Decentralized Optimization Over Tree Graphs

This paper presents a decentralized algorithm for non-convex optimization over tree-structured networks. We assume that each node of this network can solve small-scale optimization problems and communicate approximate value functions with its neighbors based on a novel multi-sweep communication prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 189; H. 2; S. 384 - 407
Hauptverfasser: Jiang, Yuning, Kouzoupis, Dimitris, Yin, Haoyu, Diehl, Moritz, Houska, Boris
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2021
Springer Nature B.V
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a decentralized algorithm for non-convex optimization over tree-structured networks. We assume that each node of this network can solve small-scale optimization problems and communicate approximate value functions with its neighbors based on a novel multi-sweep communication protocol. In contrast to existing parallelizable optimization algorithms for non-convex optimization, the nodes of the network are neither synchronized nor assign any central entity. None of the nodes needs to know the whole topology of the network, but all nodes know that the network is tree-structured. We discuss conditions under which locally quadratic convergence rates can be achieved. The method is illustrated by running the decentralized asynchronous multi-sweep protocol on a radial AC power network case study.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-021-01828-9