A visibility-based pursuit-evasion game between two nonholonomic robots in environments with obstacles
In this paper, a visibility-based pursuit-evasion game in an environment with obstacles is addressed. A pursuer wants to maintain the visibility of an evader at all times. Both players are nonholonomic robots shaped like discs. To determine the players’ motion policies and their trajectories–subject...
Gespeichert in:
| Veröffentlicht in: | Autonomous robots Jg. 46; H. 2; S. 349 - 371 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.02.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0929-5593, 1573-7527 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, a visibility-based pursuit-evasion game in an environment with obstacles is addressed. A pursuer wants to maintain the visibility of an evader at all times. Both players are nonholonomic robots shaped like discs. To determine the players’ motion policies and their trajectories–subject to differential constraints–, an RRT* approach that minimizes the time traveled is utilized. The proposed formulation presents an alternative for computing a strategy of persistent surveillance of the evader, difficult to model from a classical differential games perspective given that there is no clear termination condition when the pursuer can maintain the evader’s visibility forever. A sufficient condition to keep evader surveillance is also provided. Additionally, the proposed approach is general because it can be adapted to address a variety of scenarios. To illustrate such flexibility, we address different aspects of the problem: (1) Knowledge of the environment (availability of a global map vs. a local representation). (2) Strategies of the players (execution of optimal strategies vs. deviations from the optimal ones to deceive the opponent). (3) Sensor capabilities (limited vs. unlimited sensor range). |
|---|---|
| AbstractList | In this paper, a visibility-based pursuit-evasion game in an environment with obstacles is addressed. A pursuer wants to maintain the visibility of an evader at all times. Both players are nonholonomic robots shaped like discs. To determine the players’ motion policies and their trajectories–subject to differential constraints–, an RRT* approach that minimizes the time traveled is utilized. The proposed formulation presents an alternative for computing a strategy of persistent surveillance of the evader, difficult to model from a classical differential games perspective given that there is no clear termination condition when the pursuer can maintain the evader’s visibility forever. A sufficient condition to keep evader surveillance is also provided. Additionally, the proposed approach is general because it can be adapted to address a variety of scenarios. To illustrate such flexibility, we address different aspects of the problem: (1) Knowledge of the environment (availability of a global map vs. a local representation). (2) Strategies of the players (execution of optimal strategies vs. deviations from the optimal ones to deceive the opponent). (3) Sensor capabilities (limited vs. unlimited sensor range). |
| Author | Lozano, Eliezer Ruiz, Ubaldo Bravo, Luis Becerra, Israel Murrieta-Cid, Rafael |
| Author_xml | – sequence: 1 givenname: Eliezer surname: Lozano fullname: Lozano, Eliezer organization: Centro de Investigación en Matemáticas (CIMAT) – sequence: 2 givenname: Israel surname: Becerra fullname: Becerra, Israel organization: Centro de Investigación en Matemáticas (CIMAT), Consejo Nacional de Ciencia y Tecnología (CONACYT) – sequence: 3 givenname: Ubaldo orcidid: 0000-0001-6857-1115 surname: Ruiz fullname: Ruiz, Ubaldo email: uruiz@cicese.mx organization: Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Consejo Nacional de Ciencia y Tecnología (CONACYT) – sequence: 4 givenname: Luis surname: Bravo fullname: Bravo, Luis organization: Centro de Investigación en Matemáticas (CIMAT) – sequence: 5 givenname: Rafael surname: Murrieta-Cid fullname: Murrieta-Cid, Rafael organization: Centro de Investigación en Matemáticas (CIMAT) |
| BookMark | eNp9kEtLAzEUhYNUsFb_gKuA6-hNppmZLKX4goIbXYdMJmkj06QmaYv_3ugIgovezeXA-e7jnKOJD94gdEXhhgI0t4kCp3MCjJKiWU34CZpS3lSk4ayZoCkIJgjnojpD5ym9A4BoAKbI3uG9S65zg8ufpFPJ9Hi7i2nnMjF7lVzweKU2BncmH4zxOB8CLsvXYQg-bJzGMXQhJ-w8Nn7vYvAb44s-uLzGoUtZ6cGkC3Rq1ZDM5W-fobeH-9fFE1m-PD4v7pZEV1RkQgXVilnLFWVct63tdS-oqmrBgBrbNEKJDrjuGZ13AmpdA69Zq2rb9o21tJqh63HuNoaPnUlZvodd9GWlZHVVSsBcFFc7unQMKUVjpXZZ5fJrjsoNkoL8TlWOqcqSqvxJVfKCsn_oNrqNip_HoWqEUjH7lYl_Vx2hvgBdy43Y |
| CitedBy_id | crossref_primary_10_3390_electronics11223729 crossref_primary_10_3390_ijgi12120475 crossref_primary_10_1080_00207721_2024_2367710 crossref_primary_10_1109_TRO_2024_3474948 crossref_primary_10_1109_ACCESS_2022_3196342 crossref_primary_10_1016_j_ejcon_2023_100935 crossref_primary_10_1007_s13235_025_00618_6 crossref_primary_10_1109_TSMC_2025_3541105 crossref_primary_10_1109_TAC_2024_3438806 crossref_primary_10_3390_electronics13112128 crossref_primary_10_1109_LRA_2022_3178799 crossref_primary_10_1007_s11370_025_00637_7 crossref_primary_10_1007_s13235_025_00647_1 crossref_primary_10_1049_cth2_12664 |
| Cites_doi | 10.1007/978-3-642-17452-0_5 10.1007/BFb0036069 10.1109/TRO.2018.2882747 10.1142/S0218195999000273 10.1109/LRA.2019.2931280 10.1109/ROBOT.2005.1570649 10.1177/027836402320556403 10.1007/978-3-642-00312-7_16 10.1007/978-3-030-44051-0_5 10.1109/CDC.2010.5717430 10.1177/0278364908097580 10.1137/1.9781611971132 10.1109/IROS.2004.1389597 10.1109/IROS45743.2020.9341031 10.1177/0278364911415885 10.1109/ICRA.2013.6631297 10.1090/cbms/018 10.1177/0278364915614386 10.23919/FPL.2017.8056773 10.1115/DSCC2017-5379 10.1109/ROBOT.1997.620122 10.1177/0278364911406761 10.1016/j.automatica.2017.12.045 10.1177/0278364907077083 10.1109/TRO.2013.2264868 10.1007/3-540-63307-3_45 10.1007/s10514-020-09963-4 10.1109/CDC40024.2019.9029426 10.1109/ACC.2009.5160610 10.1007/s10514-011-9241-4 10.1007/BFb0036072 10.1007/s10514-015-9477-5 10.1109/TRO.2020.3006716 10.1177/0278364906065023 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 7SC 7SP 7TB 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO F28 FR3 HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W |
| DOI | 10.1007/s10514-021-10026-5 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection SciTech Premium Collection ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Technology collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Technology Collection |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-7527 |
| EndPage | 371 |
| ExternalDocumentID | 10_1007_s10514_021_10026_5 |
| GrantInformation_xml | – fundername: Consejo Nacional de Ciencia y Tecnología grantid: Catedra CONACYT - 1850; Catedra CONACYT - 745 funderid: http://dx.doi.org/10.13039/501100003141 – fundername: Consejo Nacional de Ciencia y Tecnología grantid: S-21934; Consortium of Artificial Intelligence funderid: http://dx.doi.org/10.13039/501100003141 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR _50 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7SP 7TB 8FD DWQXO F28 FR3 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-191ca2ff5a125c88fdcd91a369201ef779a9b05cd214b906c605628a6f8d7ff13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000743430700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0929-5593 |
| IngestDate | Thu Nov 06 14:32:06 EST 2025 Sat Nov 29 02:42:00 EST 2025 Tue Nov 18 21:56:37 EST 2025 Fri Feb 21 02:47:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Motion planning Nonholonomic constraints Algorithms Pursuit-evasion Incomplete information |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-191ca2ff5a125c88fdcd91a369201ef779a9b05cd214b906c605628a6f8d7ff13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6857-1115 |
| PQID | 2633339049 |
| PQPubID | 326361 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2633339049 crossref_citationtrail_10_1007_s10514_021_10026_5 crossref_primary_10_1007_s10514_021_10026_5 springer_journals_10_1007_s10514_021_10026_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20220200 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Autonomous robots |
| PublicationTitleAbbrev | Auton Robot |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Ichnowski, J., & Alterovitz, R. (2018). Concurrent nearest-neighbor searching for parallel sampling-based motion planning in so(3), se(3), and Euclidean topologies. In Algorithmic Foundations of Robotics XIII, WAFR 2018, Mérida México (pp. 69–85). Karaman, S. & Frazzoli, E. (2010). Optimal kinodynamic motion planning using incremental sampling-based methods. In IEEE conference on decision and control (pp. 7681–7687). Bharadwaj, S., Ly, L., Wu, B., Tsai, R., & Topcu, U. (2019). Strategy synthesis for surveillance-evasion games with learning-enabled visibility optimization. In IEEE conference on decision and control (CDC) (pp. 6275–6281). MaciasVBecerraIMurrieta-CidRBecerraHMHutchinsonSImage feedback based optimal control and the value of information in a differential gameAutomatica201890271285376440810.1016/j.automatica.2017.12.045 Latombe, J. C. (1997). Dynamic adaptation of individual perception-action control plans in a heterogeneous team of intelligent mobile agents. Technical Report, STANFORD UNIV CA. Bertsekas, D. P. (1995). Dynamic programming and optimal control. Athena Scientific. RuizUMurrieta-CidRMarroquinJLTime-optimal motion strategies for capturing an omnidirectional evader using a differential drive robotIEEE Transactions on Robotics20132951180119610.1109/TRO.2013.2264868 Isaacs, R. (1965). Differential games: A mathematical theory with applications to warfare and pursuit, control and optimization. Courier Corporation. ZhiJHaoYVoCMoralesMLienJMComputing 3-d from-region visibility using visibility integrityIEEE Robotics and Automation Letters2019444286429110.1109/LRA.2019.2931280 TovarBLaValleSMVisibility-based pursuit-evasion with bounded speedThe International Journal of Robotics Research20082711–121350136010.1177/0278364908097580 Isler, V., Belta, C., Daniilidis, K., Pappas, G. J. (2004). Hybrid control for visibility-based pursuit-evasion games. In 2004 IEEE/RSJ international conference on intelligent robots and systems, Sendai, Japan, September 28–October 2, 2004 (pp. 1432–1437). LiYLittlefieldZBekrisKEAsymptotically optimal sampling-based kinodynamic planningThe International Journal of Robotics Research201635552856410.1177/0278364915614386 GuibasLJLatombeJCLaValleSMLinDMotwaniRA visibility-based pursuit-evasion problemInternational Journal of Computational Geometry and Applications199994–5471493171233210.1142/S0218195999000273 Soueres, P., & Boissonnat, J. D. (1998). Optimal trajectories for nonholonomic mobile robots. In Robot motion planning and control (pp. 93–170). Springer. Guibas, L. J., Latombe, J. C., LaValle, S. M., Lin, D., & Motwani, R. (1997). Visibility-based pursuit-evasion in a polygonal environment. In Workshop on algorithms and data structures (pp. 17–30). Springer. Karaman, S., & Frazzoli, E. (2010). Incremental sampling-based algorithms for a class of pursuit-evasion games. In Algorithmic foundations of robotics IX—selected contributions of the ninth international workshop on the algorithmic foundations of robotics, WAFR 2010, Singapore, December 13–15, 2010 (pp. 71–87). Stiffler, N. M., & O’Kane, J. M. (2020). Planning for robust visibility-based pursuit-evasion. In IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE (pp. 6641–6648). ChungTHHollingerGAIslerVSearch and pursuit-evasion in mobile robotics—A surveyAutonomous Robots201131429931610.1007/s10514-011-9241-4 Quattrini Li, A., Fioratto, R., Amigoni, F., & Isler, V. (2018). A search-based approach to solve pursuit-evasion games with limited visibility in polygonal environments. In Proceedings of the 17th international conference on autonomous agents and multi-agent systems (pp. 1693–1701). Zou, R., & Bhattacharya, S. (2017). Approximation of capture sets in visibility-based target-tracking games for non-holonomic players. In Dynamic systems and control conference (p. V002T07A004, Vol. 58288). American Society of Mechanical Engineers. KaramanSFrazzoliESampling-based algorithms for optimal motion planningThe International Journal of Robotics Research201130784689410.1177/0278364911406761 Basar, T., & Olsder, G. (1999). Dynamic noncooperative game theory. SIAM Series in Classics in Applied Mathematics (2nd Ed.). Philadelphia. BalkcomDJMasonMTTime optimal trajectories for bounded velocity differential drive vehiclesThe International Journal of Robotics Research200221319921710.1177/027836402320556403 Bhattacharya, S., & Hutchinson, S. (2009). On the existence of nash equilibrium for a two player pursuit-evasion game with visibility constraints. In Algorithmic foundation of robotics VIII (pp. 251–265). Springer. GerkeyBPThrunSGordonGVisibility-based pursuit-evasion with limited field of viewThe International Journal of Robotics Research200625429931510.1177/0278364906065023 Xiao, S., Bergmann, N., & Postula, A. (2017). Parallel RRT* architecture design for motion planning. In International conference on field programmable logic and applications (FPL) (pp. 1–4). QureshiAHMiaoYSimeonovAYipMCMotion planning networks: Bridging the gap between learning-based and classical motion plannersIEEE Transactions on Robotics2020371486610.1109/TRO.2020.3006716 Karaman, S., & Frazzoli, E. (2013). Sampling-based optimal motion planning for non-holonomic dynamical systems. In 2013 IEEE international conference on robotics and automation (pp. 5041–5047). Sarmiento, A., Murrieta-Cid, R., & Hutchinson, S. (2005). A sample-based convex cover for rapidly finding an object in a 3-d environment. In IEEE international conference on robotics and automation (ICRA) (pp. 3486–3491). ZouRBhattacharyaSOn optimal pursuit trajectories for visibility-based target-tracking gameIEEE Transactions on Robotics201935244946510.1109/TRO.2018.2882747 BecerraIMurrieta-CidRMonroyRHutchinsonSLaumondJPMaintaining strong mutual visibility of an evader moving over the reduced visibility graphAutonomous Robots201640239542310.1007/s10514-015-9477-5 Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., & Mishchenko, E. F. (1962). The mathematical theory of optimal processes. Wiley. Bhattacharya, S., Hutchinson, S., & Basar, T. (2009). Game-theoretic analysis of a visibility based pursuit-evasion game in the presence of obstacles. In 2009 American control conference (pp 373–378). LaValle, S. M., González-Banos, H., Becker, C., & Latombe, J. C. (1997). Motion strategies for maintaining visibility of a moving target. In Proceedings of international conference on robotics and automation, IEEE (pp. 731–736, Vol 1). ZhangZSmerekaJMLeeJZhouLSungYTokekarPGame tree search for minimizing detectability and maximizing visibilityAutonomous Robots202145228329710.1007/s10514-020-09963-4 Friedman, A. (2006). Differential games. Dover Publications. Laumond, J. P., et al. (1998). Robot motion planning and control (Vol. 229). Springer. BhattacharyaSHutchinsonSA cell decomposition approach to visibility-based pursuit evasion among obstaclesThe International Journal of Robotics Research201130141709172710.1177/0278364911415885 Murrieta-CidRMuppiralaTSarmientoABhattacharyaSHutchinsonSSurveillance strategies for a pursuer with finite sensor rangeThe International Journal of Robotics Research200726323325310.1177/0278364907077083 10026_CR31 10026_CR35 10026_CR12 10026_CR33 10026_CR10 10026_CR32 10026_CR17 10026_CR16 J Zhi (10026_CR37) 2019; 4 10026_CR38 10026_CR15 10026_CR14 LJ Guibas (10026_CR13) 1999; 9 Y Li (10026_CR24) 2016; 35 I Becerra (10026_CR3) 2016; 40 V Macias (10026_CR25) 2018; 90 S Karaman (10026_CR19) 2011; 30 R Zou (10026_CR39) 2019; 35 10026_CR20 R Murrieta-Cid (10026_CR26) 2007; 26 DJ Balkcom (10026_CR2) 2002; 21 AH Qureshi (10026_CR29) 2020; 37 10026_CR5 10026_CR6 10026_CR23 Z Zhang (10026_CR36) 2021; 45 10026_CR22 U Ruiz (10026_CR30) 2013; 29 10026_CR8 10026_CR21 10026_CR1 10026_CR28 S Bhattacharya (10026_CR7) 2011; 30 10026_CR27 10026_CR4 TH Chung (10026_CR9) 2011; 31 BP Gerkey (10026_CR11) 2006; 25 10026_CR18 B Tovar (10026_CR34) 2008; 27 |
| References_xml | – reference: RuizUMurrieta-CidRMarroquinJLTime-optimal motion strategies for capturing an omnidirectional evader using a differential drive robotIEEE Transactions on Robotics20132951180119610.1109/TRO.2013.2264868 – reference: Karaman, S., & Frazzoli, E. (2013). Sampling-based optimal motion planning for non-holonomic dynamical systems. In 2013 IEEE international conference on robotics and automation (pp. 5041–5047). – reference: ChungTHHollingerGAIslerVSearch and pursuit-evasion in mobile robotics—A surveyAutonomous Robots201131429931610.1007/s10514-011-9241-4 – reference: Ichnowski, J., & Alterovitz, R. (2018). Concurrent nearest-neighbor searching for parallel sampling-based motion planning in so(3), se(3), and Euclidean topologies. In Algorithmic Foundations of Robotics XIII, WAFR 2018, Mérida México (pp. 69–85). – reference: Latombe, J. C. (1997). Dynamic adaptation of individual perception-action control plans in a heterogeneous team of intelligent mobile agents. Technical Report, STANFORD UNIV CA. – reference: ZhangZSmerekaJMLeeJZhouLSungYTokekarPGame tree search for minimizing detectability and maximizing visibilityAutonomous Robots202145228329710.1007/s10514-020-09963-4 – reference: QureshiAHMiaoYSimeonovAYipMCMotion planning networks: Bridging the gap between learning-based and classical motion plannersIEEE Transactions on Robotics2020371486610.1109/TRO.2020.3006716 – reference: Isler, V., Belta, C., Daniilidis, K., Pappas, G. J. (2004). Hybrid control for visibility-based pursuit-evasion games. In 2004 IEEE/RSJ international conference on intelligent robots and systems, Sendai, Japan, September 28–October 2, 2004 (pp. 1432–1437). – reference: BalkcomDJMasonMTTime optimal trajectories for bounded velocity differential drive vehiclesThe International Journal of Robotics Research200221319921710.1177/027836402320556403 – reference: LaValle, S. M., González-Banos, H., Becker, C., & Latombe, J. C. (1997). Motion strategies for maintaining visibility of a moving target. In Proceedings of international conference on robotics and automation, IEEE (pp. 731–736, Vol 1). – reference: Bertsekas, D. P. (1995). Dynamic programming and optimal control. Athena Scientific. – reference: Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., & Mishchenko, E. F. (1962). The mathematical theory of optimal processes. Wiley. – reference: Sarmiento, A., Murrieta-Cid, R., & Hutchinson, S. (2005). A sample-based convex cover for rapidly finding an object in a 3-d environment. In IEEE international conference on robotics and automation (ICRA) (pp. 3486–3491). – reference: GuibasLJLatombeJCLaValleSMLinDMotwaniRA visibility-based pursuit-evasion problemInternational Journal of Computational Geometry and Applications199994–5471493171233210.1142/S0218195999000273 – reference: TovarBLaValleSMVisibility-based pursuit-evasion with bounded speedThe International Journal of Robotics Research20082711–121350136010.1177/0278364908097580 – reference: Murrieta-CidRMuppiralaTSarmientoABhattacharyaSHutchinsonSSurveillance strategies for a pursuer with finite sensor rangeThe International Journal of Robotics Research200726323325310.1177/0278364907077083 – reference: Bhattacharya, S., Hutchinson, S., & Basar, T. (2009). Game-theoretic analysis of a visibility based pursuit-evasion game in the presence of obstacles. In 2009 American control conference (pp 373–378). – reference: Karaman, S., & Frazzoli, E. (2010). Incremental sampling-based algorithms for a class of pursuit-evasion games. In Algorithmic foundations of robotics IX—selected contributions of the ninth international workshop on the algorithmic foundations of robotics, WAFR 2010, Singapore, December 13–15, 2010 (pp. 71–87). – reference: Zou, R., & Bhattacharya, S. (2017). Approximation of capture sets in visibility-based target-tracking games for non-holonomic players. In Dynamic systems and control conference (p. V002T07A004, Vol. 58288). American Society of Mechanical Engineers. – reference: Xiao, S., Bergmann, N., & Postula, A. (2017). Parallel RRT* architecture design for motion planning. In International conference on field programmable logic and applications (FPL) (pp. 1–4). – reference: ZhiJHaoYVoCMoralesMLienJMComputing 3-d from-region visibility using visibility integrityIEEE Robotics and Automation Letters2019444286429110.1109/LRA.2019.2931280 – reference: BecerraIMurrieta-CidRMonroyRHutchinsonSLaumondJPMaintaining strong mutual visibility of an evader moving over the reduced visibility graphAutonomous Robots201640239542310.1007/s10514-015-9477-5 – reference: GerkeyBPThrunSGordonGVisibility-based pursuit-evasion with limited field of viewThe International Journal of Robotics Research200625429931510.1177/0278364906065023 – reference: MaciasVBecerraIMurrieta-CidRBecerraHMHutchinsonSImage feedback based optimal control and the value of information in a differential gameAutomatica201890271285376440810.1016/j.automatica.2017.12.045 – reference: LiYLittlefieldZBekrisKEAsymptotically optimal sampling-based kinodynamic planningThe International Journal of Robotics Research201635552856410.1177/0278364915614386 – reference: Guibas, L. J., Latombe, J. C., LaValle, S. M., Lin, D., & Motwani, R. (1997). Visibility-based pursuit-evasion in a polygonal environment. In Workshop on algorithms and data structures (pp. 17–30). Springer. – reference: Karaman, S. & Frazzoli, E. (2010). Optimal kinodynamic motion planning using incremental sampling-based methods. In IEEE conference on decision and control (pp. 7681–7687). – reference: Basar, T., & Olsder, G. (1999). Dynamic noncooperative game theory. SIAM Series in Classics in Applied Mathematics (2nd Ed.). Philadelphia. – reference: KaramanSFrazzoliESampling-based algorithms for optimal motion planningThe International Journal of Robotics Research201130784689410.1177/0278364911406761 – reference: Quattrini Li, A., Fioratto, R., Amigoni, F., & Isler, V. (2018). A search-based approach to solve pursuit-evasion games with limited visibility in polygonal environments. In Proceedings of the 17th international conference on autonomous agents and multi-agent systems (pp. 1693–1701). – reference: Friedman, A. (2006). Differential games. Dover Publications. – reference: Soueres, P., & Boissonnat, J. D. (1998). Optimal trajectories for nonholonomic mobile robots. In Robot motion planning and control (pp. 93–170). Springer. – reference: Stiffler, N. M., & O’Kane, J. M. (2020). Planning for robust visibility-based pursuit-evasion. In IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE (pp. 6641–6648). – reference: Bharadwaj, S., Ly, L., Wu, B., Tsai, R., & Topcu, U. (2019). Strategy synthesis for surveillance-evasion games with learning-enabled visibility optimization. In IEEE conference on decision and control (CDC) (pp. 6275–6281). – reference: ZouRBhattacharyaSOn optimal pursuit trajectories for visibility-based target-tracking gameIEEE Transactions on Robotics201935244946510.1109/TRO.2018.2882747 – reference: Laumond, J. P., et al. (1998). Robot motion planning and control (Vol. 229). Springer. – reference: Bhattacharya, S., & Hutchinson, S. (2009). On the existence of nash equilibrium for a two player pursuit-evasion game with visibility constraints. In Algorithmic foundation of robotics VIII (pp. 251–265). Springer. – reference: BhattacharyaSHutchinsonSA cell decomposition approach to visibility-based pursuit evasion among obstaclesThe International Journal of Robotics Research201130141709172710.1177/0278364911415885 – reference: Isaacs, R. (1965). Differential games: A mathematical theory with applications to warfare and pursuit, control and optimization. Courier Corporation. – ident: 10026_CR17 doi: 10.1007/978-3-642-17452-0_5 – ident: 10026_CR22 doi: 10.1007/BFb0036069 – volume: 35 start-page: 449 issue: 2 year: 2019 ident: 10026_CR39 publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2018.2882747 – ident: 10026_CR15 – volume: 9 start-page: 471 issue: 4–5 year: 1999 ident: 10026_CR13 publication-title: International Journal of Computational Geometry and Applications doi: 10.1142/S0218195999000273 – volume: 4 start-page: 4286 issue: 4 year: 2019 ident: 10026_CR37 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2019.2931280 – ident: 10026_CR31 doi: 10.1109/ROBOT.2005.1570649 – volume: 21 start-page: 199 issue: 3 year: 2002 ident: 10026_CR2 publication-title: The International Journal of Robotics Research doi: 10.1177/027836402320556403 – ident: 10026_CR21 – ident: 10026_CR6 doi: 10.1007/978-3-642-00312-7_16 – ident: 10026_CR14 doi: 10.1007/978-3-030-44051-0_5 – ident: 10026_CR28 – ident: 10026_CR18 doi: 10.1109/CDC.2010.5717430 – volume: 27 start-page: 1350 issue: 11–12 year: 2008 ident: 10026_CR34 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364908097580 – ident: 10026_CR4 – ident: 10026_CR1 doi: 10.1137/1.9781611971132 – ident: 10026_CR16 doi: 10.1109/IROS.2004.1389597 – ident: 10026_CR33 doi: 10.1109/IROS45743.2020.9341031 – volume: 30 start-page: 1709 issue: 14 year: 2011 ident: 10026_CR7 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364911415885 – ident: 10026_CR20 doi: 10.1109/ICRA.2013.6631297 – ident: 10026_CR10 doi: 10.1090/cbms/018 – volume: 35 start-page: 528 issue: 5 year: 2016 ident: 10026_CR24 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364915614386 – ident: 10026_CR35 doi: 10.23919/FPL.2017.8056773 – ident: 10026_CR38 doi: 10.1115/DSCC2017-5379 – ident: 10026_CR23 doi: 10.1109/ROBOT.1997.620122 – volume: 30 start-page: 846 issue: 7 year: 2011 ident: 10026_CR19 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364911406761 – volume: 90 start-page: 271 year: 2018 ident: 10026_CR25 publication-title: Automatica doi: 10.1016/j.automatica.2017.12.045 – volume: 26 start-page: 233 issue: 3 year: 2007 ident: 10026_CR26 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364907077083 – ident: 10026_CR27 – volume: 29 start-page: 1180 issue: 5 year: 2013 ident: 10026_CR30 publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2013.2264868 – ident: 10026_CR12 doi: 10.1007/3-540-63307-3_45 – volume: 45 start-page: 283 issue: 2 year: 2021 ident: 10026_CR36 publication-title: Autonomous Robots doi: 10.1007/s10514-020-09963-4 – ident: 10026_CR5 doi: 10.1109/CDC40024.2019.9029426 – ident: 10026_CR8 doi: 10.1109/ACC.2009.5160610 – volume: 31 start-page: 299 issue: 4 year: 2011 ident: 10026_CR9 publication-title: Autonomous Robots doi: 10.1007/s10514-011-9241-4 – ident: 10026_CR32 doi: 10.1007/BFb0036072 – volume: 40 start-page: 395 issue: 2 year: 2016 ident: 10026_CR3 publication-title: Autonomous Robots doi: 10.1007/s10514-015-9477-5 – volume: 37 start-page: 48 issue: 1 year: 2020 ident: 10026_CR29 publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2020.3006716 – volume: 25 start-page: 299 issue: 4 year: 2006 ident: 10026_CR11 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364906065023 |
| SSID | ssj0009700 |
| Score | 2.4429274 |
| Snippet | In this paper, a visibility-based pursuit-evasion game in an environment with obstacles is addressed. A pursuer wants to maintain the visibility of an evader... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 349 |
| SubjectTerms | Artificial Intelligence Barriers Computer Imaging Control Differential games Engineering Game theory Mechatronics Pattern Recognition and Graphics Players Pursuit-evasion games Robotics Robotics and Automation Robots Surveillance Visibility Vision |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DTDwRhQK8sAGFkmTOPGEKkTFgBADoIolsh0bVYKkNGkR_5674JKCRBeyOjlZOdv33fm-O0JOIj-Jpe9pcHLCDBwU8FlFwg1TRnmKCxPoOuX_8Sa-vU36fXHnAm6lS6ucnon1QZ0VGmPk5x0ewCMA0F4M3xh2jcLbVddCY5EsY5UEbN1wFz01RXcdBQUgAAPkHDjSjKPOAVRgmKCARUg5i34apgZt_rogre1Ob-O_M94k6w5x0u7XEtkiCybfJmszdQh3iO1S5JjXebIfDA1bRofjUTkeVMxMJAbU6LN8NdRlddHqvaB5kePJWdOa6ahQRVXSQU5nmXMUo7y0UIBAMflulzz0ru4vr5lrwMA07MyKgS-nZcfaSAIM0kliM50JXwZcAGwwNo6FFMqLdNbxQyU8rjnCqURym2SxtX6wR5ZgMmafUK6ljUMYCD0LdlOoAGQmMvOUtqEnwxbxp38_1a46OTbJeEmbusqosRQ0ltYaS6MWOf3-ZvhVm2Pu2-2pmlK3T8u00VGLnE0V3Qz_Le1gvrRDstpBnkSd3t0mS9VobI7Iip5Ug3J0XK_ST6m37Uo priority: 102 providerName: ProQuest |
| Title | A visibility-based pursuit-evasion game between two nonholonomic robots in environments with obstacles |
| URI | https://link.springer.com/article/10.1007/s10514-021-10026-5 https://www.proquest.com/docview/2633339049 |
| Volume | 46 |
| WOSCitedRecordID | wos000743430700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7527 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009700 issn: 0929-5593 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o5kEPfovzY-TgTQPt2qbNccrEg4zhVMRLSdJEBrqOtZv43_vStW6KCtpDL01DePl47yW_3y8AJ4EbhcJ1FCY5foIJCuasPGKaSi0dybj2VAH5v78Ou93o4YH3SlJYVqHdqyPJYqVeILuhc6cWUmBlQxkNlqEeWLUZm6P37-dSuyXxBB0_xXjZK6ky39fx2R3NY8wvx6KFt7nc-F87N2G9jC5JezYctmBJD7dhbUFzcAdMm1g-eYGJfaPWiSVkNBlnk0FO9VTYzTPyJF40KRFcJH9NyTAd2lWyoDCTcSrTPCODIVlkyRG7o0tSidGmBdrtwt1l5_biipaXLVCFszCnmLcp0TImEBjyqCgyiUq4KzzGMUTQJgy54NIJVNJyfckdppgNnSLBTJSExrjeHtSwMXofCFPChD5-8B2DPpJLD-uMROJIZXxH-A1wK5vHqlQitxdiPMdzDWVrwxhtGBc2jIMGnH78M5rpcPxa-qjqyrick1ncYh4-HFOiBpxVXTf__HNtB38rfgirLcuRKKDdR1DLxxN9DCtqmg-ycRPq551u76ZpQaZ9fPeCx2Yxft8BIMTmlQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RbaWWQx88xFJofWhP1CJPJz5UCEERiO2KA61QL8F2bLRS2SybLIg_xW_sTDZpaKVy49BcnVhJ_NnzjT3fDMCH2E8T5XsGnZwoRwcFfVaZCsu11Z4W0oamDvn_PkiGw_TsTJ4swF2rhaGwynZNrBfqvDC0R74diBAviYR2Z3LFqWoUna62JTTmsDi2tzfospWfj_ZxfD8GwcGX071D3lQV4AbhVnF0UIwKnIsV2naTpi43ufRVKCTaQuuSRCqpvdjkgR9p6QkjiCOkSrg0T5zzQ-z3CTyNosCjigkn8Y8uyW8jeUHKwZGph41Ip5HqITXhFBBBSU8Fj_80hB27_etAtrZzB6_-tz_0Gl42jJrtzqfAG1iw4yVYvJdncRncLiMNfR0HfMvJcOdsMpuWs1HF7bWiDUN2oS4ta6LWWHVTsHExJstQy7bZtNBFVbLRmN1XBjLaxWaFRoZNwYUr8O1RPnQVevgydg2YMMolETZEnkNeIHWIfaYq97RxkaeiPvjtaGemyb5ORUB-Zl3eaEJIhgjJaoRkcR-2fj8zmeceefDujRYWWbMOlVmHiT58aoHVNf-7t_WHe3sPzw9Pvw6ywdHw-C28CEgTUoeyb0Cvms7sJjwz19WonL6rZwiD88cG3C-_XkoN |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB3BUqH2QAtt1W0p9QFOYG0-nfhQISisikCrVQWIW2o7drUSbLabLIi_1l_XcdYhUAluHJqrEyuJnz1v7DczAJuxnybC9xQ6OVGODgr6rDxlmkotPcm4DlUt-T8_SQaD9OKCDxfgTxMLY2WVzZpYL9R5oeweeS9gIV4cCW3POFnE8KC_O_lNbQUpe9LalNOYQ-RY396g-1Z-PTrAsd4Kgv7h6bfv1FUYoAqhV1F0VpQIjIkF2nmVpiZXOfdFyDjaRW2ShAsuvVjlgR9J7jHFLF9IBTNpnhjjh9jvIiwlITo9HVjaPxwMf7Qpf10ADBIQirw9dCE7LnAPiQq18gibApXR-KFZbLnuP8eztdXrv_6f_9cbWHFcm-zNJ8cqLOjxGry6l4HxLZg9YqPra4XwLbUmPSeT2bScjSqqr4XdSiS_xJUmTs9GqpuCjIuxtRl1QDeZFrKoSjIak_sxg8Tub5NCIve2ssN3cPYsH_oeOvgy-gMQpoRJImyIPIOMgcsQ-0xF7kllIk9EXfCbkc-Uy8tuy4NcZm1GaYuWDNGS1WjJ4i5s3z0zmWclefLu9QYimVuhyqzFRxd2GpC1zY_39vHp3r7AMuIsOzkaHH-Cl4ENFqk17uvQqaYz_RleqOtqVE433HQh8PO5EfcXtotUDg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+visibility-based+pursuit-evasion+game+between+two+nonholonomic+robots+in+environments+with+obstacles&rft.jtitle=Autonomous+robots&rft.au=Lozano%2C+Eliezer&rft.au=Becerra%2C+Israel&rft.au=Ruiz%2C+Ubaldo&rft.au=Bravo%2C+Luis&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=46&rft.issue=2&rft.spage=349&rft.epage=371&rft_id=info:doi/10.1007%2Fs10514-021-10026-5&rft.externalDocID=10_1007_s10514_021_10026_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon |