Joint patch clustering-based adaptive dictionary and sparse representation for multi-modality image fusion

For the image fusion method using sparse representation, the adaptive dictionary and fusion rule have a great influence on the multi-modality image fusion, and the maximum L 1 norm fusion rule may cause gray inconsistency in the fusion result. In order to solve this problem, we proposed an improved...

Full description

Saved in:
Bibliographic Details
Published in:Machine vision and applications Vol. 33; no. 5
Main Authors: Wang, Chang, Wu, Yang, Yu, Yi, Zhao, Jun Qiang
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Springer Nature B.V
Subjects:
ISSN:0932-8092, 1432-1769
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For the image fusion method using sparse representation, the adaptive dictionary and fusion rule have a great influence on the multi-modality image fusion, and the maximum L 1 norm fusion rule may cause gray inconsistency in the fusion result. In order to solve this problem, we proposed an improved multi-modality image fusion method by combining the joint patch clustering-based adaptive dictionary and sparse representation in this study. First, we used a Gaussian filter to separate the high- and low-frequency information. Second, we adopted the local energy-weighted strategy to complete the low-frequency fusion. Third, we used the joint patch clustering algorithm to reconstruct an over-complete adaptive learning dictionary, designed a hybrid fusion rule depending on the similarity of multi-norm of sparse representation coefficients, and completed the high-frequency fusion. Last, we obtained the fusion result by transforming the frequency domain into the spatial domain. We adopted the fusion metrics to evaluate the fusion results quantitatively and proved the superiority of the proposed method by comparing the state-of-the-art image fusion methods. The results showed that this method has the highest fusion metrics in average gradient, general image quality, and edge preservation. The results also showed that this method has the best performance in subjective vision. We demonstrated that this method has strong robustness by analyzing the parameter’s influence on the fusion result and consuming time. We extended this method to the infrared and visible image fusion and multi-focus image fusion perfectly. In summary, this method has the advantages of good robustness and wide application.
AbstractList For the image fusion method using sparse representation, the adaptive dictionary and fusion rule have a great influence on the multi-modality image fusion, and the maximum L 1 norm fusion rule may cause gray inconsistency in the fusion result. In order to solve this problem, we proposed an improved multi-modality image fusion method by combining the joint patch clustering-based adaptive dictionary and sparse representation in this study. First, we used a Gaussian filter to separate the high- and low-frequency information. Second, we adopted the local energy-weighted strategy to complete the low-frequency fusion. Third, we used the joint patch clustering algorithm to reconstruct an over-complete adaptive learning dictionary, designed a hybrid fusion rule depending on the similarity of multi-norm of sparse representation coefficients, and completed the high-frequency fusion. Last, we obtained the fusion result by transforming the frequency domain into the spatial domain. We adopted the fusion metrics to evaluate the fusion results quantitatively and proved the superiority of the proposed method by comparing the state-of-the-art image fusion methods. The results showed that this method has the highest fusion metrics in average gradient, general image quality, and edge preservation. The results also showed that this method has the best performance in subjective vision. We demonstrated that this method has strong robustness by analyzing the parameter’s influence on the fusion result and consuming time. We extended this method to the infrared and visible image fusion and multi-focus image fusion perfectly. In summary, this method has the advantages of good robustness and wide application.
For the image fusion method using sparse representation, the adaptive dictionary and fusion rule have a great influence on the multi-modality image fusion, and the maximum L1 norm fusion rule may cause gray inconsistency in the fusion result. In order to solve this problem, we proposed an improved multi-modality image fusion method by combining the joint patch clustering-based adaptive dictionary and sparse representation in this study. First, we used a Gaussian filter to separate the high- and low-frequency information. Second, we adopted the local energy-weighted strategy to complete the low-frequency fusion. Third, we used the joint patch clustering algorithm to reconstruct an over-complete adaptive learning dictionary, designed a hybrid fusion rule depending on the similarity of multi-norm of sparse representation coefficients, and completed the high-frequency fusion. Last, we obtained the fusion result by transforming the frequency domain into the spatial domain. We adopted the fusion metrics to evaluate the fusion results quantitatively and proved the superiority of the proposed method by comparing the state-of-the-art image fusion methods. The results showed that this method has the highest fusion metrics in average gradient, general image quality, and edge preservation. The results also showed that this method has the best performance in subjective vision. We demonstrated that this method has strong robustness by analyzing the parameter’s influence on the fusion result and consuming time. We extended this method to the infrared and visible image fusion and multi-focus image fusion perfectly. In summary, this method has the advantages of good robustness and wide application.
ArticleNumber 69
Author Wu, Yang
Zhao, Jun Qiang
Yu, Yi
Wang, Chang
Author_xml – sequence: 1
  givenname: Chang
  surname: Wang
  fullname: Wang, Chang
  organization: The Third Affiliated Hospital of Xinxiang Medical University, School of Medical Engineering, Xinxiang Medical University, Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis
– sequence: 2
  givenname: Yang
  surname: Wu
  fullname: Wu, Yang
  organization: School of Medical Engineering, Xinxiang Medical University, Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis
– sequence: 3
  givenname: Yi
  surname: Yu
  fullname: Yu, Yi
  organization: School of Medical Engineering, Xinxiang Medical University, Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis
– sequence: 4
  givenname: Jun Qiang
  surname: Zhao
  fullname: Zhao, Jun Qiang
  email: 280905788@qq.com
  organization: School of Medical Engineering, Xinxiang Medical University
BookMark eNp9kE1LxDAQhoMouK7-AU8Bz9F8dNv0KIufLHjRc0jTyZqlm9YkVfbfm7WC4GEvycDMk7zznKFj33tA6JLRa0ZpdRMpZUISyjnJRT6_jtCMFYITVpX1MZrROteS1vwUncW4oZQWVVXM0Oa5dz7hQSfzjk03xgTB-TVpdIQW61YPyX0Cbp1Jrvc67LD2LY6DDhFwgCFABJ_0voltH_B27JIj277VnUs77LZ6DdiOMffP0YnVXYSL33uO3u7vXpePZPXy8LS8XREjWJ0IKy0zvDGskBIamXPmrMzKEnQjhGl1QaWm7WJRctYAlXVdWmmq0hoDUAku5uhqencI_ccIMalNPwafv1S8rHlRlVLWeUpOUyb0MQawyrhpjxS06xSjam9WTWZVNqt-zKqvjPJ_6BDyomF3GBITFIe9YAh_qQ5Q32adkEI
CitedBy_id crossref_primary_10_1371_journal_pone_0290231
crossref_primary_10_1007_s10489_023_04692_4
crossref_primary_10_1016_j_image_2024_117213
crossref_primary_10_1016_j_optlastec_2025_113640
crossref_primary_10_3390_s23062888
crossref_primary_10_3389_fphy_2023_1214206
crossref_primary_10_3390_rs15102486
crossref_primary_10_1016_j_optcom_2024_130441
crossref_primary_10_1016_j_imavis_2024_105210
Cites_doi 10.1007/s11831-021-09540-7
10.1109/TIM.2009.2026612
10.1109/ICIP.2013.6738268
10.1016/j.inffus.2015.03.003
10.1166/jmihi.2019.2669
10.1016/j.inffus.2007.04.003
10.1016/j.inffus.2016.12.009
10.1109/JSTSP.2011.2112332
10.1016/j.inffus.2013.12.002
10.1364/AO.55.001814
10.1016/S1874-1029(08)60174-3
10.1016/j.inffus.2006.04.001
10.1016/j.infrared.2014.04.003
10.1117/12.235981
10.1016/j.inffus.2010.03.002
10.1016/j.neucom.2014.07.003
10.1016/j.inffus.2018.02.004(2019)
10.1016/j.asoc.2016.03.028
10.1016/j.inffus.2014.10.004
10.1109/TSP.2006.881199
10.1109/ICME.2017.8019435
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00138-022-01322-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1432-1769
ExternalDocumentID 10_1007_s00138_022_01322_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-16f1c2bc1488eb80470041f86eab33cda408a0d55621be08996f8c76fccee7323
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000828546500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0932-8092
IngestDate Wed Nov 05 09:07:14 EST 2025
Sat Nov 29 03:17:33 EST 2025
Tue Nov 18 22:18:25 EST 2025
Fri Feb 21 02:44:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Adaptive learning dictionary
Sparse representation
Multi-modality
Fusion metric
Image fusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-16f1c2bc1488eb80470041f86eab33cda408a0d55621be08996f8c76fccee7323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2692476889
PQPubID 2043753
ParticipantIDs proquest_journals_2692476889
crossref_citationtrail_10_1007_s00138_022_01322_w
crossref_primary_10_1007_s00138_022_01322_w
springer_journals_10_1007_s00138_022_01322_w
PublicationCentury 2000
PublicationDate 20220900
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 9
  year: 2022
  text: 20220900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: New York
PublicationTitle Machine vision and applications
PublicationTitleAbbrev Machine Vision and Applications
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Zhang, Q., Liu, Y., Blum, R.S. et al.: Sparse representation based multi-sensor image fusion: a review, Inf. Fusion, S1566253517301136 (2017).
A.J. Keith, A. J., AlexBecker, J.: The Whole Brain Atlas on CD-ROM, 1999, Amsterdam, Holland, Lippincott Williams & Wilkins.
JamesAPDasarathyBVMedical image fusion: A survey of the state of the artInf. Fusion20141941910.1016/j.inffus.2013.12.002
XuXShanDWangGMultimodal medical image fusion using PCNN optimized by the QPSO algorithmAppl. Soft Comput.20164858859510.1016/j.asoc.2016.03.028
YangBLiSMulti focus image fusion and restoration with sparse representationIEEE Trans. Instrum. Meas.201059488489210.1109/TIM.2009.2026612
KimMHanDKKoHMultimodal image fusion via sparse representation with local patch dictionariesIEEE Int. Conf. Image Process.201320131301130510.1109/ICIP.2013.6738268
Ma, J., Ma, Y., Li, C.: Infrared and visible image fusion methods and applications: a survey. Inf. Fusion, https://doi.org/10.1016/j.inffus.2018.02.004(2019).
YuNQiuTBiFWangAImage features extraction and fusion based on joint sparse representationIEEE J. Select. Topics Signal Process.2011551074108210.1109/JSTSP.2011.2112332
Kaur H, Koundal D, Kadyan V.: Image fusion techniques: a survey. Arch. Comput. Methods Eng., https://doi.org/10.1007/s11831-021-09540-7 (2021).
LiYLiFYBaiBDImage fusion via nonlocal sparse K-SVD dictionary learningAppl. Opt.2016551814182310.1364/AO.55.001814
KimMHanDKKoHJoint patch clustering-based dictionary learning for multimodal image fusionInf. Fusion20162719821410.1016/j.inffus.2015.03.003
Piella, G., Heijmans, H.: A new quality metric for image fusion, Proceedings of 10th International Conference on Image Processing, Barcelona, Spain, 173–176 (2003).
WangQNieRCZhouDMJinXHeKJYuJFImage fusion algorithm using PCNN model parameters of multi-objective particle swarm optimizationJ. Image Graph.201621112951306
Shen, Y., Xiong, H., Dai, W.: Multiscale dictionary learning for hierarchical sparse representation, IEEE International Conference on Multimedia & Expo. IEEE (2017).
Li, T.: Research on multi sensor image information fusion method and application, Central South University (2001).
AharonMEladMBrucksteinAK-SVD: an algorithm for designing over complete dictionaries for sparse representationIEEE Trans. Signal Process.200654114311432210.1109/TSP.2006.881199
WangZMaYMedical image fusion using m-PCNNInf. Fusion200892176185393756610.1016/j.inffus.2007.04.003
BroussardRPRogersSKPhysiologically motivated image fusion using pulse-coupled neural networksProc. Appl. Sci. Artif. Neural Netw.1996II37238410.1117/12.235981
WangCZhaoZZRenQQMulti-modality anatomical and functional medical image fusion based on simplified-spatial frequency-pulse coupled neural networks and region energy-weighted average strategy in non-sub sampled contourlet transform domainJ. Med. Imag. Health Inf.201991017102710.1166/jmihi.2019.2669
EckhornRReitbockHJArndtMDickePA neural network for feature linking via synchronous activity: results from cat visual cortex and from simulationsCan. J. Microbiol.1989468759763
YinHTSparse representation with learned multiscale dictionary for image fusionNeurocomputing201514860061010.1016/j.neucom.2014.07.003
Alexander, T.: TNO Image Fusion Dataset. figshare. Dataset. 2014, 10.6084/m9.figshare.1008029.v1
LiSYangBHuJPerformance comparison of different multi-resolution transforms for image fusionInf. Fusion2011122748410.1016/j.inffus.2010.03.002
NejatiMSamaviSShiraniSMulti-focus Image Fusion Using Dictionary-Based Sparse Representation [J]Information Fusion201525728410.1016/j.inffus.2014.10.004
ZhangJYLiangJLImage fusion based on pulse-coupled neural networks [J]Computer Simulation2004211102104
QuXBImage fusion algorithm based on spatial frequency motivated pulse coupled neural networks in NSCT domainACTA AUTOM ATICA SINICA2008341508151410.1016/S1874-1029(08)60174-3
KongWWZhangLJLeiYNovel fusion method for visible light and infrared images based on NSST–SF–PCNNInfr. Phys. Technol.201465110311210.1016/j.infrared.2014.04.003
GoshtasbyANikolovSImage fusion: advances in the state of the artInf. Fusion20078211411810.1016/j.inffus.2006.04.001
NejatiMSamaviSKarimiNSurface area-based focus criterion for multi-focus image fusionInf. Fusion2017361528429510.1016/j.inffus.2016.12.009
XinLGWangRLWangGYRemote Sensing Image Fusion based on DCTAppl. Res. Comput.2005022004242243
AP James (1322_CR4) 2014; 19
M Kim (1322_CR25) 2013; 2013
1322_CR18
B Yang (1322_CR19) 2010; 59
HT Yin (1322_CR20) 2015; 148
JY Zhang (1322_CR10) 2004; 21
M Nejati (1322_CR6) 2017; 36
C Wang (1322_CR14) 2019; 9
M Nejati (1322_CR30) 2015; 25
RP Broussard (1322_CR8) 1996; II
Z Wang (1322_CR13) 2008; 9
S Li (1322_CR5) 2011; 12
N Yu (1322_CR17) 2011; 5
M Aharon (1322_CR22) 2006; 54
1322_CR27
1322_CR26
Y Li (1322_CR23) 2016; 55
1322_CR29
1322_CR28
M Kim (1322_CR24) 2016; 27
X Xu (1322_CR15) 2016; 48
A Goshtasby (1322_CR2) 2007; 8
1322_CR3
LG Xin (1322_CR21) 2005; 022
1322_CR1
Q Wang (1322_CR16) 2016; 21
R Eckhorn (1322_CR7) 1989; 46
1322_CR9
XB Qu (1322_CR11) 2008; 34
WW Kong (1322_CR12) 2014; 65
References_xml – reference: Zhang, Q., Liu, Y., Blum, R.S. et al.: Sparse representation based multi-sensor image fusion: a review, Inf. Fusion, S1566253517301136 (2017).
– reference: LiSYangBHuJPerformance comparison of different multi-resolution transforms for image fusionInf. Fusion2011122748410.1016/j.inffus.2010.03.002
– reference: XinLGWangRLWangGYRemote Sensing Image Fusion based on DCTAppl. Res. Comput.2005022004242243
– reference: QuXBImage fusion algorithm based on spatial frequency motivated pulse coupled neural networks in NSCT domainACTA AUTOM ATICA SINICA2008341508151410.1016/S1874-1029(08)60174-3
– reference: LiYLiFYBaiBDImage fusion via nonlocal sparse K-SVD dictionary learningAppl. Opt.2016551814182310.1364/AO.55.001814
– reference: KimMHanDKKoHJoint patch clustering-based dictionary learning for multimodal image fusionInf. Fusion20162719821410.1016/j.inffus.2015.03.003
– reference: A.J. Keith, A. J., AlexBecker, J.: The Whole Brain Atlas on CD-ROM, 1999, Amsterdam, Holland, Lippincott Williams & Wilkins.
– reference: KimMHanDKKoHMultimodal image fusion via sparse representation with local patch dictionariesIEEE Int. Conf. Image Process.201320131301130510.1109/ICIP.2013.6738268
– reference: Shen, Y., Xiong, H., Dai, W.: Multiscale dictionary learning for hierarchical sparse representation, IEEE International Conference on Multimedia & Expo. IEEE (2017).
– reference: YinHTSparse representation with learned multiscale dictionary for image fusionNeurocomputing201514860061010.1016/j.neucom.2014.07.003
– reference: ZhangJYLiangJLImage fusion based on pulse-coupled neural networks [J]Computer Simulation2004211102104
– reference: Kaur H, Koundal D, Kadyan V.: Image fusion techniques: a survey. Arch. Comput. Methods Eng., https://doi.org/10.1007/s11831-021-09540-7 (2021).
– reference: WangQNieRCZhouDMJinXHeKJYuJFImage fusion algorithm using PCNN model parameters of multi-objective particle swarm optimizationJ. Image Graph.201621112951306
– reference: Alexander, T.: TNO Image Fusion Dataset. figshare. Dataset. 2014, 10.6084/m9.figshare.1008029.v1
– reference: EckhornRReitbockHJArndtMDickePA neural network for feature linking via synchronous activity: results from cat visual cortex and from simulationsCan. J. Microbiol.1989468759763
– reference: JamesAPDasarathyBVMedical image fusion: A survey of the state of the artInf. Fusion20141941910.1016/j.inffus.2013.12.002
– reference: KongWWZhangLJLeiYNovel fusion method for visible light and infrared images based on NSST–SF–PCNNInfr. Phys. Technol.201465110311210.1016/j.infrared.2014.04.003
– reference: BroussardRPRogersSKPhysiologically motivated image fusion using pulse-coupled neural networksProc. Appl. Sci. Artif. Neural Netw.1996II37238410.1117/12.235981
– reference: Piella, G., Heijmans, H.: A new quality metric for image fusion, Proceedings of 10th International Conference on Image Processing, Barcelona, Spain, 173–176 (2003).
– reference: WangCZhaoZZRenQQMulti-modality anatomical and functional medical image fusion based on simplified-spatial frequency-pulse coupled neural networks and region energy-weighted average strategy in non-sub sampled contourlet transform domainJ. Med. Imag. Health Inf.201991017102710.1166/jmihi.2019.2669
– reference: YuNQiuTBiFWangAImage features extraction and fusion based on joint sparse representationIEEE J. Select. Topics Signal Process.2011551074108210.1109/JSTSP.2011.2112332
– reference: NejatiMSamaviSKarimiNSurface area-based focus criterion for multi-focus image fusionInf. Fusion2017361528429510.1016/j.inffus.2016.12.009
– reference: Li, T.: Research on multi sensor image information fusion method and application, Central South University (2001).
– reference: WangZMaYMedical image fusion using m-PCNNInf. Fusion200892176185393756610.1016/j.inffus.2007.04.003
– reference: YangBLiSMulti focus image fusion and restoration with sparse representationIEEE Trans. Instrum. Meas.201059488489210.1109/TIM.2009.2026612
– reference: AharonMEladMBrucksteinAK-SVD: an algorithm for designing over complete dictionaries for sparse representationIEEE Trans. Signal Process.200654114311432210.1109/TSP.2006.881199
– reference: GoshtasbyANikolovSImage fusion: advances in the state of the artInf. Fusion20078211411810.1016/j.inffus.2006.04.001
– reference: Ma, J., Ma, Y., Li, C.: Infrared and visible image fusion methods and applications: a survey. Inf. Fusion, https://doi.org/10.1016/j.inffus.2018.02.004(2019).
– reference: XuXShanDWangGMultimodal medical image fusion using PCNN optimized by the QPSO algorithmAppl. Soft Comput.20164858859510.1016/j.asoc.2016.03.028
– reference: NejatiMSamaviSShiraniSMulti-focus Image Fusion Using Dictionary-Based Sparse Representation [J]Information Fusion201525728410.1016/j.inffus.2014.10.004
– ident: 1322_CR29
– ident: 1322_CR27
– ident: 1322_CR1
  doi: 10.1007/s11831-021-09540-7
– volume: 59
  start-page: 884
  issue: 4
  year: 2010
  ident: 1322_CR19
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2026612
– volume: 2013
  start-page: 1301
  year: 2013
  ident: 1322_CR25
  publication-title: IEEE Int. Conf. Image Process.
  doi: 10.1109/ICIP.2013.6738268
– volume: 21
  start-page: 1295
  issue: 1
  year: 2016
  ident: 1322_CR16
  publication-title: J. Image Graph.
– volume: 27
  start-page: 198
  year: 2016
  ident: 1322_CR24
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2015.03.003
– volume: 46
  start-page: 759
  issue: 8
  year: 1989
  ident: 1322_CR7
  publication-title: Can. J. Microbiol.
– volume: 9
  start-page: 1017
  year: 2019
  ident: 1322_CR14
  publication-title: J. Med. Imag. Health Inf.
  doi: 10.1166/jmihi.2019.2669
– volume: 9
  start-page: 176
  issue: 2
  year: 2008
  ident: 1322_CR13
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2007.04.003
– volume: 36
  start-page: 284
  issue: 15
  year: 2017
  ident: 1322_CR6
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.12.009
– ident: 1322_CR18
– volume: 5
  start-page: 1074
  issue: 5
  year: 2011
  ident: 1322_CR17
  publication-title: IEEE J. Select. Topics Signal Process.
  doi: 10.1109/JSTSP.2011.2112332
– volume: 19
  start-page: 4
  year: 2014
  ident: 1322_CR4
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2013.12.002
– volume: 022
  start-page: 242
  issue: 004
  year: 2005
  ident: 1322_CR21
  publication-title: Appl. Res. Comput.
– volume: 55
  start-page: 1814
  year: 2016
  ident: 1322_CR23
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.001814
– ident: 1322_CR28
– volume: 21
  start-page: 102
  issue: 1
  year: 2004
  ident: 1322_CR10
  publication-title: Computer Simulation
– volume: 34
  start-page: 1508
  year: 2008
  ident: 1322_CR11
  publication-title: ACTA AUTOM ATICA SINICA
  doi: 10.1016/S1874-1029(08)60174-3
– volume: 8
  start-page: 114
  issue: 2
  year: 2007
  ident: 1322_CR2
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2006.04.001
– volume: 65
  start-page: 103
  issue: 1
  year: 2014
  ident: 1322_CR12
  publication-title: Infr. Phys. Technol.
  doi: 10.1016/j.infrared.2014.04.003
– volume: II
  start-page: 372
  year: 1996
  ident: 1322_CR8
  publication-title: Proc. Appl. Sci. Artif. Neural Netw.
  doi: 10.1117/12.235981
– ident: 1322_CR9
– volume: 12
  start-page: 74
  issue: 2
  year: 2011
  ident: 1322_CR5
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2010.03.002
– volume: 148
  start-page: 600
  year: 2015
  ident: 1322_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.07.003
– ident: 1322_CR3
  doi: 10.1016/j.inffus.2018.02.004(2019)
– volume: 48
  start-page: 588
  year: 2016
  ident: 1322_CR15
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.03.028
– volume: 25
  start-page: 72
  year: 2015
  ident: 1322_CR30
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2014.10.004
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 1322_CR22
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– ident: 1322_CR26
  doi: 10.1109/ICME.2017.8019435
SSID ssj0004774
Score 2.3739834
Snippet For the image fusion method using sparse representation, the adaptive dictionary and fusion rule have a great influence on the multi-modality image fusion, and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Adaptive learning
Algorithms
Clustering
Communications Engineering
Computer Science
Computer vision
Dictionaries
Image processing
Image Processing and Computer Vision
Image quality
Infrared imagery
Machine learning
Networks
Original Paper
Pattern Recognition
Representations
Robustness
Vision systems
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BYYCBQgFRvuSBDSwaJ02cCSFEhRgqJEBiixx_iCKalqal4t9zdp0WkGBhdmxFefbdi-_uHcBJO41aYWQbmrCc0ciIiCIrymmqpVI8MUj5jWs2kXS7_OkpvfMXbqVPq6xsojPUaiDtHfk5i3EacmOeXgzfqO0aZaOrvoXGMqxYlYTApe7dL-oik5kKM3IUtMQp80UzrnTOheiozWV30QY6_e6YFmzzR4DU-Z1O_b9vvAkbnnGSy9kW2YIlXTSg7tkn8We7bMD6F2nCbXi5HfSKMRmipX4m8nVi9RRwgFqvp4hQYmjtJFE9VxchRh9EFIqgeRqVmjilzKqqqSDIi4lLXKT9gXK8n_T6aMeImdi7uh147Fw_XN1Q35eBSjywYxrEJpAsl_gnxXXO8TNb1S7DYy3yMJRKRC0uWqqN1CrItY0rxobLJDYSPXISsnAXasWg0HtAeMzzNFQm1dxEqeS5CJk2obHBQc1aSROCCpRMetFy2zvjNZvLLTsgMwQyc0Bm0yaczucMZ5Idfz59WKGX-eNbZgvomnBW4b8Y_n21_b9XO4A15raczVE7hNp4NNFHsCrfx71ydOw27ydGjfZI
  priority: 102
  providerName: ProQuest
Title Joint patch clustering-based adaptive dictionary and sparse representation for multi-modality image fusion
URI https://link.springer.com/article/10.1007/s00138-022-01322-w
https://www.proquest.com/docview/2692476889
Volume 33
WOSCitedRecordID wos000828546500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-1769
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004774
  issn: 0932-8092
  databaseCode: P5Z
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-1769
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004774
  issn: 0932-8092
  databaseCode: M7S
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-1769
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004774
  issn: 0932-8092
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1432-1769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004774
  issn: 0932-8092
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBRwFRHpUHNrDUOmnijICKEENV8VLFEjl-iKI2rZqWin_P2U1aQIAESwbbsaKzffc5d_cdwEkj8muebwuasIRR3wifIipKaKSlUjw0CPmNKzYRtlq804naeVJYVkS7Fy5Jp6nnyW7OqUZt9LnzD9DpMqygueO2YMPt3eMiGzKccS8jMkH9G7E8Veb7OT6bowXG_OIWddbmavN_37kFGzm6JOez7bANSzotw2aONEl-jjNsKoo5FG1lWP_ATLgDLzeDbjomQ1TUz0T2JpZOATuoNXqKCCWGVk0S1XVpEWL0RkSqCGqnUaaJI8oskppSgrCYuLhF2h8oB_tJt49qjJiJ_VW3Cw9XzfvLa5qXZaASz-uY1gNTlyyReJHiOuEob0vaZXigReJ5Ugm_xkVNNRBZ1RNt3YqB4TIMjESDHHrM24NSOkj1PhAe8CTylIk0N34keSI8po1nrG9Qs1pYgXqxOrHMOctt6YxePGdbdtKOUdqxk3Y8rcDp_J3hjLHj19FHxaLH-enNYhbgFsV7GI8qcFYs8qL759kO_jb8ENaY2yc2ZO0ISuPRRB_Dqnwdd7NRFVYumq32bdWGo97hs914qrqd_g7s3PZ8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hqNRygEKLWB7FBzhRq4mTTewDQgiKeK6QAIlb6vihbgXZZbPLav8Uv5GxN2HbSnDjwNmxpSSfZz57Zr4B2GyKOIhi19CE5YzGVsYUWVFOhVFa89Qi5be-2UTaavGbG3ExBY91LYxLq6xtojfUuqPcHfkPluA05MZc7Hbvqesa5aKrdQuNMSxOzWiIR7Zy5_gA_-8WY4c_r_aPaNVVgCqEW5-GiQ0VyxWeA7jJeRA7gffQ8sTIPIqUlnHAZaCbSAzC3LioWGK5ShOr0J-kkRM6QJM_gzSCCZ8qeDmpw0zHqs_IidDyC1YV6fhSPR8SpC533kc36PBfRzhht_8FZL2fO5x_b1_oM8xVjJrsjbfAAkyZYhHmK3ZNKttVLsLsX9KLX-DPSadd9EkXPdFvom4HTi8CB6jz6ppILbvODxDd9nUfsjcistAEzW-vNMQrgdZVWwVB3k98Yia962h_riHtO7TTxA7cXeRXuH6T91-C6aJTmGUgPOG5iLQVhttYKJ7LiBkbWRf8NCxIGxDWIMhUJcrueoPcZs9y0h44GQIn88DJhg3Yfp7THUuSvPr0Wo2WrDJPZTaBSgO-13ibDL-82srrq23Ax6Or87Ps7Lh1ugqfmIe7y8dbg-l-b2DW4YN66LfL3je_cQj8emscPgEKjFLx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT8MwDLa4hOCBY4AYZx54g4gt7dr0EQETlyYkDu2tSnOIoa2btg7Ev8fJ2g0QICFekzaqEsf-XNufAQ5qkV_xfNvQhCWM-kb4FFFRQiMtleKhQchvXLOJsNHgzWZ0-6GK32W7FyHJUU2DZWlKs-OeMsfjwjcXYKM2E93FCujrNMz6NpHe-ut3j5PKyHDEw4woBXVxxPKyme_X-GyaJnjzS4jUWZ768v-_eQWWctRJTkZisgpTOi3Bco5ASX6_BzhUNHkoxkqw-IGxcA2er7qtNCM9VOBPRLaHlmYBJ6g1hooIJXpWfRLVcuUSov9GRKoIaq3-QBNHoFkUO6UE4TJx-Yy001XOHSCtDqo3Yob2F946PNTP708vaN6ugUq8xxmtBqYqWSLRweI64bj3lszL8ECLxPOkEn6Fi4qqIeKqJtqGGwPDZRgYiYY69Ji3ATNpN9WbQHjAk8hTJtLc-JHkifCYNp6xMUPNKmEZqsVJxTLnMrctNdrxmIXZ7XaMux273Y5fy3A4fqc3YvL49emdQgDi_FYPYhag6KJ_xqMyHBUHPpn-ebWtvz2-D_O3Z_X45rJxvQ0LzImMzWrbgZmsP9S7MCdfstagv-eE_R2ws_6y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+patch+clustering-based+adaptive+dictionary+and+sparse+representation+for+multi-modality+image+fusion&rft.jtitle=Machine+vision+and+applications&rft.au=Wang%2C+Chang&rft.au=Wu%2C+Yang&rft.au=Yu%2C+Yi&rft.au=Zhao%2C+Jun+Qiang&rft.date=2022-09-01&rft.issn=0932-8092&rft.eissn=1432-1769&rft.volume=33&rft.issue=5&rft_id=info:doi/10.1007%2Fs00138-022-01322-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00138_022_01322_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-8092&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-8092&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-8092&client=summon