Application-driven graph partitioning

Graph partitioning is crucial to parallel computations on large graphs. The choice of partitioning strategies has strong impact on the performance of graph algorithms. For an algorithm of our interest, what partitioning strategy fits it the best and improves its parallel execution? Is it possible to...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The VLDB journal Ročník 32; číslo 1; s. 149 - 172
Hlavní autori: Fan, Wenfei, Xu, Ruiqi, Yin, Qiang, Yu, Wenyuan, Zhou, Jingren
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2023
Springer Nature B.V
Predmet:
ISSN:1066-8888, 0949-877X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Graph partitioning is crucial to parallel computations on large graphs. The choice of partitioning strategies has strong impact on the performance of graph algorithms. For an algorithm of our interest, what partitioning strategy fits it the best and improves its parallel execution? Is it possible to provide a uniform partition to a batch of algorithms that run on the same graph simultaneously, and speed up each and every of them? This paper aims to answer these questions. We propose an application-driven hybrid partitioning strategy that, given a graph algorithm A , learns a cost model for A as polynomial regression. We develop partitioners that, given the learned cost model, refine an edge-cut or vertex-cut partition to a hybrid partition and reduce the parallel cost of A . Moreover, we extend the cost-driven strategy to support multiple algorithms at the same time and reduce the parallel cost of each of them. Using real-life and synthetic graphs, we experimentally verify that our partitioning strategy improves the performance of a variety of graph algorithms, up to 22.5 × .
AbstractList Graph partitioning is crucial to parallel computations on large graphs. The choice of partitioning strategies has strong impact on the performance of graph algorithms. For an algorithm of our interest, what partitioning strategy fits it the best and improves its parallel execution? Is it possible to provide a uniform partition to a batch of algorithms that run on the same graph simultaneously, and speed up each and every of them? This paper aims to answer these questions. We propose an application-driven hybrid partitioning strategy that, given a graph algorithm A, learns a cost model for A as polynomial regression. We develop partitioners that, given the learned cost model, refine an edge-cut or vertex-cut partition to a hybrid partition and reduce the parallel cost of A. Moreover, we extend the cost-driven strategy to support multiple algorithms at the same time and reduce the parallel cost of each of them. Using real-life and synthetic graphs, we experimentally verify that our partitioning strategy improves the performance of a variety of graph algorithms, up to 22.5×.
Graph partitioning is crucial to parallel computations on large graphs. The choice of partitioning strategies has strong impact on the performance of graph algorithms. For an algorithm of our interest, what partitioning strategy fits it the best and improves its parallel execution? Is it possible to provide a uniform partition to a batch of algorithms that run on the same graph simultaneously, and speed up each and every of them? This paper aims to answer these questions. We propose an application-driven hybrid partitioning strategy that, given a graph algorithm A , learns a cost model for A as polynomial regression. We develop partitioners that, given the learned cost model, refine an edge-cut or vertex-cut partition to a hybrid partition and reduce the parallel cost of A . Moreover, we extend the cost-driven strategy to support multiple algorithms at the same time and reduce the parallel cost of each of them. Using real-life and synthetic graphs, we experimentally verify that our partitioning strategy improves the performance of a variety of graph algorithms, up to 22.5 × .
Author Yu, Wenyuan
Xu, Ruiqi
Zhou, Jingren
Fan, Wenfei
Yin, Qiang
Author_xml – sequence: 1
  givenname: Wenfei
  surname: Fan
  fullname: Fan, Wenfei
  organization: University of Edinburgh, Shenzhen Institute of Computing Sciences, BDBC, Beihang University
– sequence: 2
  givenname: Ruiqi
  surname: Xu
  fullname: Xu, Ruiqi
  organization: University of Edinburgh
– sequence: 3
  givenname: Qiang
  orcidid: 0000-0003-3398-8345
  surname: Yin
  fullname: Yin, Qiang
  email: q.yin@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Wenyuan
  surname: Yu
  fullname: Yu, Wenyuan
  organization: Alibaba Group
– sequence: 5
  givenname: Jingren
  surname: Zhou
  fullname: Zhou, Jingren
  organization: Alibaba Group
BookMark eNp9UE1LAzEQDVLBtvoHPBXEYzSZ7ObjWIpfUPCi4C1kt8masmbXZCv47027guChc5gZhvfmzbwZmoQuWIQuKbmhhIjblJOQmADg3DGO4QRNiSoUlkK8TdCUEs6xzHGGZiltCclQKKfoetn3ra_N4LuAN9F_2bBoounfF72Jg9-PfWjO0akzbbIXv3WOXu_vXlaPeP388LRarnHNqBowNZI4w8Ewygw45QrYgOQVuEIaoMoyx4QwnCgrHKPlxomy4FUFFSk5VcDm6Grc28fuc2fToLfdLoYsqRmUXEiQUmSUHFF17FKK1unaD4cPhmh8qynRe1P0aIrOn-qDKXovAP-offQfJn4fJ7GRlDI4NDb-XXWE9QPFAnSw
CitedBy_id crossref_primary_10_1007_s00778_024_00860_1
crossref_primary_10_1007_s11227_023_05605_5
crossref_primary_10_3390_sym15101930
crossref_primary_10_1016_j_ymeth_2025_03_022
Cites_doi 10.1016/S0167-7152(98)00088-1
10.1145/2213836.2213854
10.1145/2213836.2213895
10.1137/1.9781611973068.102
10.1002/9781118601181
10.1073/pnas.012582999
10.1109/TKDE.2021.3097998
10.1145/1583991.1584010
10.1137/0207033
10.1145/2741948.2741970
10.1287/moor.4.3.233
10.1109/IJCNN.2011.6033365
10.1145/2851141.2851145
10.1145/79173.79181
10.1016/j.compeleceng.2013.11.024
10.1038/30918
10.1145/956863.956972
10.1145/258533.258641
10.1007/s00224-006-1350-7
10.1016/S0169-7552(98)00110-X
10.1145/2806416.2806424
10.1145/3318464.3389745
10.1007/978-3-319-49487-6_4
10.1137/0611030
10.14778/2904483.2904486
10.1145/2556195.2556213
10.1145/3282488
10.1016/j.datak.2011.11.004
10.1145/3097983.3098033
10.1145/2623330.2623660
10.1145/2484425.2484429
10.1007/978-0-387-09766-4_500
10.1145/3078597.3078606
10.1007/978-1-84800-998-1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00778-022-00736-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0949-877X
EndPage 172
ExternalDocumentID 10_1007_s00778_022_00736_2
GrantInformation_xml – fundername: Royal Society Wolfson Research Merit Award
  grantid: WRM/R1/180014
– fundername: H2020 European Research Council
  grantid: ERC 652976
  funderid: http://dx.doi.org/10.13039/100010663
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
123
1N0
1SB
2.D
203
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKMM
AALFJ
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTV
AAYFX
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADL
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEBYY
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AENSD
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWIH
AFWTZ
AFWXC
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
CCLIF
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GUFHI
GXS
H13
HF~
HG5
HG6
HGAVV
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I07
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LHSKQ
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
W7O
WK8
YLTOR
YZZ
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEFXT
AEJOY
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AKRVB
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-1a80fa62a313a2f9f42d286b2f48a219e3f377a609e7f315df7546bb2b0561923
IEDL.DBID P5Z
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000780766100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1066-8888
IngestDate Sun Nov 30 05:05:22 EST 2025
Tue Nov 18 22:12:50 EST 2025
Sat Nov 29 03:17:18 EST 2025
Fri Feb 21 02:45:51 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Graph partition
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1a80fa62a313a2f9f42d286b2f48a219e3f377a609e7f315df7546bb2b0561923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3398-8345
PQID 3256782887
PQPubID 2043708
PageCount 24
ParticipantIDs proquest_journals_3256782887
crossref_citationtrail_10_1007_s00778_022_00736_2
crossref_primary_10_1007_s00778_022_00736_2
springer_journals_10_1007_s00778_022_00736_2
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: New York
PublicationSubtitle The International Journal on Very Large Data Bases
PublicationTitle The VLDB journal
PublicationTitleAbbrev The VLDB Journal
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Livejournal. http://snap.stanford.edu/data/soc-LiveJournal1.html (2009)
Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979)
Krauthgamer, R., Naor, J., Schwartz, R.: Partitioning graphs into balanced components. In: SODA (2009)
Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of np. In: STOC, pp. 475–484 (1997)
Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111 (1990)
NewmanMEWattsDJStrogatzSHRandom graph models of social networksProc. Natl. Acad. Sci.20029912566257210.1073/pnas.0125829991114.91362
Gunrock. https://github.com/gunrock/gunrock/tree/master/ examples (2020)
UKWeb. http://law.di.unimi.it/webdata/uk union-2006-06-2007-05 (2006)
ChandrashekarGSahinFA survey on feature selection methodsComput. Electr. Eng.2014401162810.1016/j.compeleceng.2013.11.024
Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: a computation-centric distributed graph processing system. In: OSDI, pp. 301–316 (2016)
Mondal, J., Deshpande, A.: Managing large dynamic graphs efficiently. In: SIGMOD, pp. 145–156 (2012)
Karypis, G., Kumar, V.: Metis-unstructured graph partitioning and sparse matrix ordering system, version 2.0. pp. 1–16 (1995)
AvdiukhinDPupyrevSYaroslavtsevGMulti-dimensional balanced graph partitioning via projected gradient descentPVLDB2019128906919
Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory, Algorithms and Applications. Springer (2008)
Yang, S., Yan, X., Zong, B., Khan, A.: Towards effective partition management for large graphs. In: SIGMOD, p. 517 (2012)
Jain, N., Liao, G., Willke, T.L.: Graphbuilder: scalable graph ETL framework. Graph Data Manag. Exp. Syst. pp. 1–6 (2013). https://doi.org/ 10.1145/2484425.2484429
Fan, W., Yu, W., Xu, J., Zhou, J., Luo, X., Yin, Q., Lu, P., Cao, Y., Xu, R.: Parallelizing sequential graph computations. TODS 43(4), 18:1-18:39 (2018)
Wikipedia: Stone-Weierstrass Theorem. https://en.wikipedia.org/wiki/Stone-Weierstrass_theorem
Twitter. http://twitter.com/ (2012)
Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Algorithm Engineering—Selected Results and Surveys, pp. 117–158 (2016)
Tsourakakis, C.E., Gkantsidis, C., Radunovic, B., Vojnovic, M.: FENNEL: streaming graph partitioning for massive scale graphs. In: WSDM, pp. 333–342 (2014)
Dai, D., Zhang, W., Chen, Y.: IOGP: An incremental online graph partitioning algorithm for distributed graph databases. In: HPDC, pp. 219–230 (2017)
KimMCandanKSSBV-Cut: vertex-cut based graph partitioning using structural balance verticesDKE20127228530310.1016/j.datak.2011.11.004
Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD (2010)
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)
Bichot, C.E., Siarry, P.: Graph Partitioning. Wiley (2013)
Karypis, G.: Metis and parmetis. In: Encyclopedia of Parallel Computing, pp. 1117–1124 (2011)
Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: a high-performance graph processing library on the GPU. In: Proceedings of the 21st ACM SIGPLAN symposium on principles and practice of parallel programming, pp. 1–12 (2016)
Chen, R., Shi, J., Chen, Y., Chen, H.: PowerLyra: differentiated graph computation and partitioning on skewed graphs. In: EuroSys, pp. 1:1–1:15 (2015)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)
Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: WWW, pp. 107–117 (1998)
Cukierski, W., Hamner, B., Yang, B.: Graph-based features for supervised link prediction. In: INCC, pp. 1237–1244. IEEE (2011)
PothenASimonHDLiouKPPartitioning sparse matrices with eigenvectors of graphsSIMAX199011343045210.1137/06110300711.65034
ParkHStefanskiLRelative-error predictionStat. Probab. Lett.199840322723610.1016/S0167-7152(98)00088-10959.62063
Slota, G.M., Rajamanickam, S., Madduri, K.: Pulp/xtrapulp: partitioning tools for extreme-scale graphs. Tech. Rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) (2017)
Traffic. http://www.dis.uniroma1.it/challenge9/download.shtml (2010)
Zhang, C., Wei, F., Liu, Q., Tang, Z.G., Li, Z.: Graph edge partitioning via neighborhood heuristic. In: KDD (2017)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
KarypisGKumarVMultilevelk-way partitioning scheme for irregular graphsJPDC199848196129
Graphscope. https://graphscope.io/ (2020)
Huang, J., Abadi, D.: LEOPARD: lightweight edge-oriented partitioning and replication for dynamic graphs. proc. VLDB endow. 9(7): 540–551(2016)
Huang, L., Jia, J., Yu, B., gon Chun, B., Maniatis, P., Naik, M.: Predicting execution time of computer programs using sparse polynomial regression. In: NIPS (2010)
Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: CIKM (2003)
ChvatalVA greedy heuristic for the set-covering problemMath. Oper. Res.19794323323510.1287/moor.4.3.2330443.90066
ItaiARodehMFinding a minimum circuit in a graphSIAM J. Comput.19787441342310.1137/02070330386.68064
Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: distributed graph-parallel computation on natural graphs. In: OSDI, pp. 17–30 (2012)
Andreev, K., Racke, H.: Balanced graph partitioning. TCS 39(6): 929–939 (2006)
Karypis, G., Kumar, V.: METIS a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 4. pp. 1–44 (1998)
Petroni, F., Querzoni, L., Daudjee, K., Kamali, S., Iacoboni, G.: HDRF: stream-based partitioning for power-law graphs. In: CIKM (2015)
MargoDWSeltzerMIA scalable distributed graph partitionerPVLDB201581214781489
Fan, W., Jin, R., Liu, M., Lu, P., Luo, X., Xu, R., Yin, Q., Yu, W., Zhou, J.: Application driven graph partitioning. In: SIGMOD, pp. 1765–1779. ACM (2020)
Fan, W., Liu, M., Lu, P., Yin, Q.: Graph algorithms with partition transparency. IEEE Trans Knowl data Eng pp. 1–1 (2021). https://doi.org/10.1109/TKDE.2021.3097998
LiDZhangYWangJTanKTopoX: topology refactorization for efficient graph partitioning and processingPVLDB2019128891905
Bourse, F., Lelarge, M., Vojnovic, M.: Balanced graph edge partition. In: SIGKDD, pp. 1456–1465 (2014)
736_CR28
736_CR29
736_CR26
736_CR24
DW Margo (736_CR38) 2015; 8
736_CR25
736_CR22
736_CR23
736_CR20
736_CR21
A Pothen (736_CR44) 1990; 11
736_CR3
736_CR2
736_CR1
D Li (736_CR35) 2019; 12
736_CR19
736_CR18
A Itai (736_CR27) 1978; 7
ME Newman (736_CR40) 2002; 99
736_CR16
736_CR13
736_CR14
736_CR11
736_CR12
736_CR53
736_CR10
736_CR54
736_CR51
736_CR52
736_CR50
G Karypis (736_CR32) 1998; 48
736_CR48
736_CR49
736_CR46
736_CR47
736_CR45
736_CR42
736_CR43
M Kim (736_CR33) 2012; 72
H Park (736_CR41) 1998; 40
V Chvatal (736_CR17) 1979; 4
G Chandrashekar (736_CR15) 2014; 40
736_CR7
736_CR6
736_CR5
736_CR4
736_CR39
736_CR9
736_CR37
736_CR36
736_CR34
D Avdiukhin (736_CR8) 2019; 12
736_CR31
736_CR30
References_xml – reference: ChandrashekarGSahinFA survey on feature selection methodsComput. Electr. Eng.2014401162810.1016/j.compeleceng.2013.11.024
– reference: Livejournal. http://snap.stanford.edu/data/soc-LiveJournal1.html (2009)
– reference: NewmanMEWattsDJStrogatzSHRandom graph models of social networksProc. Natl. Acad. Sci.20029912566257210.1073/pnas.0125829991114.91362
– reference: KimMCandanKSSBV-Cut: vertex-cut based graph partitioning using structural balance verticesDKE20127228530310.1016/j.datak.2011.11.004
– reference: Karypis, G.: Metis and parmetis. In: Encyclopedia of Parallel Computing, pp. 1117–1124 (2011)
– reference: Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: WWW, pp. 107–117 (1998)
– reference: Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory, Algorithms and Applications. Springer (2008)
– reference: ParkHStefanskiLRelative-error predictionStat. Probab. Lett.199840322723610.1016/S0167-7152(98)00088-10959.62063
– reference: Twitter. http://twitter.com/ (2012)
– reference: Wikipedia: Stone-Weierstrass Theorem. https://en.wikipedia.org/wiki/Stone-Weierstrass_theorem
– reference: Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of np. In: STOC, pp. 475–484 (1997)
– reference: Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: a high-performance graph processing library on the GPU. In: Proceedings of the 21st ACM SIGPLAN symposium on principles and practice of parallel programming, pp. 1–12 (2016)
– reference: Mondal, J., Deshpande, A.: Managing large dynamic graphs efficiently. In: SIGMOD, pp. 145–156 (2012)
– reference: Fan, W., Yu, W., Xu, J., Zhou, J., Luo, X., Yin, Q., Lu, P., Cao, Y., Xu, R.: Parallelizing sequential graph computations. TODS 43(4), 18:1-18:39 (2018)
– reference: Gunrock. https://github.com/gunrock/gunrock/tree/master/ examples (2020)
– reference: MargoDWSeltzerMIA scalable distributed graph partitionerPVLDB201581214781489
– reference: Petroni, F., Querzoni, L., Daudjee, K., Kamali, S., Iacoboni, G.: HDRF: stream-based partitioning for power-law graphs. In: CIKM (2015)
– reference: Cukierski, W., Hamner, B., Yang, B.: Graph-based features for supervised link prediction. In: INCC, pp. 1237–1244. IEEE (2011)
– reference: Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: CIKM (2003)
– reference: LiDZhangYWangJTanKTopoX: topology refactorization for efficient graph partitioning and processingPVLDB2019128891905
– reference: Andreev, K., Racke, H.: Balanced graph partitioning. TCS 39(6): 929–939 (2006)
– reference: Jain, N., Liao, G., Willke, T.L.: Graphbuilder: scalable graph ETL framework. Graph Data Manag. Exp. Syst. pp. 1–6 (2013). https://doi.org/ 10.1145/2484425.2484429
– reference: Huang, L., Jia, J., Yu, B., gon Chun, B., Maniatis, P., Naik, M.: Predicting execution time of computer programs using sparse polynomial regression. In: NIPS (2010)
– reference: Karypis, G., Kumar, V.: Metis-unstructured graph partitioning and sparse matrix ordering system, version 2.0. pp. 1–16 (1995)
– reference: Slota, G.M., Rajamanickam, S., Madduri, K.: Pulp/xtrapulp: partitioning tools for extreme-scale graphs. Tech. Rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) (2017)
– reference: UKWeb. http://law.di.unimi.it/webdata/uk union-2006-06-2007-05 (2006)
– reference: PothenASimonHDLiouKPPartitioning sparse matrices with eigenvectors of graphsSIMAX199011343045210.1137/06110300711.65034
– reference: Bichot, C.E., Siarry, P.: Graph Partitioning. Wiley (2013)
– reference: Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: a computation-centric distributed graph processing system. In: OSDI, pp. 301–316 (2016)
– reference: AvdiukhinDPupyrevSYaroslavtsevGMulti-dimensional balanced graph partitioning via projected gradient descentPVLDB2019128906919
– reference: Fan, W., Jin, R., Liu, M., Lu, P., Luo, X., Xu, R., Yin, Q., Yu, W., Zhou, J.: Application driven graph partitioning. In: SIGMOD, pp. 1765–1779. ACM (2020)
– reference: Fan, W., Liu, M., Lu, P., Yin, Q.: Graph algorithms with partition transparency. IEEE Trans Knowl data Eng pp. 1–1 (2021). https://doi.org/10.1109/TKDE.2021.3097998
– reference: Yang, S., Yan, X., Zong, B., Khan, A.: Towards effective partition management for large graphs. In: SIGMOD, p. 517 (2012)
– reference: Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
– reference: Bourse, F., Lelarge, M., Vojnovic, M.: Balanced graph edge partition. In: SIGKDD, pp. 1456–1465 (2014)
– reference: Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979)
– reference: Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: distributed graph-parallel computation on natural graphs. In: OSDI, pp. 17–30 (2012)
– reference: Huang, J., Abadi, D.: LEOPARD: lightweight edge-oriented partitioning and replication for dynamic graphs. proc. VLDB endow. 9(7): 540–551(2016)
– reference: Chen, R., Shi, J., Chen, Y., Chen, H.: PowerLyra: differentiated graph computation and partitioning on skewed graphs. In: EuroSys, pp. 1:1–1:15 (2015)
– reference: Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Algorithm Engineering—Selected Results and Surveys, pp. 117–158 (2016)
– reference: KarypisGKumarVMultilevelk-way partitioning scheme for irregular graphsJPDC199848196129
– reference: Graphscope. https://graphscope.io/ (2020)
– reference: Tsourakakis, C.E., Gkantsidis, C., Radunovic, B., Vojnovic, M.: FENNEL: streaming graph partitioning for massive scale graphs. In: WSDM, pp. 333–342 (2014)
– reference: Karypis, G., Kumar, V.: METIS a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 4. pp. 1–44 (1998)
– reference: Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD (2010)
– reference: Zhang, C., Wei, F., Liu, Q., Tang, Z.G., Li, Z.: Graph edge partitioning via neighborhood heuristic. In: KDD (2017)
– reference: Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)
– reference: ItaiARodehMFinding a minimum circuit in a graphSIAM J. Comput.19787441342310.1137/02070330386.68064
– reference: ChvatalVA greedy heuristic for the set-covering problemMath. Oper. Res.19794323323510.1287/moor.4.3.2330443.90066
– reference: Traffic. http://www.dis.uniroma1.it/challenge9/download.shtml (2010)
– reference: Krauthgamer, R., Naor, J., Schwartz, R.: Partitioning graphs into balanced components. In: SODA (2009)
– reference: Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)
– reference: Dai, D., Zhang, W., Chen, Y.: IOGP: An incremental online graph partitioning algorithm for distributed graph databases. In: HPDC, pp. 219–230 (2017)
– reference: Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111 (1990)
– volume: 40
  start-page: 227
  issue: 3
  year: 1998
  ident: 736_CR41
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/S0167-7152(98)00088-1
– ident: 736_CR54
– ident: 736_CR39
  doi: 10.1145/2213836.2213854
– ident: 736_CR52
  doi: 10.1145/2213836.2213895
– ident: 736_CR34
  doi: 10.1137/1.9781611973068.102
– ident: 736_CR10
  doi: 10.1002/9781118601181
– volume: 8
  start-page: 1478
  issue: 12
  year: 2015
  ident: 736_CR38
  publication-title: PVLDB
– volume: 99
  start-page: 2566
  issue: 1
  year: 2002
  ident: 736_CR40
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.012582999
– ident: 736_CR21
  doi: 10.1109/TKDE.2021.3097998
– ident: 736_CR37
  doi: 10.1145/1583991.1584010
– ident: 736_CR4
– ident: 736_CR11
– ident: 736_CR30
– volume: 7
  start-page: 413
  issue: 4
  year: 1978
  ident: 736_CR27
  publication-title: SIAM J. Comput.
  doi: 10.1137/0207033
– ident: 736_CR24
– ident: 736_CR51
– ident: 736_CR16
  doi: 10.1145/2741948.2741970
– volume: 4
  start-page: 233
  issue: 3
  year: 1979
  ident: 736_CR17
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.4.3.233
– volume: 12
  start-page: 891
  issue: 8
  year: 2019
  ident: 736_CR35
  publication-title: PVLDB
– ident: 736_CR18
  doi: 10.1109/IJCNN.2011.6033365
– ident: 736_CR1
– ident: 736_CR31
– ident: 736_CR49
  doi: 10.1145/2851141.2851145
– ident: 736_CR5
– volume: 48
  start-page: 96
  issue: 1
  year: 1998
  ident: 736_CR32
  publication-title: JPDC
– ident: 736_CR48
  doi: 10.1145/79173.79181
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  ident: 736_CR15
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: 736_CR50
  doi: 10.1038/30918
– ident: 736_CR46
– ident: 736_CR36
  doi: 10.1145/956863.956972
– ident: 736_CR45
  doi: 10.1145/258533.258641
– ident: 736_CR42
– ident: 736_CR23
– ident: 736_CR7
  doi: 10.1007/s00224-006-1350-7
– ident: 736_CR13
  doi: 10.1016/S0169-7552(98)00110-X
– ident: 736_CR43
  doi: 10.1145/2806416.2806424
– ident: 736_CR20
  doi: 10.1145/3318464.3389745
– ident: 736_CR2
– ident: 736_CR14
  doi: 10.1007/978-3-319-49487-6_4
– volume: 11
  start-page: 430
  issue: 3
  year: 1990
  ident: 736_CR44
  publication-title: SIMAX
  doi: 10.1137/0611030
– ident: 736_CR6
– ident: 736_CR25
  doi: 10.14778/2904483.2904486
– ident: 736_CR47
  doi: 10.1145/2556195.2556213
– ident: 736_CR22
  doi: 10.1145/3282488
– ident: 736_CR26
– volume: 72
  start-page: 285
  year: 2012
  ident: 736_CR33
  publication-title: DKE
  doi: 10.1016/j.datak.2011.11.004
– ident: 736_CR53
  doi: 10.1145/3097983.3098033
– volume: 12
  start-page: 906
  issue: 8
  year: 2019
  ident: 736_CR8
  publication-title: PVLDB
– ident: 736_CR12
  doi: 10.1145/2623330.2623660
– ident: 736_CR28
  doi: 10.1145/2484425.2484429
– ident: 736_CR29
  doi: 10.1007/978-0-387-09766-4_500
– ident: 736_CR19
  doi: 10.1145/3078597.3078606
– ident: 736_CR9
  doi: 10.1007/978-1-84800-998-1
– ident: 736_CR3
SSID ssj0002225
Score 2.3837829
Snippet Graph partitioning is crucial to parallel computations on large graphs. The choice of partitioning strategies has strong impact on the performance of graph...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 149
SubjectTerms Algorithms
Communication
Computer Science
Database Management
Graphs
Partitioning
Performance enhancement
Polynomials
Regular Paper
Workloads
SummonAdditionalLinks – databaseName: Springer Nature Link Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9EffDF-YnTKX3QJw20SZOmj0McPsgQv9hbSNoEBJljm_79XrK0Q1FBn5um5XJ3-V0u9zuAU4FKURrNCRdVSXJuOCk5r4lF9FvnRjBbBZ7Zm2I4lKNReRuLwmbNbfcmJRk8dVvs5plnJPG3z316SRB0vGu43UnfsOHu_qn1vz6CCTlOIQjGdzKWynw_x-ftaIkxv6RFw24z6PzvP7dgM6LLpL9Qh21YseMd6DSdG5JoyLtw1l_mrUk99R4vCdTVycSrUjyk3YPHwdXD5TWJDRNIhZY0J5mWqdOCapYxTV3pclpTKQx1udTomixzrCi0SEtbOJbx2hU8F8ZQ4-MIhHr7sDp-HdsDSGTmYy2NACb3jHKpKWtNERoWorb4lbQLWSM3VUU2cd_U4kW1PMhBDgrloIIcFO3CefvOZMGl8evoXrMcKtrVTDFEaIhp0DN24aIR__Lxz7Md_m34EWz4vvKLs5YerM6nb_YY1qv3-fNsehL07QMEJcqK
  priority: 102
  providerName: Springer Nature
Title Application-driven graph partitioning
URI https://link.springer.com/article/10.1007/s00778-022-00736-2
https://www.proquest.com/docview/3256782887
Volume 32
WOSCitedRecordID wos000780766100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 0949-877X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002225
  issn: 1066-8888
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 0949-877X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002225
  issn: 1066-8888
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 0949-877X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002225
  issn: 1066-8888
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0949-877X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002225
  issn: 1066-8888
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH8R8OBF_Iwokh30pI2sW7vtZNBATDSE4EeIl6Vdu8TEAAL699tXOhZN5OJll33m7X2_9vcDOONGKRIpGGE8S0jIJCMJY4pok_2qUPJAZxZn9iHq9-PRKBm4htvcLassfKJ11GqSYY_8KjCx2UQzYxPX0w-CrFE4XXUUGhWoIUoCUjcM2OvKE2MtY6ednBNT6cVu04zdOoc4NjHBtew4rOKE_gxMZbb5a0Bq406v_t8v3oFtl3F6naWK7MKGHu9BvWBz8Jxx78N5p5xlEzVDL-hZOGtviurlGrcH8NzrPt3eEUeiQDJjXQvii7idC05F4AeC5kkeUkVjLmkexsK4Kx3kQRQJ3k50lAc-U3nEQi4llVhbmPTvEKrjyVgfgRf7WH8Jk9SEiDLXlokS1KSLEVfavKXdAL-QYJo5hHEkunhPV9jIVuqpkXpqpZ7SBlys7pku8TXWXt0sRJ06W5unpZwbcFn8rPL03087Xv-0E9hCbvllv6UJ1cXsU5_CZva1eJvPWlC76fYHwxZU7iPSsnpnjsPHl29SMdhT
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT8MwDLWmgQQXxqcYDOiBnSBiTdqkOSA0AdOmjYnDkHYLaZtKSGgb2wDxp_iNJGm7CiS47cC5bVrV9rMdx88Ap1QrBQ-lj3waceT5oY-478dI6eg39kJKVGR5Znus3w-GQ35fgs-8F8Ycq8wx0QJ1PI7MHvkF0b5ZezNtE1eTF2SmRpnqaj5CI1WLrvp41ynb7LJzo-Vbx7h1O7huo2yqAIq0us2RK4NGIimWxCUSJzzxcIwDGuLEC6S2X0USwpikDa5YQlw_Tpjv0TDEoQm2uSE60JC_4pGAGbvqMrRAfpM72eoqpUhnlkHWpGNb9QxvToDM2XlTHKMIf3eERXT7oyBr_Vyr8t_-0CZsZBG100xNYAtKarQNlXxahZOB1w7Um0WtHsVTg_KOpet2JsZ8so3pXXhYysfuQXk0Hql9cALX5JdSB22eYdFrhDyWWIfDjMZKv6VRBTeXmIgyBnUzyONZLLifrZSFlrKwUha4CmeLZyYpf8ifd9dy0YoMS2aikGsVznPlKC7_vtrB36udwFp7cNcTvU6_ewjrWEdv6d5SDcrz6as6gtXobf40mx5bLXfgcdlK8wUVGS9m
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kivji_MTp1D7ok4a1aZO2j0MdimMM_GBvIWkSEKSOrfr3m6QfU1FBfG6alsvl8rvc3e8ATqhRilRwggjNUhQRQVBKiETKoF8ZCRqqzPHMDuPRKJlM0vGHKn6X7V6HJMuaBsvSlBe9qdS9pvDNstAkyGai21ATRcYIL0c2kd7663ePjS223oyLd1KKjK-XVGUz38_x-Wha4M0vIVJ38gza___nDVivUKfXL9VkE5ZUvgXtuqODV23wbTjtL-LZSM6sJfQcpbU3tSpWXd7uwMPg6v7iGlWNFFBmdliBAp74mlPMwyDkWKc6whInVGAdJdyYLBXqMI459VMV6zAgUsckokJgYf0LAwF3oZW_5GoPvCSwPhg3wCayTHO-SCXHBjLGVCrzFb8DQS1DllUs47bZxTNr-JGdHJiRA3NyYLgDZ80705Jj49fR3XppWLXf5iw0yM1gHWMxO3BeL8Xi8c-z7f9t-DGsji8HbHgzuj2ANdt6vryO6UKrmL2qQ1jJ3oqn-ezIqeE7dTzWUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application-driven+graph+partitioning&rft.jtitle=The+VLDB+journal&rft.au=Fan%2C+Wenfei&rft.au=Xu%2C+Ruiqi&rft.au=Yin%2C+Qiang&rft.au=Yu%2C+Wenyuan&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1066-8888&rft.eissn=0949-877X&rft.volume=32&rft.issue=1&rft.spage=149&rft.epage=172&rft_id=info:doi/10.1007%2Fs00778-022-00736-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-8888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-8888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-8888&client=summon