A visibility-based pursuit-evasion game between two nonholonomic robots in environments with obstacles

In this paper, a visibility-based pursuit-evasion game in an environment with obstacles is addressed. A pursuer wants to maintain the visibility of an evader at all times. Both players are nonholonomic robots shaped like discs. To determine the players’ motion policies and their trajectories–subject...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autonomous robots Jg. 46; H. 2; S. 349 - 371
Hauptverfasser: Lozano, Eliezer, Becerra, Israel, Ruiz, Ubaldo, Bravo, Luis, Murrieta-Cid, Rafael
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.02.2022
Springer Nature B.V
Schlagworte:
ISSN:0929-5593, 1573-7527
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, a visibility-based pursuit-evasion game in an environment with obstacles is addressed. A pursuer wants to maintain the visibility of an evader at all times. Both players are nonholonomic robots shaped like discs. To determine the players’ motion policies and their trajectories–subject to differential constraints–, an RRT* approach that minimizes the time traveled is utilized. The proposed formulation presents an alternative for computing a strategy of persistent surveillance of the evader, difficult to model from a classical differential games perspective given that there is no clear termination condition when the pursuer can maintain the evader’s visibility forever. A sufficient condition to keep evader surveillance is also provided. Additionally, the proposed approach is general because it can be adapted to address a variety of scenarios. To illustrate such flexibility, we address different aspects of the problem: (1) Knowledge of the environment (availability of a global map vs. a local representation). (2) Strategies of the players (execution of optimal strategies vs. deviations from the optimal ones to deceive the opponent). (3) Sensor capabilities (limited vs. unlimited sensor range).
AbstractList In this paper, a visibility-based pursuit-evasion game in an environment with obstacles is addressed. A pursuer wants to maintain the visibility of an evader at all times. Both players are nonholonomic robots shaped like discs. To determine the players’ motion policies and their trajectories–subject to differential constraints–, an RRT* approach that minimizes the time traveled is utilized. The proposed formulation presents an alternative for computing a strategy of persistent surveillance of the evader, difficult to model from a classical differential games perspective given that there is no clear termination condition when the pursuer can maintain the evader’s visibility forever. A sufficient condition to keep evader surveillance is also provided. Additionally, the proposed approach is general because it can be adapted to address a variety of scenarios. To illustrate such flexibility, we address different aspects of the problem: (1) Knowledge of the environment (availability of a global map vs. a local representation). (2) Strategies of the players (execution of optimal strategies vs. deviations from the optimal ones to deceive the opponent). (3) Sensor capabilities (limited vs. unlimited sensor range).
Author Lozano, Eliezer
Ruiz, Ubaldo
Bravo, Luis
Becerra, Israel
Murrieta-Cid, Rafael
Author_xml – sequence: 1
  givenname: Eliezer
  surname: Lozano
  fullname: Lozano, Eliezer
  organization: Centro de Investigación en Matemáticas (CIMAT)
– sequence: 2
  givenname: Israel
  surname: Becerra
  fullname: Becerra, Israel
  organization: Centro de Investigación en Matemáticas (CIMAT), Consejo Nacional de Ciencia y Tecnología (CONACYT)
– sequence: 3
  givenname: Ubaldo
  orcidid: 0000-0001-6857-1115
  surname: Ruiz
  fullname: Ruiz, Ubaldo
  email: uruiz@cicese.mx
  organization: Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Consejo Nacional de Ciencia y Tecnología (CONACYT)
– sequence: 4
  givenname: Luis
  surname: Bravo
  fullname: Bravo, Luis
  organization: Centro de Investigación en Matemáticas (CIMAT)
– sequence: 5
  givenname: Rafael
  surname: Murrieta-Cid
  fullname: Murrieta-Cid, Rafael
  organization: Centro de Investigación en Matemáticas (CIMAT)
BookMark eNp9kEtLAzEUhYNUsFb_gKuA6-hNppmZLKX4goIbXYdMJmkj06QmaYv_3ugIgovezeXA-e7jnKOJD94gdEXhhgI0t4kCp3MCjJKiWU34CZpS3lSk4ayZoCkIJgjnojpD5ym9A4BoAKbI3uG9S65zg8ufpFPJ9Hi7i2nnMjF7lVzweKU2BncmH4zxOB8CLsvXYQg-bJzGMXQhJ-w8Nn7vYvAb44s-uLzGoUtZ6cGkC3Rq1ZDM5W-fobeH-9fFE1m-PD4v7pZEV1RkQgXVilnLFWVct63tdS-oqmrBgBrbNEKJDrjuGZ13AmpdA69Zq2rb9o21tJqh63HuNoaPnUlZvodd9GWlZHVVSsBcFFc7unQMKUVjpXZZ5fJrjsoNkoL8TlWOqcqSqvxJVfKCsn_oNrqNip_HoWqEUjH7lYl_Vx2hvgBdy43Y
CitedBy_id crossref_primary_10_3390_electronics11223729
crossref_primary_10_3390_ijgi12120475
crossref_primary_10_1080_00207721_2024_2367710
crossref_primary_10_1109_TRO_2024_3474948
crossref_primary_10_1109_ACCESS_2022_3196342
crossref_primary_10_1016_j_ejcon_2023_100935
crossref_primary_10_1007_s13235_025_00618_6
crossref_primary_10_1109_TSMC_2025_3541105
crossref_primary_10_1109_TAC_2024_3438806
crossref_primary_10_3390_electronics13112128
crossref_primary_10_1109_LRA_2022_3178799
crossref_primary_10_1007_s11370_025_00637_7
crossref_primary_10_1007_s13235_025_00647_1
crossref_primary_10_1049_cth2_12664
Cites_doi 10.1007/978-3-642-17452-0_5
10.1007/BFb0036069
10.1109/TRO.2018.2882747
10.1142/S0218195999000273
10.1109/LRA.2019.2931280
10.1109/ROBOT.2005.1570649
10.1177/027836402320556403
10.1007/978-3-642-00312-7_16
10.1007/978-3-030-44051-0_5
10.1109/CDC.2010.5717430
10.1177/0278364908097580
10.1137/1.9781611971132
10.1109/IROS.2004.1389597
10.1109/IROS45743.2020.9341031
10.1177/0278364911415885
10.1109/ICRA.2013.6631297
10.1090/cbms/018
10.1177/0278364915614386
10.23919/FPL.2017.8056773
10.1115/DSCC2017-5379
10.1109/ROBOT.1997.620122
10.1177/0278364911406761
10.1016/j.automatica.2017.12.045
10.1177/0278364907077083
10.1109/TRO.2013.2264868
10.1007/3-540-63307-3_45
10.1007/s10514-020-09963-4
10.1109/CDC40024.2019.9029426
10.1109/ACC.2009.5160610
10.1007/s10514-011-9241-4
10.1007/BFb0036072
10.1007/s10514-015-9477-5
10.1109/TRO.2020.3006716
10.1177/0278364906065023
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10514-021-10026-5
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-7527
EndPage 371
ExternalDocumentID 10_1007_s10514_021_10026_5
GrantInformation_xml – fundername: Consejo Nacional de Ciencia y Tecnología
  grantid: Catedra CONACYT - 1850; Catedra CONACYT - 745
  funderid: http://dx.doi.org/10.13039/501100003141
– fundername: Consejo Nacional de Ciencia y Tecnología
  grantid: S-21934; Consortium of Artificial Intelligence
  funderid: http://dx.doi.org/10.13039/501100003141
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
_50
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7SP
7TB
8FD
DWQXO
F28
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-191ca2ff5a125c88fdcd91a369201ef779a9b05cd214b906c605628a6f8d7ff13
IEDL.DBID RSV
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000743430700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0929-5593
IngestDate Thu Nov 06 14:32:06 EST 2025
Sat Nov 29 02:42:00 EST 2025
Tue Nov 18 21:56:37 EST 2025
Fri Feb 21 02:47:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Motion planning
Nonholonomic constraints
Algorithms
Pursuit-evasion
Incomplete information
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-191ca2ff5a125c88fdcd91a369201ef779a9b05cd214b906c605628a6f8d7ff13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6857-1115
PQID 2633339049
PQPubID 326361
PageCount 23
ParticipantIDs proquest_journals_2633339049
crossref_citationtrail_10_1007_s10514_021_10026_5
crossref_primary_10_1007_s10514_021_10026_5
springer_journals_10_1007_s10514_021_10026_5
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Autonomous robots
PublicationTitleAbbrev Auton Robot
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ichnowski, J., & Alterovitz, R. (2018). Concurrent nearest-neighbor searching for parallel sampling-based motion planning in so(3), se(3), and Euclidean topologies. In Algorithmic Foundations of Robotics XIII, WAFR 2018, Mérida México (pp. 69–85).
Karaman, S. & Frazzoli, E. (2010). Optimal kinodynamic motion planning using incremental sampling-based methods. In IEEE conference on decision and control (pp. 7681–7687).
Bharadwaj, S., Ly, L., Wu, B., Tsai, R., & Topcu, U. (2019). Strategy synthesis for surveillance-evasion games with learning-enabled visibility optimization. In IEEE conference on decision and control (CDC) (pp. 6275–6281).
MaciasVBecerraIMurrieta-CidRBecerraHMHutchinsonSImage feedback based optimal control and the value of information in a differential gameAutomatica201890271285376440810.1016/j.automatica.2017.12.045
Latombe, J. C. (1997). Dynamic adaptation of individual perception-action control plans in a heterogeneous team of intelligent mobile agents. Technical Report, STANFORD UNIV CA.
Bertsekas, D. P. (1995). Dynamic programming and optimal control. Athena Scientific.
RuizUMurrieta-CidRMarroquinJLTime-optimal motion strategies for capturing an omnidirectional evader using a differential drive robotIEEE Transactions on Robotics20132951180119610.1109/TRO.2013.2264868
Isaacs, R. (1965). Differential games: A mathematical theory with applications to warfare and pursuit, control and optimization. Courier Corporation.
ZhiJHaoYVoCMoralesMLienJMComputing 3-d from-region visibility using visibility integrityIEEE Robotics and Automation Letters2019444286429110.1109/LRA.2019.2931280
TovarBLaValleSMVisibility-based pursuit-evasion with bounded speedThe International Journal of Robotics Research20082711–121350136010.1177/0278364908097580
Isler, V., Belta, C., Daniilidis, K., Pappas, G. J. (2004). Hybrid control for visibility-based pursuit-evasion games. In 2004 IEEE/RSJ international conference on intelligent robots and systems, Sendai, Japan, September 28–October 2, 2004 (pp. 1432–1437).
LiYLittlefieldZBekrisKEAsymptotically optimal sampling-based kinodynamic planningThe International Journal of Robotics Research201635552856410.1177/0278364915614386
GuibasLJLatombeJCLaValleSMLinDMotwaniRA visibility-based pursuit-evasion problemInternational Journal of Computational Geometry and Applications199994–5471493171233210.1142/S0218195999000273
Soueres, P., & Boissonnat, J. D. (1998). Optimal trajectories for nonholonomic mobile robots. In Robot motion planning and control (pp. 93–170). Springer.
Guibas, L. J., Latombe, J. C., LaValle, S. M., Lin, D., & Motwani, R. (1997). Visibility-based pursuit-evasion in a polygonal environment. In Workshop on algorithms and data structures (pp. 17–30). Springer.
Karaman, S., & Frazzoli, E. (2010). Incremental sampling-based algorithms for a class of pursuit-evasion games. In Algorithmic foundations of robotics IX—selected contributions of the ninth international workshop on the algorithmic foundations of robotics, WAFR 2010, Singapore, December 13–15, 2010 (pp. 71–87).
Stiffler, N. M., & O’Kane, J. M. (2020). Planning for robust visibility-based pursuit-evasion. In IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE (pp. 6641–6648).
ChungTHHollingerGAIslerVSearch and pursuit-evasion in mobile robotics—A surveyAutonomous Robots201131429931610.1007/s10514-011-9241-4
Quattrini Li, A., Fioratto, R., Amigoni, F., & Isler, V. (2018). A search-based approach to solve pursuit-evasion games with limited visibility in polygonal environments. In Proceedings of the 17th international conference on autonomous agents and multi-agent systems (pp. 1693–1701).
Zou, R., & Bhattacharya, S. (2017). Approximation of capture sets in visibility-based target-tracking games for non-holonomic players. In Dynamic systems and control conference (p. V002T07A004, Vol. 58288). American Society of Mechanical Engineers.
KaramanSFrazzoliESampling-based algorithms for optimal motion planningThe International Journal of Robotics Research201130784689410.1177/0278364911406761
Basar, T., & Olsder, G. (1999). Dynamic noncooperative game theory. SIAM Series in Classics in Applied Mathematics (2nd Ed.). Philadelphia.
BalkcomDJMasonMTTime optimal trajectories for bounded velocity differential drive vehiclesThe International Journal of Robotics Research200221319921710.1177/027836402320556403
Bhattacharya, S., & Hutchinson, S. (2009). On the existence of nash equilibrium for a two player pursuit-evasion game with visibility constraints. In Algorithmic foundation of robotics VIII (pp. 251–265). Springer.
GerkeyBPThrunSGordonGVisibility-based pursuit-evasion with limited field of viewThe International Journal of Robotics Research200625429931510.1177/0278364906065023
Xiao, S., Bergmann, N., & Postula, A. (2017). Parallel RRT* architecture design for motion planning. In International conference on field programmable logic and applications (FPL) (pp. 1–4).
QureshiAHMiaoYSimeonovAYipMCMotion planning networks: Bridging the gap between learning-based and classical motion plannersIEEE Transactions on Robotics2020371486610.1109/TRO.2020.3006716
Karaman, S., & Frazzoli, E. (2013). Sampling-based optimal motion planning for non-holonomic dynamical systems. In 2013 IEEE international conference on robotics and automation (pp. 5041–5047).
Sarmiento, A., Murrieta-Cid, R., & Hutchinson, S. (2005). A sample-based convex cover for rapidly finding an object in a 3-d environment. In IEEE international conference on robotics and automation (ICRA) (pp. 3486–3491).
ZouRBhattacharyaSOn optimal pursuit trajectories for visibility-based target-tracking gameIEEE Transactions on Robotics201935244946510.1109/TRO.2018.2882747
BecerraIMurrieta-CidRMonroyRHutchinsonSLaumondJPMaintaining strong mutual visibility of an evader moving over the reduced visibility graphAutonomous Robots201640239542310.1007/s10514-015-9477-5
Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., & Mishchenko, E. F. (1962). The mathematical theory of optimal processes. Wiley.
Bhattacharya, S., Hutchinson, S., & Basar, T. (2009). Game-theoretic analysis of a visibility based pursuit-evasion game in the presence of obstacles. In 2009 American control conference (pp 373–378).
LaValle, S. M., González-Banos, H., Becker, C., & Latombe, J. C. (1997). Motion strategies for maintaining visibility of a moving target. In Proceedings of international conference on robotics and automation, IEEE (pp. 731–736, Vol 1).
ZhangZSmerekaJMLeeJZhouLSungYTokekarPGame tree search for minimizing detectability and maximizing visibilityAutonomous Robots202145228329710.1007/s10514-020-09963-4
Friedman, A. (2006). Differential games. Dover Publications.
Laumond, J. P., et al. (1998). Robot motion planning and control (Vol. 229). Springer.
BhattacharyaSHutchinsonSA cell decomposition approach to visibility-based pursuit evasion among obstaclesThe International Journal of Robotics Research201130141709172710.1177/0278364911415885
Murrieta-CidRMuppiralaTSarmientoABhattacharyaSHutchinsonSSurveillance strategies for a pursuer with finite sensor rangeThe International Journal of Robotics Research200726323325310.1177/0278364907077083
10026_CR31
10026_CR35
10026_CR12
10026_CR33
10026_CR10
10026_CR32
10026_CR17
10026_CR16
J Zhi (10026_CR37) 2019; 4
10026_CR38
10026_CR15
10026_CR14
LJ Guibas (10026_CR13) 1999; 9
Y Li (10026_CR24) 2016; 35
I Becerra (10026_CR3) 2016; 40
V Macias (10026_CR25) 2018; 90
S Karaman (10026_CR19) 2011; 30
R Zou (10026_CR39) 2019; 35
10026_CR20
R Murrieta-Cid (10026_CR26) 2007; 26
DJ Balkcom (10026_CR2) 2002; 21
AH Qureshi (10026_CR29) 2020; 37
10026_CR5
10026_CR6
10026_CR23
Z Zhang (10026_CR36) 2021; 45
10026_CR22
U Ruiz (10026_CR30) 2013; 29
10026_CR8
10026_CR21
10026_CR1
10026_CR28
S Bhattacharya (10026_CR7) 2011; 30
10026_CR27
10026_CR4
TH Chung (10026_CR9) 2011; 31
BP Gerkey (10026_CR11) 2006; 25
10026_CR18
B Tovar (10026_CR34) 2008; 27
References_xml – reference: RuizUMurrieta-CidRMarroquinJLTime-optimal motion strategies for capturing an omnidirectional evader using a differential drive robotIEEE Transactions on Robotics20132951180119610.1109/TRO.2013.2264868
– reference: Karaman, S., & Frazzoli, E. (2013). Sampling-based optimal motion planning for non-holonomic dynamical systems. In 2013 IEEE international conference on robotics and automation (pp. 5041–5047).
– reference: ChungTHHollingerGAIslerVSearch and pursuit-evasion in mobile robotics—A surveyAutonomous Robots201131429931610.1007/s10514-011-9241-4
– reference: Ichnowski, J., & Alterovitz, R. (2018). Concurrent nearest-neighbor searching for parallel sampling-based motion planning in so(3), se(3), and Euclidean topologies. In Algorithmic Foundations of Robotics XIII, WAFR 2018, Mérida México (pp. 69–85).
– reference: Latombe, J. C. (1997). Dynamic adaptation of individual perception-action control plans in a heterogeneous team of intelligent mobile agents. Technical Report, STANFORD UNIV CA.
– reference: ZhangZSmerekaJMLeeJZhouLSungYTokekarPGame tree search for minimizing detectability and maximizing visibilityAutonomous Robots202145228329710.1007/s10514-020-09963-4
– reference: QureshiAHMiaoYSimeonovAYipMCMotion planning networks: Bridging the gap between learning-based and classical motion plannersIEEE Transactions on Robotics2020371486610.1109/TRO.2020.3006716
– reference: Isler, V., Belta, C., Daniilidis, K., Pappas, G. J. (2004). Hybrid control for visibility-based pursuit-evasion games. In 2004 IEEE/RSJ international conference on intelligent robots and systems, Sendai, Japan, September 28–October 2, 2004 (pp. 1432–1437).
– reference: BalkcomDJMasonMTTime optimal trajectories for bounded velocity differential drive vehiclesThe International Journal of Robotics Research200221319921710.1177/027836402320556403
– reference: LaValle, S. M., González-Banos, H., Becker, C., & Latombe, J. C. (1997). Motion strategies for maintaining visibility of a moving target. In Proceedings of international conference on robotics and automation, IEEE (pp. 731–736, Vol 1).
– reference: Bertsekas, D. P. (1995). Dynamic programming and optimal control. Athena Scientific.
– reference: Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., & Mishchenko, E. F. (1962). The mathematical theory of optimal processes. Wiley.
– reference: Sarmiento, A., Murrieta-Cid, R., & Hutchinson, S. (2005). A sample-based convex cover for rapidly finding an object in a 3-d environment. In IEEE international conference on robotics and automation (ICRA) (pp. 3486–3491).
– reference: GuibasLJLatombeJCLaValleSMLinDMotwaniRA visibility-based pursuit-evasion problemInternational Journal of Computational Geometry and Applications199994–5471493171233210.1142/S0218195999000273
– reference: TovarBLaValleSMVisibility-based pursuit-evasion with bounded speedThe International Journal of Robotics Research20082711–121350136010.1177/0278364908097580
– reference: Murrieta-CidRMuppiralaTSarmientoABhattacharyaSHutchinsonSSurveillance strategies for a pursuer with finite sensor rangeThe International Journal of Robotics Research200726323325310.1177/0278364907077083
– reference: Bhattacharya, S., Hutchinson, S., & Basar, T. (2009). Game-theoretic analysis of a visibility based pursuit-evasion game in the presence of obstacles. In 2009 American control conference (pp 373–378).
– reference: Karaman, S., & Frazzoli, E. (2010). Incremental sampling-based algorithms for a class of pursuit-evasion games. In Algorithmic foundations of robotics IX—selected contributions of the ninth international workshop on the algorithmic foundations of robotics, WAFR 2010, Singapore, December 13–15, 2010 (pp. 71–87).
– reference: Zou, R., & Bhattacharya, S. (2017). Approximation of capture sets in visibility-based target-tracking games for non-holonomic players. In Dynamic systems and control conference (p. V002T07A004, Vol. 58288). American Society of Mechanical Engineers.
– reference: Xiao, S., Bergmann, N., & Postula, A. (2017). Parallel RRT* architecture design for motion planning. In International conference on field programmable logic and applications (FPL) (pp. 1–4).
– reference: ZhiJHaoYVoCMoralesMLienJMComputing 3-d from-region visibility using visibility integrityIEEE Robotics and Automation Letters2019444286429110.1109/LRA.2019.2931280
– reference: BecerraIMurrieta-CidRMonroyRHutchinsonSLaumondJPMaintaining strong mutual visibility of an evader moving over the reduced visibility graphAutonomous Robots201640239542310.1007/s10514-015-9477-5
– reference: GerkeyBPThrunSGordonGVisibility-based pursuit-evasion with limited field of viewThe International Journal of Robotics Research200625429931510.1177/0278364906065023
– reference: MaciasVBecerraIMurrieta-CidRBecerraHMHutchinsonSImage feedback based optimal control and the value of information in a differential gameAutomatica201890271285376440810.1016/j.automatica.2017.12.045
– reference: LiYLittlefieldZBekrisKEAsymptotically optimal sampling-based kinodynamic planningThe International Journal of Robotics Research201635552856410.1177/0278364915614386
– reference: Guibas, L. J., Latombe, J. C., LaValle, S. M., Lin, D., & Motwani, R. (1997). Visibility-based pursuit-evasion in a polygonal environment. In Workshop on algorithms and data structures (pp. 17–30). Springer.
– reference: Karaman, S. & Frazzoli, E. (2010). Optimal kinodynamic motion planning using incremental sampling-based methods. In IEEE conference on decision and control (pp. 7681–7687).
– reference: Basar, T., & Olsder, G. (1999). Dynamic noncooperative game theory. SIAM Series in Classics in Applied Mathematics (2nd Ed.). Philadelphia.
– reference: KaramanSFrazzoliESampling-based algorithms for optimal motion planningThe International Journal of Robotics Research201130784689410.1177/0278364911406761
– reference: Quattrini Li, A., Fioratto, R., Amigoni, F., & Isler, V. (2018). A search-based approach to solve pursuit-evasion games with limited visibility in polygonal environments. In Proceedings of the 17th international conference on autonomous agents and multi-agent systems (pp. 1693–1701).
– reference: Friedman, A. (2006). Differential games. Dover Publications.
– reference: Soueres, P., & Boissonnat, J. D. (1998). Optimal trajectories for nonholonomic mobile robots. In Robot motion planning and control (pp. 93–170). Springer.
– reference: Stiffler, N. M., & O’Kane, J. M. (2020). Planning for robust visibility-based pursuit-evasion. In IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE (pp. 6641–6648).
– reference: Bharadwaj, S., Ly, L., Wu, B., Tsai, R., & Topcu, U. (2019). Strategy synthesis for surveillance-evasion games with learning-enabled visibility optimization. In IEEE conference on decision and control (CDC) (pp. 6275–6281).
– reference: ZouRBhattacharyaSOn optimal pursuit trajectories for visibility-based target-tracking gameIEEE Transactions on Robotics201935244946510.1109/TRO.2018.2882747
– reference: Laumond, J. P., et al. (1998). Robot motion planning and control (Vol. 229). Springer.
– reference: Bhattacharya, S., & Hutchinson, S. (2009). On the existence of nash equilibrium for a two player pursuit-evasion game with visibility constraints. In Algorithmic foundation of robotics VIII (pp. 251–265). Springer.
– reference: BhattacharyaSHutchinsonSA cell decomposition approach to visibility-based pursuit evasion among obstaclesThe International Journal of Robotics Research201130141709172710.1177/0278364911415885
– reference: Isaacs, R. (1965). Differential games: A mathematical theory with applications to warfare and pursuit, control and optimization. Courier Corporation.
– ident: 10026_CR17
  doi: 10.1007/978-3-642-17452-0_5
– ident: 10026_CR22
  doi: 10.1007/BFb0036069
– volume: 35
  start-page: 449
  issue: 2
  year: 2019
  ident: 10026_CR39
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2018.2882747
– ident: 10026_CR15
– volume: 9
  start-page: 471
  issue: 4–5
  year: 1999
  ident: 10026_CR13
  publication-title: International Journal of Computational Geometry and Applications
  doi: 10.1142/S0218195999000273
– volume: 4
  start-page: 4286
  issue: 4
  year: 2019
  ident: 10026_CR37
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2019.2931280
– ident: 10026_CR31
  doi: 10.1109/ROBOT.2005.1570649
– volume: 21
  start-page: 199
  issue: 3
  year: 2002
  ident: 10026_CR2
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/027836402320556403
– ident: 10026_CR21
– ident: 10026_CR6
  doi: 10.1007/978-3-642-00312-7_16
– ident: 10026_CR14
  doi: 10.1007/978-3-030-44051-0_5
– ident: 10026_CR28
– ident: 10026_CR18
  doi: 10.1109/CDC.2010.5717430
– volume: 27
  start-page: 1350
  issue: 11–12
  year: 2008
  ident: 10026_CR34
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364908097580
– ident: 10026_CR4
– ident: 10026_CR1
  doi: 10.1137/1.9781611971132
– ident: 10026_CR16
  doi: 10.1109/IROS.2004.1389597
– ident: 10026_CR33
  doi: 10.1109/IROS45743.2020.9341031
– volume: 30
  start-page: 1709
  issue: 14
  year: 2011
  ident: 10026_CR7
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364911415885
– ident: 10026_CR20
  doi: 10.1109/ICRA.2013.6631297
– ident: 10026_CR10
  doi: 10.1090/cbms/018
– volume: 35
  start-page: 528
  issue: 5
  year: 2016
  ident: 10026_CR24
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364915614386
– ident: 10026_CR35
  doi: 10.23919/FPL.2017.8056773
– ident: 10026_CR38
  doi: 10.1115/DSCC2017-5379
– ident: 10026_CR23
  doi: 10.1109/ROBOT.1997.620122
– volume: 30
  start-page: 846
  issue: 7
  year: 2011
  ident: 10026_CR19
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364911406761
– volume: 90
  start-page: 271
  year: 2018
  ident: 10026_CR25
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.12.045
– volume: 26
  start-page: 233
  issue: 3
  year: 2007
  ident: 10026_CR26
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364907077083
– ident: 10026_CR27
– volume: 29
  start-page: 1180
  issue: 5
  year: 2013
  ident: 10026_CR30
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2013.2264868
– ident: 10026_CR12
  doi: 10.1007/3-540-63307-3_45
– volume: 45
  start-page: 283
  issue: 2
  year: 2021
  ident: 10026_CR36
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-020-09963-4
– ident: 10026_CR5
  doi: 10.1109/CDC40024.2019.9029426
– ident: 10026_CR8
  doi: 10.1109/ACC.2009.5160610
– volume: 31
  start-page: 299
  issue: 4
  year: 2011
  ident: 10026_CR9
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-011-9241-4
– ident: 10026_CR32
  doi: 10.1007/BFb0036072
– volume: 40
  start-page: 395
  issue: 2
  year: 2016
  ident: 10026_CR3
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-015-9477-5
– volume: 37
  start-page: 48
  issue: 1
  year: 2020
  ident: 10026_CR29
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2020.3006716
– volume: 25
  start-page: 299
  issue: 4
  year: 2006
  ident: 10026_CR11
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364906065023
SSID ssj0009700
Score 2.4429274
Snippet In this paper, a visibility-based pursuit-evasion game in an environment with obstacles is addressed. A pursuer wants to maintain the visibility of an evader...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 349
SubjectTerms Artificial Intelligence
Barriers
Computer Imaging
Control
Differential games
Engineering
Game theory
Mechatronics
Pattern Recognition and Graphics
Players
Pursuit-evasion games
Robotics
Robotics and Automation
Robots
Surveillance
Visibility
Vision
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DTDwRhQK8sAGFkmTOPGEKkTFgBADoIolsh0bVYKkNGkR_5674JKCRBeyOjlZOdv33fm-O0JOIj-Jpe9pcHLCDBwU8FlFwg1TRnmKCxPoOuX_8Sa-vU36fXHnAm6lS6ucnon1QZ0VGmPk5x0ewCMA0F4M3xh2jcLbVddCY5EsY5UEbN1wFz01RXcdBQUgAAPkHDjSjKPOAVRgmKCARUg5i34apgZt_rogre1Ob-O_M94k6w5x0u7XEtkiCybfJmszdQh3iO1S5JjXebIfDA1bRofjUTkeVMxMJAbU6LN8NdRlddHqvaB5kePJWdOa6ahQRVXSQU5nmXMUo7y0UIBAMflulzz0ru4vr5lrwMA07MyKgS-nZcfaSAIM0kliM50JXwZcAGwwNo6FFMqLdNbxQyU8rjnCqURym2SxtX6wR5ZgMmafUK6ljUMYCD0LdlOoAGQmMvOUtqEnwxbxp38_1a46OTbJeEmbusqosRQ0ltYaS6MWOf3-ZvhVm2Pu2-2pmlK3T8u00VGLnE0V3Qz_Le1gvrRDstpBnkSd3t0mS9VobI7Iip5Ug3J0XK_ST6m37Uo
  priority: 102
  providerName: ProQuest
Title A visibility-based pursuit-evasion game between two nonholonomic robots in environments with obstacles
URI https://link.springer.com/article/10.1007/s10514-021-10026-5
https://www.proquest.com/docview/2633339049
Volume 46
WOSCitedRecordID wos000743430700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7527
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009700
  issn: 0929-5593
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o5kEPfovzY-TgTQPt2qbNccrEg4zhVMRLSdJEBrqOtZv43_vStW6KCtpDL01DePl47yW_3y8AJ4EbhcJ1FCY5foIJCuasPGKaSi0dybj2VAH5v78Ou93o4YH3SlJYVqHdqyPJYqVeILuhc6cWUmBlQxkNlqEeWLUZm6P37-dSuyXxBB0_xXjZK6ky39fx2R3NY8wvx6KFt7nc-F87N2G9jC5JezYctmBJD7dhbUFzcAdMm1g-eYGJfaPWiSVkNBlnk0FO9VTYzTPyJF40KRFcJH9NyTAd2lWyoDCTcSrTPCODIVlkyRG7o0tSidGmBdrtwt1l5_biipaXLVCFszCnmLcp0TImEBjyqCgyiUq4KzzGMUTQJgy54NIJVNJyfckdppgNnSLBTJSExrjeHtSwMXofCFPChD5-8B2DPpJLD-uMROJIZXxH-A1wK5vHqlQitxdiPMdzDWVrwxhtGBc2jIMGnH78M5rpcPxa-qjqyrick1ncYh4-HFOiBpxVXTf__HNtB38rfgirLcuRKKDdR1DLxxN9DCtqmg-ycRPq551u76ZpQaZ9fPeCx2Yxft8BIMTmlQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RbaWWQx88xFJofWhP1CJPJz5UCEERiO2KA61QL8F2bLRS2SybLIg_xW_sTDZpaKVy49BcnVhJ_NnzjT3fDMCH2E8T5XsGnZwoRwcFfVaZCsu11Z4W0oamDvn_PkiGw_TsTJ4swF2rhaGwynZNrBfqvDC0R74diBAviYR2Z3LFqWoUna62JTTmsDi2tzfospWfj_ZxfD8GwcGX071D3lQV4AbhVnF0UIwKnIsV2naTpi43ufRVKCTaQuuSRCqpvdjkgR9p6QkjiCOkSrg0T5zzQ-z3CTyNosCjigkn8Y8uyW8jeUHKwZGph41Ip5HqITXhFBBBSU8Fj_80hB27_etAtrZzB6_-tz_0Gl42jJrtzqfAG1iw4yVYvJdncRncLiMNfR0HfMvJcOdsMpuWs1HF7bWiDUN2oS4ta6LWWHVTsHExJstQy7bZtNBFVbLRmN1XBjLaxWaFRoZNwYUr8O1RPnQVevgydg2YMMolETZEnkNeIHWIfaYq97RxkaeiPvjtaGemyb5ORUB-Zl3eaEJIhgjJaoRkcR-2fj8zmeceefDujRYWWbMOlVmHiT58aoHVNf-7t_WHe3sPzw9Pvw6ywdHw-C28CEgTUoeyb0Cvms7sJjwz19WonL6rZwiD88cG3C-_XkoN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB3BUqH2QAtt1W0p9QFOYG0-nfhQISisikCrVQWIW2o7drUSbLabLIi_1l_XcdYhUAluHJqrEyuJnz1v7DczAJuxnybC9xQ6OVGODgr6rDxlmkotPcm4DlUt-T8_SQaD9OKCDxfgTxMLY2WVzZpYL9R5oeweeS9gIV4cCW3POFnE8KC_O_lNbQUpe9LalNOYQ-RY396g-1Z-PTrAsd4Kgv7h6bfv1FUYoAqhV1F0VpQIjIkF2nmVpiZXOfdFyDjaRW2ShAsuvVjlgR9J7jHFLF9IBTNpnhjjh9jvIiwlITo9HVjaPxwMf7Qpf10ADBIQirw9dCE7LnAPiQq18gibApXR-KFZbLnuP8eztdXrv_6f_9cbWHFcm-zNJ8cqLOjxGry6l4HxLZg9YqPra4XwLbUmPSeT2bScjSqqr4XdSiS_xJUmTs9GqpuCjIuxtRl1QDeZFrKoSjIak_sxg8Tub5NCIve2ssN3cPYsH_oeOvgy-gMQpoRJImyIPIOMgcsQ-0xF7kllIk9EXfCbkc-Uy8tuy4NcZm1GaYuWDNGS1WjJ4i5s3z0zmWclefLu9QYimVuhyqzFRxd2GpC1zY_39vHp3r7AMuIsOzkaHH-Cl4ENFqk17uvQqaYz_RleqOtqVE433HQh8PO5EfcXtotUDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+visibility-based+pursuit-evasion+game+between+two+nonholonomic+robots+in+environments+with+obstacles&rft.jtitle=Autonomous+robots&rft.au=Lozano%2C+Eliezer&rft.au=Becerra%2C+Israel&rft.au=Ruiz%2C+Ubaldo&rft.au=Bravo%2C+Luis&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=46&rft.issue=2&rft.spage=349&rft.epage=371&rft_id=info:doi/10.1007%2Fs10514-021-10026-5&rft.externalDocID=10_1007_s10514_021_10026_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon