Local Deep-Feature Alignment for Unsupervised Dimension Reduction

This paper presents an unsupervised deep-learning framework named local deep-feature alignment (LDFA) for dimension reduction. We construct neighbourhood for each data sample and learn a local stacked contractive auto-encoder (SCAE) from the neighbourhood to extract the local deep features. Next, we...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 27; číslo 5; s. 2420 - 2432
Hlavní autoři: Zhang, Jian, Yu, Jun, Tao, Dacheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.05.2018
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents an unsupervised deep-learning framework named local deep-feature alignment (LDFA) for dimension reduction. We construct neighbourhood for each data sample and learn a local stacked contractive auto-encoder (SCAE) from the neighbourhood to extract the local deep features. Next, we exploit an affine transformation to align the local deep features of each neighbourhood with the global features. Moreover, we derive an approach from LDFA to map explicitly a new data sample into the learned low-dimensional subspace. The advantage of the LDFA method is that it learns both local and global characteristics of the data sample set: the local SCAEs capture local characteristics contained in the data set, while the global alignment procedures encode the interdependencies between neighbourhoods into the final low-dimensional feature representations. Experimental results on data visualization, clustering, and classification show that the LDFA method is competitive with several well-known dimension reduction techniques, and exploiting locality in deep learning is a research topic worth further exploring.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2018.2804218