An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems

Smoothing Newton methods, which usually inherit local quadratic convergence rate, have been successfully applied to solve various mathematical programming problems. In this paper, we propose an accelerated smoothing Newton method (ASNM) for solving the weighted complementarity problem (wCP) by refor...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications Vol. 196; no. 2; pp. 641 - 665
Main Authors: Tang, Jingyong, Zhou, Jinchuan, Zhang, Hongchao
Format: Journal Article
Language:English
Published: New York Springer US 01.02.2023
Springer Nature B.V
Subjects:
ISSN:0022-3239, 1573-2878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Smoothing Newton methods, which usually inherit local quadratic convergence rate, have been successfully applied to solve various mathematical programming problems. In this paper, we propose an accelerated smoothing Newton method (ASNM) for solving the weighted complementarity problem (wCP) by reformulating it as a system of nonlinear equations using a smoothing function. In spirit, when the iterates are close to the solution set of the nonlinear system, an additional approximate Newton step is computed by solving one of two possible linear systems formed by using previously calculated Jacobian information. When a Lipschitz continuous condition holds on the gradient of the smoothing function at two checking points, this additional approximate Newton step can be obtained with a much reduced computational cost. Hence, ASNM enjoys local cubic convergence rate but with computational cost only comparable to standard Newton’s method at most iterations. Furthermore, a second-order nonmonotone line search is designed in ASNM to ensure global convergence. Our numerical experiments verify the local cubic convergence rate of ASNM and show that the acceleration techniques employed in ASNM can significantly improve the computational efficiency compared with some well-known benchmark smoothing Newton method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-022-02152-6