-319-13075-0_44
– volume: 76
  start-page: 7
  issue: 1–2
  year: 2000
  ident: 9908_CR6
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(00)00124-1
– volume: 20
  start-page: 350
  issue: 5
  year: 1977
  ident: 9908_CR20
  publication-title: Commun. ACM
  doi: 10.1145/359581.359603
– volume: 36
  start-page: 413
  issue: 4
  year: 1999
  ident: 9908_CR2
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0273-0979-99-00796-X
– volume: 54A
  start-page: B54Ab
  year: 2006
  ident: 9908_CR8
  publication-title: Séminaire Lotharingien de Combinatoire
– ident: 9908_CR14
  doi: 10.4230/LIPIcs.STACS.2015.288
– volume: 4
  start-page: 143
  issue: 2
  year: 1962
  ident: 9908_CR24
  publication-title: SIAM Rev.
  doi: 10.1137/1004036
– volume: 11
  start-page: 29
  issue: 1
  year: 1975
  ident: 9908_CR17
  publication-title: Discret. Math.
  doi: 10.1016/0012-365X(75)90103-X
– volume-title: The surprising mathematics of longest increasing subsequences
  year: 2015
  ident: 9908_CR33
  doi: 10.1017/CBO9781139872003
– ident: 9908_CR39
  doi: 10.1007/978-3-662-44777-2_67
– volume: 208
  start-page: 1054
  issue: 9
  year: 2010
  ident: 9908_CR12
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2010.04.003
– volume: 5
  start-page: 375
  issue: 4
  year: 1963
  ident: 9908_CR25
  publication-title: SIAM Rev.
  doi: 10.1137/1005107
– ident: 9908_CR28
  doi: 10.1137/1.9781611973730.83
– ident: 9908_CR11
  doi: 10.1145/800135.804426
– ident: 9908_CR19
– volume: 11
  start-page: 155
  issue: 2
  year: 2006
  ident: 9908_CR22
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-006-7125-x
– volume: 12
  start-page: 315
  issue: 3
  year: 1980
  ident: 9908_CR27
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(80)90061-4
– volume: 13
  start-page: 179
  issue: 2
  year: 1961
  ident: 9908_CR37
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1961-015-3
– ident: 9908_CR31
  doi: 10.4230/LIPIcs.STACS.2016.57
– volume: 4
  start-page: 177
  issue: 2
  year: 1970
  ident: 9908_CR36
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/S0022-0000(70)80006-X
– volume: 11
  start-page: 287
  issue: 2
  year: 1982
  ident: 9908_CR7
  publication-title: SIAM J. Comput.
  doi: 10.1137/0211022
– ident: 9908_CR38
– ident: 9908_CR23
  doi: 10.4230/LIPIcs.ICALP.2016.58
– ident: 9908_CR29
  doi: 10.1145/129712.129772
– volume-title: Communication complexity
  year: 1997
  ident: 9908_CR21
– ident: 9908_CR5
  doi: 10.4230/LIPIcs.STACS.2017.9
– volume: 39
  start-page: 3463
  issue: 8
  year: 2010
  ident: 9908_CR18
  publication-title: SIAM J. Comput.
  doi: 10.1137/090770801
– volume: 34
  start-page: 19
  issue: 1
  year: 1987
  ident: 9908_CR16
  publication-title: J Comput Syst Sci
  doi: 10.1016/0022-0000(87)90002-X
– ident: 9908_CR13
  doi: 10.1007/978-3-662-44777-2_24
– volume: 37
  start-page: 79
  issue: 1
  year: 2007
  ident: 9908_CR10
  publication-title: Discret. Comput. Geom.
  doi: 10.1007/s00454-006-1275-6
– ident: 9908_CR30
  doi: 10.1109/SFCS.1998.743455
– volume: 35
  start-page: 641
  issue: 6
  year: 2015
  ident: 9908_CR15
  publication-title: Combinatorica
  doi: 10.1007/s00493-014-3035-1
– ident: 9908_CR9
  doi: 10.1007/978-3-319-62389-4_8
SSID ssj0003800
Score 2.2114792
Snippet Given a sequence of integers, we want to find a longest increasing subsequence of the sequence. It is known that this problem can be solved in O n log n time...
Given a sequence of integers, we want to find a longest increasing subsequence of the sequence. It is known that this problem can be solved in Onlogn time and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 522
SubjectTerms Algorithms
Complexity
Computer Science
Computing time
Integers
Special Issue on Theoretical Aspects of Computer Science
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBQgFRXsrABpacOLGdsUKtGEqFeKlbZDsOVCopagK_H9tNUoEACdbkYlln3yt39x3AGcOhZCGXiBrnAoVchyjONEM4zHjE7Y8n6XBmh2w04uNxfFM1hRV1tXudknSauml2c-bGhL42XR9jjugqrBlzx-3Ahtu7x0b_Eu4aT4wjYPuBIly1yny_xmdztPQxv6RFnbUZtP-3z23YqrxLr7e4DjuwovMOtOvJDV4lyB3YvG7QWotdsHOJlUZ9hyZhjJDXmz7N5pPy-aXwjE_rDWe5zUJ5RpfYEnazGc_qm6oIew8eBv37yytUjVVAyshbifwUU54KLFOqIspEEKYpSxkTRHAqSaSjQGKSKZthywyBor4wUYl5yAhlsSD70MpnuT4AjxBfZkQIKZUKY6q5wioIhCSZJETHuAt-zd1EVZjjdvTFNGnQkh23EsOtxHEroV04b755XSBu_Ep9XB9aUklfkQQ-jSNXwtqFi_qQlq9_Xu3wb-RHsBHY8NsV8hxDq5y_6RNYV-_lpJifulv5AT2m2QY
  priority: 102
  providerName: Springer Nature
Title Space-Efficient Algorithms for Longest Increasing Subsequence
URI https://link.springer.com/article/10.1007/s00224-018-09908-6
https://www.proquest.com/docview/2169500141
Volume 64
WOSCitedRecordID wos000523364400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-0490
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003800
  issn: 1432-4350
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTuMwcMTrAAfeiLJslQM3sHDixHZOiEVFK0GrijdcIttx2JWgBVL4fsbGabVIcNnLSEmckeXxPOx5AewImmqRSk04GhcklTYleWUFoWklM-kunrSvM3sqej15c5P3w4VbHcIqG5noBXU5NO6OfD-JeZ75sMSDp2fiukY572pooTENs2jZxC6kq5v0x5KYSZ-CgiaBywzKaEia8alzXnnhQdo5_3MqCf9XMU2szU8OUq93jpf-d8bLsBgszujwY4uswJQdrMJS080hCsy9CgvdcQXXeg1cr2JjScdXmEDFFB0-3CPy0Z_HOkI7NzodDpxnKkL54sLaceqRk0EhMHsdLo87F0e_SWi1QAzy4IjEJeWyVFSX3GRcqCQtS1EKoZiSXLPMZommrDLO61bhAMNjhScVfCkYF7liGzAzGA7sJkSMxbpiSmltTJpzKw01SaI0qzRjNqctiJt1LkyoQ-7aYTwU4wrKnjYF0qbwtCl4C3bH_zx9VOH4dvR2Q5AicGRdTKjRgr2GpJPPX2Pb-h7bD5hP3BHcB_Nsw8zo5dX-hDnzNvpbv7RhWlzftmH2V6fXP8OnE0EQdulR2-9UB8U5wn52h_Ds_Ood7EHqNw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTyQhEK64arJ68L3Z0VE56Gkl0tAN9MGYiY9oHCceNPHWCzStm-iMa48a_5S_UWC6Z6KJ3jx47QYS4KOqoL6qAtgQJNYilhpzZ1zgWNoYp4UVmMSFTKR_eNIhz2xbdDry8jI9G4OXOhbG0yprmRgEdd4z_o18m0Y8TQItcffuP_ZVo7x3tS6hMYDFiX1-cle2cud43-3vJqWHB-d7R7iqKoCNg1sfRznhMldE59wkXCga57nIhVBMSa5ZYhOqCSuMdzAVroHhkXJGufsoGBepYm7cHzAR-8xinipIz4aSn8kQ8uJMEB-JlJAqSCeE6gVl6S7unmyQEon5W0U4sm7fOWSDnjuc_W4rNAczlUWNWoMjMA9jtrsAs3W1ClQJrwWYPh1mqC0XwddiNhYfhAwaTvGi1s2Vm0z_-rZEzo5H7V7Xe96Qk5-etu-WCnkZWxHPl-DiS6b0C8a7va79DYixSBdMKa2NiVNupSGGUqVZoRmzKWlAVO9rZqo8677cx002zBAdsJA5LGQBCxlvwJ9hn7tBlpFPWzdrAGSVxCmz0e43YKuG0Oj3x6Mtfz7aOvw8Oj9tZ-3jzskKTFH_3BCIS00Y798_2FWYNI_9f-X9WjgLCP5-NbReAZttPmg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB3xUaFyKBSoupSCD-VUrHXixHYOqEKFFYjtag9UQr0E23EAie4CWUD9a_11jL3JrloJbhy4JrYl288zY8-bGYAvkiVGJspQgcYFTZRLaFY6SVlSqlT5hycT8sx2Za-nTk-z_gz8bWJhPK2ykYlBUBdD69_I23EksjTQEttlTYvo73e-Xd9QX0HKe1qbchpjiBy7Pw94fat2j_Zxr7fjuHNw8v2Q1hUGqEXojWhUMKEKzUwhbCqkjpOikIWUmmslDE9dGhvGS-udTSU2sCLSaKDjR8mFzDTHcWdhXuId09MJ--mviRbgKoS_oDnio5JSVgfshLC9oDjxEu-JBxlTVPyrFKeW7n_O2aDzOkuvebWW4V1taZO98dF4DzNusAJLTRULUgu1FVj8MclcW62Cr9FsHT0ImTVQIZO9q3OczOjid0XQvifd4cB75AjKVU_nx2UjXvbWhPQ1-PkiU_oAc4PhwH0EwnlkSq61MdYmmXDKMhvH2vDScO4y1oKo2ePc1vnXfRmQq3ySOTrgIkdc5AEXuWjB10mf63H2kWdbbzRgyGtJVOVTJLRgp4HT9PfTo60_P9oWLCCi8u5R7_gTvI39K0TgM23A3Oj2zn2GN_Z-dFndboZjQeDspZH1CJaxR1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space-Efficient+Algorithms+for+Longest+Increasing+Subsequence&rft.jtitle=Theory+of+computing+systems&rft.au=Kiyomi+Masashi&rft.au=Ono+Hirotaka&rft.au=Otachi+Yota&rft.au=Schweitzer%2C+Pascal&rft.date=2020-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-4350&rft.eissn=1433-0490&rft.volume=64&rft.issue=3&rft.spage=522&rft.epage=541&rft_id=info:doi/10.1007%2Fs00224-018-09908-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-4350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-4350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-4350&client=summon