Joint constraint algorithm based on deep neural network with dual outputs for single-channel speech separation

Single-channel speech separation (SCSS) plays an important role in speech processing. It is an underdetermined problem since several signals need to be recovered from one channel, which is more difficult to solve. To achieve SCSS more effectively, we propose a new cost function. What’s more, a joint...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Signal, image and video processing Ročník 14; číslo 7; s. 1387 - 1395
Hlavní autori: Sun, Linhui, Zhu, Ge, Li, Pingan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.10.2020
Springer Nature B.V
Predmet:
ISSN:1863-1703, 1863-1711
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Single-channel speech separation (SCSS) plays an important role in speech processing. It is an underdetermined problem since several signals need to be recovered from one channel, which is more difficult to solve. To achieve SCSS more effectively, we propose a new cost function. What’s more, a joint constraint algorithm based on this function is used to separate mixed speech signals, which aims to separate two sources at the same time accurately. The joint constraint algorithm not only penalizes residual sum of square, but also exploits the joint relationship between the outputs to train the dual output DNN. In these joint constraints, the training accuracy of the separation model can be further increased. We evaluate the proposed algorithm performance on the GRID corpus. The experimental results show that the new algorithm can obtain better speech intelligibility compared to the basic cost function. In the aspects of source-to-distortion ratio , signal-to-interference ratio, source-to-artifact ratio and perceptual evaluation of speech quality, the novel approach can obtain better performance.
AbstractList Single-channel speech separation (SCSS) plays an important role in speech processing. It is an underdetermined problem since several signals need to be recovered from one channel, which is more difficult to solve. To achieve SCSS more effectively, we propose a new cost function. What’s more, a joint constraint algorithm based on this function is used to separate mixed speech signals, which aims to separate two sources at the same time accurately. The joint constraint algorithm not only penalizes residual sum of square, but also exploits the joint relationship between the outputs to train the dual output DNN. In these joint constraints, the training accuracy of the separation model can be further increased. We evaluate the proposed algorithm performance on the GRID corpus. The experimental results show that the new algorithm can obtain better speech intelligibility compared to the basic cost function. In the aspects of source-to-distortion ratio , signal-to-interference ratio, source-to-artifact ratio and perceptual evaluation of speech quality, the novel approach can obtain better performance.
Author Li, Pingan
Sun, Linhui
Zhu, Ge
Author_xml – sequence: 1
  givenname: Linhui
  orcidid: 0000-0001-9442-9964
  surname: Sun
  fullname: Sun, Linhui
  email: sunlinhuislh@126.com
  organization: College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications
– sequence: 2
  givenname: Ge
  surname: Zhu
  fullname: Zhu, Ge
  organization: College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications
– sequence: 3
  givenname: Pingan
  surname: Li
  fullname: Li, Pingan
  organization: College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications
BookMark eNp9kF1LwzAUhoNMcM79Aa8CXleTpkvbSxl-Inij1yFNTrbOLqlJyvDfm62i4MUC4RwO73s-nnM0sc4CQpeUXFNCyptAaclJRvL0KS95xk_QlFacZbSkdPKbE3aG5iFsSHosLyteTZF9dq2NWDkbopf7VHYr59u43uJGBtDYWawBemxh8LJLIe6c_8C7JMF6SBU3xH6IARvncWjtqoNMraW10OHQA6g1DtBLL2Pr7AU6NbILMP-JM_R-f_e2fMxeXh-elrcvmWK0jhmVSgMxTQ1soZU2YPJa80rXxaLWdS41Nyp1JpqyxkBTGMM4sNw0ipWGAWMzdDX27b37HCBEsXGDt2mkyIsi55TWlCRVPqqUdyF4MKL37Vb6L0GJ2KMVI1qR0IoDWsGTqfpnUm08HLcH2B23stEa0hy7Av-31RHXN0blk20
CitedBy_id crossref_primary_10_1007_s11265_023_01891_7
crossref_primary_10_3389_fenvs_2024_1429410
crossref_primary_10_1007_s11760_025_04229_x
crossref_primary_10_1016_j_apacoust_2024_110076
crossref_primary_10_1007_s11042_022_12816_0
crossref_primary_10_1109_ACCESS_2024_3479292
Cites_doi 10.1109/TASLP.2018.2874708
10.1109/TASLP.2017.2687104
10.1109/TASLP.2014.2352935
10.1109/TASLP.2015.2468583
10.1109/TASLP.2014.2305833
10.1109/TASLP.2017.2700540
10.1109/TASLP.2017.2716443
10.1121/1.2229005
10.1109/TASLP.2016.2558822
10.1109/TSA.2005.858005
10.1109/TASLP.2015.2416653
10.1016/j.specom.2018.11.008
10.1038/323533a0
10.1109/TASLP.2016.2536478
10.1109/IWAENC.2018.8521379
10.1109/ICASSP.2014.6854294
10.1109/ISCSLP.2014.6936615
10.1109/WASPAA.2017.8170041
10.1109/ICASSP.2017.7953191
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11760-020-01676-6
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 1395
ExternalDocumentID 10_1007_s11760_020_01676_6
GrantInformation_xml – fundername: the Natural Science Foundation of the Jiangsu Higher Education Institutions of China
  grantid: No.19KJB510049
– fundername: the National Natural Science Foundation of China
  grantid: No.61901227; No.61671252
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
JQ2
ID FETCH-LOGICAL-c319t-1acde0fb9e35dcdfef29d68d9459d92ad6fceec0d13bfeb4ff36e32fbc37f3e33
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525480600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-1703
IngestDate Thu Sep 25 00:55:11 EDT 2025
Tue Nov 18 22:18:02 EST 2025
Sat Nov 29 05:30:57 EST 2025
Fri Feb 21 02:27:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Dual outputs
Cost function
Single-channel speech separation
Joint constraint
Deep neural network (DNN)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1acde0fb9e35dcdfef29d68d9459d92ad6fceec0d13bfeb4ff36e32fbc37f3e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9442-9964
PQID 2442611910
PQPubID 2044169
PageCount 9
ParticipantIDs proquest_journals_2442611910
crossref_primary_10_1007_s11760_020_01676_6
crossref_citationtrail_10_1007_s11760_020_01676_6
springer_journals_10_1007_s11760_020_01676_6
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References CR2
CR3
Han, Wang, Wang (CR6) 2015; 23
Grais, Roma, Simpson (CR12) 2017; 25
Sun, Wang, Chambers (CR7) 2019; 27
CR8
Rumelhart, Hinton, Williams (CR17) 1986; 323
CR19
Du, Tu, Dai, Lee (CR1) 2017; 24
CR15
Vincent, Gribonval (CR20) 2006; 14
Wang, Du, Dai (CR10) 2017; 25
CR14
CR13
Zhang, Wang (CR11) 2017; 25
Sun, Xie, Gu (CR16) 2019; 106
Wang, Narayanan, Wang (CR21) 2014; 22
Cooke, Barker, Cunningham (CR18) 2006; 120
Zhang, Wang (CR5) 2016; 24
Narayanan, Wang (CR4) 2014; 22
Huang, Kim, Hasegawa-Johnson (CR9) 2015; 23
1676_CR3
1676_CR2
1676_CR15
E Vincent (1676_CR20) 2006; 14
1676_CR14
1676_CR13
DE Rumelhart (1676_CR17) 1986; 323
1676_CR8
L Sun (1676_CR16) 2019; 106
A Narayanan (1676_CR4) 2014; 22
EM Grais (1676_CR12) 2017; 25
XL Zhang (1676_CR5) 2016; 24
Y Wang (1676_CR21) 2014; 22
K Han (1676_CR6) 2015; 23
J Du (1676_CR1) 2017; 24
Y Wang (1676_CR10) 2017; 25
X Zhang (1676_CR11) 2017; 25
M Cooke (1676_CR18) 2006; 120
Y Sun (1676_CR7) 2019; 27
P-S Huang (1676_CR9) 2015; 23
1676_CR19
References_xml – ident: CR19
– ident: CR3
– volume: 27
  start-page: 125
  issue: 1
  year: 2019
  end-page: 139
  ident: CR7
  article-title: Two-stage monaural source separation in reverberant room environments using deep neural networks
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2018.2874708
– volume: 25
  start-page: 1075
  issue: 5
  year: 2017
  end-page: 1084
  ident: CR11
  article-title: Deep learning based binaural speech separation in reverberant environments
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2017.2687104
– ident: CR14
– ident: CR15
– volume: 22
  start-page: 1849
  issue: 12
  year: 2014
  end-page: 1858
  ident: CR21
  article-title: On training targets for supervised speech separation
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2014.2352935
– ident: CR2
– volume: 23
  start-page: 2136
  issue: 12
  year: 2015
  end-page: 2147
  ident: CR9
  article-title: Joint optimization of masks and deep recurrent neural networks for monaural source separation
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2015.2468583
– volume: 22
  start-page: 826
  issue: 4
  year: 2014
  end-page: 835
  ident: CR4
  article-title: Investigation of speech separation as a front-end for noise robust speech recognition
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2014.2305833
– volume: 25
  start-page: 1535
  issue: 7
  year: 2017
  end-page: 1546
  ident: CR10
  article-title: A gender mixture detection approach to unsupervised single-channel speech separation based on deep neural networks
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2017.2700540
– ident: CR13
– volume: 25
  start-page: 1773
  issue: 9
  year: 2017
  end-page: 1783
  ident: CR12
  article-title: Two stage single channel audio source separation using deep neural networks
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2017.2716443
– volume: 120
  start-page: 2421
  issue: 5
  year: 2006
  end-page: 2424
  ident: CR18
  article-title: An audio-visual corpus for speech perception and automatic speech recognition
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2229005
– volume: 24
  start-page: 1424
  issue: 8
  year: 2017
  end-page: 1437
  ident: CR1
  article-title: A regression approach to single-channel speech separation via high-resolution deep neural networks
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2016.2558822
– ident: CR8
– volume: 14
  start-page: 1462
  issue: 4
  year: 2006
  end-page: 1469
  ident: CR20
  article-title: Fevotte C 2006 Performance measurement in blind audio source separation
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TSA.2005.858005
– volume: 23
  start-page: 982
  issue: 6
  year: 2015
  end-page: 992
  ident: CR6
  article-title: Learning spectral mapping for speech dereverberation and denoising
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2015.2416653
– volume: 106
  start-page: 85
  year: 2019
  end-page: 94
  ident: CR16
  article-title: Joint dictionary learning using a new optimization method for single-channel blind source separation
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2018.11.008
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  end-page: 536
  ident: CR17
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 24
  start-page: 967
  issue: 5
  year: 2016
  end-page: 977
  ident: CR5
  article-title: A deep ensemble learning method for monaural speech separation
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2016.2536478
– volume: 14
  start-page: 1462
  issue: 4
  year: 2006
  ident: 1676_CR20
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TSA.2005.858005
– volume: 25
  start-page: 1535
  issue: 7
  year: 2017
  ident: 1676_CR10
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2017.2700540
– volume: 25
  start-page: 1075
  issue: 5
  year: 2017
  ident: 1676_CR11
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2017.2687104
– ident: 1676_CR13
  doi: 10.1109/IWAENC.2018.8521379
– ident: 1676_CR14
  doi: 10.1109/ICASSP.2014.6854294
– ident: 1676_CR15
– volume: 23
  start-page: 2136
  issue: 12
  year: 2015
  ident: 1676_CR9
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2015.2468583
– volume: 120
  start-page: 2421
  issue: 5
  year: 2006
  ident: 1676_CR18
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2229005
– ident: 1676_CR19
– volume: 22
  start-page: 826
  issue: 4
  year: 2014
  ident: 1676_CR4
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2014.2305833
– volume: 27
  start-page: 125
  issue: 1
  year: 2019
  ident: 1676_CR7
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2018.2874708
– volume: 22
  start-page: 1849
  issue: 12
  year: 2014
  ident: 1676_CR21
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2014.2352935
– volume: 24
  start-page: 967
  issue: 5
  year: 2016
  ident: 1676_CR5
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2016.2536478
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 1676_CR17
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: 1676_CR8
  doi: 10.1109/ISCSLP.2014.6936615
– volume: 106
  start-page: 85
  year: 2019
  ident: 1676_CR16
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2018.11.008
– ident: 1676_CR2
  doi: 10.1109/WASPAA.2017.8170041
– ident: 1676_CR3
  doi: 10.1109/ICASSP.2017.7953191
– volume: 24
  start-page: 1424
  issue: 8
  year: 2017
  ident: 1676_CR1
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2016.2558822
– volume: 23
  start-page: 982
  issue: 6
  year: 2015
  ident: 1676_CR6
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2015.2416653
– volume: 25
  start-page: 1773
  issue: 9
  year: 2017
  ident: 1676_CR12
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2017.2716443
SSID ssj0000327868
Score 2.2290568
Snippet Single-channel speech separation (SCSS) plays an important role in speech processing. It is an underdetermined problem since several signals need to be...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1387
SubjectTerms Algorithms
Artificial neural networks
Computer Imaging
Computer Science
Cost function
Image Processing and Computer Vision
Intelligibility
Model accuracy
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Separation
Signal processing
Signal,Image and Speech Processing
Speech
Speech processing
Vision
Title Joint constraint algorithm based on deep neural network with dual outputs for single-channel speech separation
URI https://link.springer.com/article/10.1007/s11760-020-01676-6
https://www.proquest.com/docview/2442611910
Volume 14
WOSCitedRecordID wos000525480600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4V2gMc2LIFsTwqH7i1lpI46yRHhFghhFaoL3GLHHumrLQ4q03g92PnwUJVkOAcZ5LYM5nP45lvAI6F0wPtcAFPKTY8TsmZFMWSF0oWRMZpBDVdSy6T6TS9vs6uuqKwqs92748kmz_1qtgtTGTA_XbHp85LLtfgo3N3qW_Y8OPnn8fISiCiJG1r4FLp-TcD0VXL_F_Mc4-0gpn_nIw2DmcyeN-rfoatDmCyk1YjtuED2iEM-uYNrLPlIWw-YSL8AvainNmaaY8WfdOImqn533I5q29umXd0hpWWGcQF8wSYTr5t08eZj-MyX8_FyrvaPaJiDgUzH4CYI_dVxRbnrFog6htWYUs0Xtod-D05-3V6zrtWDFw7G615qLTBgIoMxdhoQ0hRZmRqsnicmSxSRpLztjowoSgIi5hISBQRFVokJFCIXVi3pcU9YEqNk1AJZQqp40ymSuHYCaVAanJ4Jh5B2C9Hrjuecv_l83zFsOynN3fTmzfTm8sRfHu8Z9GydLw6-rBf5byz2Cp3MMdtJt3uNRjB935VV5dflrb_tuEHsBF5xWjyAQ9hvV7e4RF80vf1rFp-bTT5AWMX78o
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9wwDLYGQ2I8wIChHWMjD3uDSG3TS9tHhIbYdpwmBoi3Kk3scdKRnq5lf_-S_uBgGkjsuanbJnb9xbE_A3wWTg-0wwU8pdjwOCVnUhRLXihZEBmnEdR0LRkl43F6fZ396IrCqj7bvT-SbP7Ui2K3MJEB99sdnzovuVyC17HzWJ4x__zn1X1kJRBRkrY1cKn0_JuB6Kpl_i3msUdawMy_TkYbh3Oy8X-v-hbWO4DJjlqN2IRXaLdgo2_ewDpb3oK1B0yE22C_lRNbM-3Rom8aUTM1_VXOJ_XNLfOOzrDSMoM4Y54A08m3bfo483Fc5uu5WHlXu0dUzKFg5gMQU-S-qtjilFUzRH3DKmyJxkv7Di5Pvlwcn_KuFQPXzkZrHiptMKAiQzE02hBSlBmZmiweZiaLlJHkvK0OTCgKwiImEhJFRIUWCQkUYgeWbWnxPTClhkmohDKF1HEmU6Vw6IRSIDU5PBMPIOyXI9cdT7n_8mm-YFj205u76c2b6c3lAA7u75m1LB3Pjt7rVznvLLbKHcxxm0m3ew0GcNiv6uLy09J2XzZ8H1ZPL85G-ejr-PsHeBN5JWlyA_dguZ7f4UdY0b_rSTX_1Gj1H6il8q4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQQgOLRRQFwr4wA2sJnHWSY6IdsWjWlXiod4ix55pV1qc1Sbt78eTR7eggoQ4xxkn9oxmxp7vG4DXKuiBDXGBzCl1Ms0pmBSlWlZGV0QuaAR1XUuOs_k8Pz0tTq6h-Ltq9_FKssc0MEuTbw9Wjg42wLc405Hk1IfL6LXUt-FOyoX0nK9_-X51yhKpJMt7PFyumYszUgNy5mYxv3qnTcj52y1p53xmO___2Q9hewg8xbteUx7BLfS7sDM2dRCDje_Cg2sMhY_Bf6oXvhWWo0huJtEKszyr14v2_IdgB-hE7YVDXAkmxgzyfV9WLvh8VzDOS9QXbZiiESE6FnwwsUTJaGOPS9GsEO25aLAnIK_9E_g2O_r6_oMcWjRIG2y3lbGxDiOqClRTZx0hJYXTuSvSaeGKxDhNwQvbyMWqIqxSIqVRJVRZlZFCpZ7Clq897oEwZprFRhlXaZsWOjcGp0EoRdpSiHPSCcTj1pR24C_nP1-WG-ZlXt4yLG_ZLW-pJ_Dm6p1Vz97x19H7446XgyU3ZQh_QpIZstpoAm_HHd48_rO0Z_82_BXcOzmclccf55-fw_2EdaQrGdyHrXZ9gS_grr1sF836ZafgPwGvefuS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+constraint+algorithm+based+on+deep+neural+network+with+dual+outputs+for+single-channel+speech+separation&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Sun%2C+Linhui&rft.au=Zhu%2C+Ge&rft.au=Li%2C+Pingan&rft.date=2020-10-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=14&rft.issue=7&rft.spage=1387&rft.epage=1395&rft_id=info:doi/10.1007%2Fs11760-020-01676-6&rft.externalDocID=10_1007_s11760_020_01676_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon