Joint patch clustering-based adaptive dictionary and sparse representation for multi-modality image fusion
For the image fusion method using sparse representation, the adaptive dictionary and fusion rule have a great influence on the multi-modality image fusion, and the maximum L 1 norm fusion rule may cause gray inconsistency in the fusion result. In order to solve this problem, we proposed an improved...
Saved in:
| Published in: | Machine vision and applications Vol. 33; no. 5 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0932-8092, 1432-1769 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | For the image fusion method using sparse representation, the adaptive dictionary and fusion rule have a great influence on the multi-modality image fusion, and the maximum
L
1
norm fusion rule may cause gray inconsistency in the fusion result. In order to solve this problem, we proposed an improved multi-modality image fusion method by combining the joint patch clustering-based adaptive dictionary and sparse representation in this study. First, we used a Gaussian filter to separate the high- and low-frequency information. Second, we adopted the local energy-weighted strategy to complete the low-frequency fusion. Third, we used the joint patch clustering algorithm to reconstruct an over-complete adaptive learning dictionary, designed a hybrid fusion rule depending on the similarity of multi-norm of sparse representation coefficients, and completed the high-frequency fusion. Last, we obtained the fusion result by transforming the frequency domain into the spatial domain. We adopted the fusion metrics to evaluate the fusion results quantitatively and proved the superiority of the proposed method by comparing the state-of-the-art image fusion methods. The results showed that this method has the highest fusion metrics in average gradient, general image quality, and edge preservation. The results also showed that this method has the best performance in subjective vision. We demonstrated that this method has strong robustness by analyzing the parameter’s influence on the fusion result and consuming time. We extended this method to the infrared and visible image fusion and multi-focus image fusion perfectly. In summary, this method has the advantages of good robustness and wide application. |
|---|---|
| AbstractList | For the image fusion method using sparse representation, the adaptive dictionary and fusion rule have a great influence on the multi-modality image fusion, and the maximum
L
1
norm fusion rule may cause gray inconsistency in the fusion result. In order to solve this problem, we proposed an improved multi-modality image fusion method by combining the joint patch clustering-based adaptive dictionary and sparse representation in this study. First, we used a Gaussian filter to separate the high- and low-frequency information. Second, we adopted the local energy-weighted strategy to complete the low-frequency fusion. Third, we used the joint patch clustering algorithm to reconstruct an over-complete adaptive learning dictionary, designed a hybrid fusion rule depending on the similarity of multi-norm of sparse representation coefficients, and completed the high-frequency fusion. Last, we obtained the fusion result by transforming the frequency domain into the spatial domain. We adopted the fusion metrics to evaluate the fusion results quantitatively and proved the superiority of the proposed method by comparing the state-of-the-art image fusion methods. The results showed that this method has the highest fusion metrics in average gradient, general image quality, and edge preservation. The results also showed that this method has the best performance in subjective vision. We demonstrated that this method has strong robustness by analyzing the parameter’s influence on the fusion result and consuming time. We extended this method to the infrared and visible image fusion and multi-focus image fusion perfectly. In summary, this method has the advantages of good robustness and wide application. For the image fusion method using sparse representation, the adaptive dictionary and fusion rule have a great influence on the multi-modality image fusion, and the maximum L1 norm fusion rule may cause gray inconsistency in the fusion result. In order to solve this problem, we proposed an improved multi-modality image fusion method by combining the joint patch clustering-based adaptive dictionary and sparse representation in this study. First, we used a Gaussian filter to separate the high- and low-frequency information. Second, we adopted the local energy-weighted strategy to complete the low-frequency fusion. Third, we used the joint patch clustering algorithm to reconstruct an over-complete adaptive learning dictionary, designed a hybrid fusion rule depending on the similarity of multi-norm of sparse representation coefficients, and completed the high-frequency fusion. Last, we obtained the fusion result by transforming the frequency domain into the spatial domain. We adopted the fusion metrics to evaluate the fusion results quantitatively and proved the superiority of the proposed method by comparing the state-of-the-art image fusion methods. The results showed that this method has the highest fusion metrics in average gradient, general image quality, and edge preservation. The results also showed that this method has the best performance in subjective vision. We demonstrated that this method has strong robustness by analyzing the parameter’s influence on the fusion result and consuming time. We extended this method to the infrared and visible image fusion and multi-focus image fusion perfectly. In summary, this method has the advantages of good robustness and wide application. |
| ArticleNumber | 69 |
| Author | Wu, Yang Zhao, Jun Qiang Yu, Yi Wang, Chang |
| Author_xml | – sequence: 1 givenname: Chang surname: Wang fullname: Wang, Chang organization: The Third Affiliated Hospital of Xinxiang Medical University, School of Medical Engineering, Xinxiang Medical University, Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis – sequence: 2 givenname: Yang surname: Wu fullname: Wu, Yang organization: School of Medical Engineering, Xinxiang Medical University, Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis – sequence: 3 givenname: Yi surname: Yu fullname: Yu, Yi organization: School of Medical Engineering, Xinxiang Medical University, Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis – sequence: 4 givenname: Jun Qiang surname: Zhao fullname: Zhao, Jun Qiang email: 280905788@qq.com organization: School of Medical Engineering, Xinxiang Medical University |
| BookMark | eNp9kE1LxDAQhoMouK7-AU8Bz9F8dNv0KIufLHjRc0jTyZqlm9YkVfbfm7WC4GEvycDMk7zznKFj33tA6JLRa0ZpdRMpZUISyjnJRT6_jtCMFYITVpX1MZrROteS1vwUncW4oZQWVVXM0Oa5dz7hQSfzjk03xgTB-TVpdIQW61YPyX0Cbp1Jrvc67LD2LY6DDhFwgCFABJ_0voltH_B27JIj277VnUs77LZ6DdiOMffP0YnVXYSL33uO3u7vXpePZPXy8LS8XREjWJ0IKy0zvDGskBIamXPmrMzKEnQjhGl1QaWm7WJRctYAlXVdWmmq0hoDUAku5uhqencI_ccIMalNPwafv1S8rHlRlVLWeUpOUyb0MQawyrhpjxS06xSjam9WTWZVNqt-zKqvjPJ_6BDyomF3GBITFIe9YAh_qQ5Q32adkEI |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0290231 crossref_primary_10_1007_s10489_023_04692_4 crossref_primary_10_1016_j_image_2024_117213 crossref_primary_10_1016_j_optlastec_2025_113640 crossref_primary_10_3390_s23062888 crossref_primary_10_3389_fphy_2023_1214206 crossref_primary_10_3390_rs15102486 crossref_primary_10_1016_j_optcom_2024_130441 crossref_primary_10_1016_j_imavis_2024_105210 |
| Cites_doi | 10.1007/s11831-021-09540-7 10.1109/TIM.2009.2026612 10.1109/ICIP.2013.6738268 10.1016/j.inffus.2015.03.003 10.1166/jmihi.2019.2669 10.1016/j.inffus.2007.04.003 10.1016/j.inffus.2016.12.009 10.1109/JSTSP.2011.2112332 10.1016/j.inffus.2013.12.002 10.1364/AO.55.001814 10.1016/S1874-1029(08)60174-3 10.1016/j.inffus.2006.04.001 10.1016/j.infrared.2014.04.003 10.1117/12.235981 10.1016/j.inffus.2010.03.002 10.1016/j.neucom.2014.07.003 10.1016/j.inffus.2018.02.004(2019) 10.1016/j.asoc.2016.03.028 10.1016/j.inffus.2014.10.004 10.1109/TSP.2006.881199 10.1109/ICME.2017.8019435 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00138-022-01322-w |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1432-1769 |
| ExternalDocumentID | 10_1007_s00138_022_01322_w |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YOT Z45 Z7R Z7S Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-16f1c2bc1488eb80470041f86eab33cda408a0d55621be08996f8c76fccee7323 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000828546500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0932-8092 |
| IngestDate | Wed Nov 05 09:07:14 EST 2025 Sat Nov 29 03:17:33 EST 2025 Tue Nov 18 22:18:25 EST 2025 Fri Feb 21 02:44:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Adaptive learning dictionary Sparse representation Multi-modality Fusion metric Image fusion |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-16f1c2bc1488eb80470041f86eab33cda408a0d55621be08996f8c76fccee7323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2692476889 |
| PQPubID | 2043753 |
| ParticipantIDs | proquest_journals_2692476889 crossref_citationtrail_10_1007_s00138_022_01322_w crossref_primary_10_1007_s00138_022_01322_w springer_journals_10_1007_s00138_022_01322_w |
| PublicationCentury | 2000 |
| PublicationDate | 20220900 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 9 year: 2022 text: 20220900 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: New York |
| PublicationTitle | Machine vision and applications |
| PublicationTitleAbbrev | Machine Vision and Applications |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Zhang, Q., Liu, Y., Blum, R.S. et al.: Sparse representation based multi-sensor image fusion: a review, Inf. Fusion, S1566253517301136 (2017). A.J. Keith, A. J., AlexBecker, J.: The Whole Brain Atlas on CD-ROM, 1999, Amsterdam, Holland, Lippincott Williams & Wilkins. JamesAPDasarathyBVMedical image fusion: A survey of the state of the artInf. Fusion20141941910.1016/j.inffus.2013.12.002 XuXShanDWangGMultimodal medical image fusion using PCNN optimized by the QPSO algorithmAppl. Soft Comput.20164858859510.1016/j.asoc.2016.03.028 YangBLiSMulti focus image fusion and restoration with sparse representationIEEE Trans. Instrum. Meas.201059488489210.1109/TIM.2009.2026612 KimMHanDKKoHMultimodal image fusion via sparse representation with local patch dictionariesIEEE Int. Conf. Image Process.201320131301130510.1109/ICIP.2013.6738268 Ma, J., Ma, Y., Li, C.: Infrared and visible image fusion methods and applications: a survey. Inf. Fusion, https://doi.org/10.1016/j.inffus.2018.02.004(2019). YuNQiuTBiFWangAImage features extraction and fusion based on joint sparse representationIEEE J. Select. Topics Signal Process.2011551074108210.1109/JSTSP.2011.2112332 Kaur H, Koundal D, Kadyan V.: Image fusion techniques: a survey. Arch. Comput. Methods Eng., https://doi.org/10.1007/s11831-021-09540-7 (2021). LiYLiFYBaiBDImage fusion via nonlocal sparse K-SVD dictionary learningAppl. Opt.2016551814182310.1364/AO.55.001814 KimMHanDKKoHJoint patch clustering-based dictionary learning for multimodal image fusionInf. Fusion20162719821410.1016/j.inffus.2015.03.003 Piella, G., Heijmans, H.: A new quality metric for image fusion, Proceedings of 10th International Conference on Image Processing, Barcelona, Spain, 173–176 (2003). WangQNieRCZhouDMJinXHeKJYuJFImage fusion algorithm using PCNN model parameters of multi-objective particle swarm optimizationJ. Image Graph.201621112951306 Shen, Y., Xiong, H., Dai, W.: Multiscale dictionary learning for hierarchical sparse representation, IEEE International Conference on Multimedia & Expo. IEEE (2017). Li, T.: Research on multi sensor image information fusion method and application, Central South University (2001). AharonMEladMBrucksteinAK-SVD: an algorithm for designing over complete dictionaries for sparse representationIEEE Trans. Signal Process.200654114311432210.1109/TSP.2006.881199 WangZMaYMedical image fusion using m-PCNNInf. Fusion200892176185393756610.1016/j.inffus.2007.04.003 BroussardRPRogersSKPhysiologically motivated image fusion using pulse-coupled neural networksProc. Appl. Sci. Artif. Neural Netw.1996II37238410.1117/12.235981 WangCZhaoZZRenQQMulti-modality anatomical and functional medical image fusion based on simplified-spatial frequency-pulse coupled neural networks and region energy-weighted average strategy in non-sub sampled contourlet transform domainJ. Med. Imag. Health Inf.201991017102710.1166/jmihi.2019.2669 EckhornRReitbockHJArndtMDickePA neural network for feature linking via synchronous activity: results from cat visual cortex and from simulationsCan. J. Microbiol.1989468759763 YinHTSparse representation with learned multiscale dictionary for image fusionNeurocomputing201514860061010.1016/j.neucom.2014.07.003 Alexander, T.: TNO Image Fusion Dataset. figshare. Dataset. 2014, 10.6084/m9.figshare.1008029.v1 LiSYangBHuJPerformance comparison of different multi-resolution transforms for image fusionInf. Fusion2011122748410.1016/j.inffus.2010.03.002 NejatiMSamaviSShiraniSMulti-focus Image Fusion Using Dictionary-Based Sparse Representation [J]Information Fusion201525728410.1016/j.inffus.2014.10.004 ZhangJYLiangJLImage fusion based on pulse-coupled neural networks [J]Computer Simulation2004211102104 QuXBImage fusion algorithm based on spatial frequency motivated pulse coupled neural networks in NSCT domainACTA AUTOM ATICA SINICA2008341508151410.1016/S1874-1029(08)60174-3 KongWWZhangLJLeiYNovel fusion method for visible light and infrared images based on NSST–SF–PCNNInfr. Phys. Technol.201465110311210.1016/j.infrared.2014.04.003 GoshtasbyANikolovSImage fusion: advances in the state of the artInf. Fusion20078211411810.1016/j.inffus.2006.04.001 NejatiMSamaviSKarimiNSurface area-based focus criterion for multi-focus image fusionInf. Fusion2017361528429510.1016/j.inffus.2016.12.009 XinLGWangRLWangGYRemote Sensing Image Fusion based on DCTAppl. Res. Comput.2005022004242243 AP James (1322_CR4) 2014; 19 M Kim (1322_CR25) 2013; 2013 1322_CR18 B Yang (1322_CR19) 2010; 59 HT Yin (1322_CR20) 2015; 148 JY Zhang (1322_CR10) 2004; 21 M Nejati (1322_CR6) 2017; 36 C Wang (1322_CR14) 2019; 9 M Nejati (1322_CR30) 2015; 25 RP Broussard (1322_CR8) 1996; II Z Wang (1322_CR13) 2008; 9 S Li (1322_CR5) 2011; 12 N Yu (1322_CR17) 2011; 5 M Aharon (1322_CR22) 2006; 54 1322_CR27 1322_CR26 Y Li (1322_CR23) 2016; 55 1322_CR29 1322_CR28 M Kim (1322_CR24) 2016; 27 X Xu (1322_CR15) 2016; 48 A Goshtasby (1322_CR2) 2007; 8 1322_CR3 LG Xin (1322_CR21) 2005; 022 1322_CR1 Q Wang (1322_CR16) 2016; 21 R Eckhorn (1322_CR7) 1989; 46 1322_CR9 XB Qu (1322_CR11) 2008; 34 WW Kong (1322_CR12) 2014; 65 |
| References_xml | – reference: Zhang, Q., Liu, Y., Blum, R.S. et al.: Sparse representation based multi-sensor image fusion: a review, Inf. Fusion, S1566253517301136 (2017). – reference: LiSYangBHuJPerformance comparison of different multi-resolution transforms for image fusionInf. Fusion2011122748410.1016/j.inffus.2010.03.002 – reference: XinLGWangRLWangGYRemote Sensing Image Fusion based on DCTAppl. Res. Comput.2005022004242243 – reference: QuXBImage fusion algorithm based on spatial frequency motivated pulse coupled neural networks in NSCT domainACTA AUTOM ATICA SINICA2008341508151410.1016/S1874-1029(08)60174-3 – reference: LiYLiFYBaiBDImage fusion via nonlocal sparse K-SVD dictionary learningAppl. Opt.2016551814182310.1364/AO.55.001814 – reference: KimMHanDKKoHJoint patch clustering-based dictionary learning for multimodal image fusionInf. Fusion20162719821410.1016/j.inffus.2015.03.003 – reference: A.J. Keith, A. J., AlexBecker, J.: The Whole Brain Atlas on CD-ROM, 1999, Amsterdam, Holland, Lippincott Williams & Wilkins. – reference: KimMHanDKKoHMultimodal image fusion via sparse representation with local patch dictionariesIEEE Int. Conf. Image Process.201320131301130510.1109/ICIP.2013.6738268 – reference: Shen, Y., Xiong, H., Dai, W.: Multiscale dictionary learning for hierarchical sparse representation, IEEE International Conference on Multimedia & Expo. IEEE (2017). – reference: YinHTSparse representation with learned multiscale dictionary for image fusionNeurocomputing201514860061010.1016/j.neucom.2014.07.003 – reference: ZhangJYLiangJLImage fusion based on pulse-coupled neural networks [J]Computer Simulation2004211102104 – reference: Kaur H, Koundal D, Kadyan V.: Image fusion techniques: a survey. Arch. Comput. Methods Eng., https://doi.org/10.1007/s11831-021-09540-7 (2021). – reference: WangQNieRCZhouDMJinXHeKJYuJFImage fusion algorithm using PCNN model parameters of multi-objective particle swarm optimizationJ. Image Graph.201621112951306 – reference: Alexander, T.: TNO Image Fusion Dataset. figshare. Dataset. 2014, 10.6084/m9.figshare.1008029.v1 – reference: EckhornRReitbockHJArndtMDickePA neural network for feature linking via synchronous activity: results from cat visual cortex and from simulationsCan. J. Microbiol.1989468759763 – reference: JamesAPDasarathyBVMedical image fusion: A survey of the state of the artInf. Fusion20141941910.1016/j.inffus.2013.12.002 – reference: KongWWZhangLJLeiYNovel fusion method for visible light and infrared images based on NSST–SF–PCNNInfr. Phys. Technol.201465110311210.1016/j.infrared.2014.04.003 – reference: BroussardRPRogersSKPhysiologically motivated image fusion using pulse-coupled neural networksProc. Appl. Sci. Artif. Neural Netw.1996II37238410.1117/12.235981 – reference: Piella, G., Heijmans, H.: A new quality metric for image fusion, Proceedings of 10th International Conference on Image Processing, Barcelona, Spain, 173–176 (2003). – reference: WangCZhaoZZRenQQMulti-modality anatomical and functional medical image fusion based on simplified-spatial frequency-pulse coupled neural networks and region energy-weighted average strategy in non-sub sampled contourlet transform domainJ. Med. Imag. Health Inf.201991017102710.1166/jmihi.2019.2669 – reference: YuNQiuTBiFWangAImage features extraction and fusion based on joint sparse representationIEEE J. Select. Topics Signal Process.2011551074108210.1109/JSTSP.2011.2112332 – reference: NejatiMSamaviSKarimiNSurface area-based focus criterion for multi-focus image fusionInf. Fusion2017361528429510.1016/j.inffus.2016.12.009 – reference: Li, T.: Research on multi sensor image information fusion method and application, Central South University (2001). – reference: WangZMaYMedical image fusion using m-PCNNInf. Fusion200892176185393756610.1016/j.inffus.2007.04.003 – reference: YangBLiSMulti focus image fusion and restoration with sparse representationIEEE Trans. Instrum. Meas.201059488489210.1109/TIM.2009.2026612 – reference: AharonMEladMBrucksteinAK-SVD: an algorithm for designing over complete dictionaries for sparse representationIEEE Trans. Signal Process.200654114311432210.1109/TSP.2006.881199 – reference: GoshtasbyANikolovSImage fusion: advances in the state of the artInf. Fusion20078211411810.1016/j.inffus.2006.04.001 – reference: Ma, J., Ma, Y., Li, C.: Infrared and visible image fusion methods and applications: a survey. Inf. Fusion, https://doi.org/10.1016/j.inffus.2018.02.004(2019). – reference: XuXShanDWangGMultimodal medical image fusion using PCNN optimized by the QPSO algorithmAppl. Soft Comput.20164858859510.1016/j.asoc.2016.03.028 – reference: NejatiMSamaviSShiraniSMulti-focus Image Fusion Using Dictionary-Based Sparse Representation [J]Information Fusion201525728410.1016/j.inffus.2014.10.004 – ident: 1322_CR29 – ident: 1322_CR27 – ident: 1322_CR1 doi: 10.1007/s11831-021-09540-7 – volume: 59 start-page: 884 issue: 4 year: 2010 ident: 1322_CR19 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2009.2026612 – volume: 2013 start-page: 1301 year: 2013 ident: 1322_CR25 publication-title: IEEE Int. Conf. Image Process. doi: 10.1109/ICIP.2013.6738268 – volume: 21 start-page: 1295 issue: 1 year: 2016 ident: 1322_CR16 publication-title: J. Image Graph. – volume: 27 start-page: 198 year: 2016 ident: 1322_CR24 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2015.03.003 – volume: 46 start-page: 759 issue: 8 year: 1989 ident: 1322_CR7 publication-title: Can. J. Microbiol. – volume: 9 start-page: 1017 year: 2019 ident: 1322_CR14 publication-title: J. Med. Imag. Health Inf. doi: 10.1166/jmihi.2019.2669 – volume: 9 start-page: 176 issue: 2 year: 2008 ident: 1322_CR13 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2007.04.003 – volume: 36 start-page: 284 issue: 15 year: 2017 ident: 1322_CR6 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.12.009 – ident: 1322_CR18 – volume: 5 start-page: 1074 issue: 5 year: 2011 ident: 1322_CR17 publication-title: IEEE J. Select. Topics Signal Process. doi: 10.1109/JSTSP.2011.2112332 – volume: 19 start-page: 4 year: 2014 ident: 1322_CR4 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2013.12.002 – volume: 022 start-page: 242 issue: 004 year: 2005 ident: 1322_CR21 publication-title: Appl. Res. Comput. – volume: 55 start-page: 1814 year: 2016 ident: 1322_CR23 publication-title: Appl. Opt. doi: 10.1364/AO.55.001814 – ident: 1322_CR28 – volume: 21 start-page: 102 issue: 1 year: 2004 ident: 1322_CR10 publication-title: Computer Simulation – volume: 34 start-page: 1508 year: 2008 ident: 1322_CR11 publication-title: ACTA AUTOM ATICA SINICA doi: 10.1016/S1874-1029(08)60174-3 – volume: 8 start-page: 114 issue: 2 year: 2007 ident: 1322_CR2 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2006.04.001 – volume: 65 start-page: 103 issue: 1 year: 2014 ident: 1322_CR12 publication-title: Infr. Phys. Technol. doi: 10.1016/j.infrared.2014.04.003 – volume: II start-page: 372 year: 1996 ident: 1322_CR8 publication-title: Proc. Appl. Sci. Artif. Neural Netw. doi: 10.1117/12.235981 – ident: 1322_CR9 – volume: 12 start-page: 74 issue: 2 year: 2011 ident: 1322_CR5 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2010.03.002 – volume: 148 start-page: 600 year: 2015 ident: 1322_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.07.003 – ident: 1322_CR3 doi: 10.1016/j.inffus.2018.02.004(2019) – volume: 48 start-page: 588 year: 2016 ident: 1322_CR15 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.03.028 – volume: 25 start-page: 72 year: 2015 ident: 1322_CR30 publication-title: Information Fusion doi: 10.1016/j.inffus.2014.10.004 – volume: 54 start-page: 4311 issue: 11 year: 2006 ident: 1322_CR22 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – ident: 1322_CR26 doi: 10.1109/ICME.2017.8019435 |
| SSID | ssj0004774 |
| Score | 2.373895 |
| Snippet | For the image fusion method using sparse representation, the adaptive dictionary and fusion rule have a great influence on the multi-modality image fusion, and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Adaptive learning Algorithms Clustering Communications Engineering Computer Science Computer vision Dictionaries Image processing Image Processing and Computer Vision Image quality Infrared imagery Machine learning Networks Original Paper Pattern Recognition Representations Robustness Vision systems |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5R9KAHUdSIounBmzZuA7ruZIyRGA_ERE24LV27RgwMZEPif-9r6UBN5OK5a7Ps_frW9973AM4D3pYYRhQVGuFbi6ec8jb3qNRC6ggBP08SO2wi7HZ5rxc9ugu33JVVlj7ROmo1kuaO_CpguBGxMY-ux-_UTI0y2VU3QmMdNgxLgm9L956WfZHhnIUZMQp64ihwTTO2dc6m6KipZbfZBjr7GZiWaPNXgtTGnU71v2-8CzsOcZKbuYrswVqa1aDq0Cdxtp3XYPsbNeE-vD2M-llBxuipX4kcTA2fAi5QE_UUEUqMjZ8kqm_7IsTkk4hMEXRPkzwllimz7GrKCOJiYgsX6XCkLO4n_SH6MaKn5q7uAF46d8-399TNZaASDbagPtO-DBKJf1I8TTh-ZsPapTlLRdJsSiVaHheeaiO08pPU5BWZ5jJkWmJEDptB8xAq2ShLj4C0BCoL416omWgp5gvuycRPJIuEH3FP1MEvhRJLR1puZmcM4gXdshVkjIKMrSDjWR0uFnvGc8qOlU83SunFznzzeCm6OlyW8l8u_33a8erTTmArsCpnatQaUCkm0_QUNuVH0c8nZ1Z5vwDAx_Y2 priority: 102 providerName: ProQuest |
| Title | Joint patch clustering-based adaptive dictionary and sparse representation for multi-modality image fusion |
| URI | https://link.springer.com/article/10.1007/s00138-022-01322-w https://www.proquest.com/docview/2692476889 |
| Volume | 33 |
| WOSCitedRecordID | wos000828546500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1432-1769 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0004774 issn: 0932-8092 databaseCode: P5Z dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1432-1769 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0004774 issn: 0932-8092 databaseCode: M7S dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-1769 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0004774 issn: 0932-8092 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1432-1769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004774 issn: 0932-8092 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBN6JQKg9sYClJG8cZAbVCDFXFS4glcuxYFJW0SlIQ_56zm7SAAAmWDLZjRXfnu8-5F8CRx32JZkRRoRG-tXnCKfe5Q6UWUocI-Hkc22YTQa_H7-_DfpkUllfR7pVL0mrqWbKbdapRE31u_QP0dRGW0Nxx07Dh6vpung0ZTGsvIzJB_Rt6ZarM93t8NkdzjPnFLWqtTXf9f9-5AWsluiSnU3HYhIUk3YL1EmmS8hznOFQ1c6jGtmD1Q2XCbXi6HA3SgoxRUT8SOZyYcgo4QY3RU0QoMTZqkqiBTYsQ2RsRqSKonbI8IbZQZpXUlBKExcTGLdLnkbKwnwyeUY0RPTG_6nbgttu5Ob-gZVsGKvG8FtRl2pVeLPEixZOYI71N0S7NWSLiVksq0Xa4cJSPyMqNE-NWZJrLgGmJBjloea1dqKWjNNkD0hYoK4w7gWairZgruCNjN5YsFC4yVtTBrbgTybJmuWmdMYxm1ZYttSOkdmSpHb3W4Xj2znhasePX1Y2K6VF5evPIYyikeA_jYR1OKibPp3_ebf9vyw9gxbNyYkLWGlArsklyCMvypRjkWROWzjq9_lXThKNe47PvPzStpL8DZFz2ag |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB5VgMRy4LmI8lof2NNikaSp4xwQQjwEC1shwUrcguOHKKJpaVqq_il-I2M3aQFpuXHYs2NLST7PfPbMfAOwE_C6RDeiqDBI30KuOeV17lFphDQxEn6epq7ZRNRo8Nvb-KoCL2UtjE2rLG2iM9SqLe0d-V7AcCJyYx4fdJ6o7Rplo6tlC40RLC70cIBHtnz__Bj_788gOD25OTqjRVcBKhFuPeoz48sglXgO4DrlXmgF3n3DmRZprSaVCD0uPFVHYuCn2kbFmOEyYkaiP4lqVugATf400oggdqmC15M6zGik-oycCC1_HBRFOq5Uz4UEqc2dd9ENOnjvCCfs9kNA1vm504X_7QstwnzBqMnhaAssQUVny7BQsGtS2K58GebeSC-uwMPvdjPrkQ56onsiH_tWLwIHqPXqigglOtYPENV0dR-iOyQiUwTNbzfXxCmBllVbGUHeT1xiJm21lTvXkGYL7TQxfXsX-R3-fsn7r8JU1s70GpBQ4GZg3IsME6FivuCeTP1Uslj4MfdEFfwSBIksRNltb5DHZCwn7YCTIHASB5xkUIVf4zmdkSTJp09vlmhJCvOUJxOoVGG3xNtk-N-rrX--2g-YPbv5c5lcnjcuNuBb4OBu8_E2YarX7estmJHPvWbe3XYbh8DdV-PwFbXYUt8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIAQHHgPEeObADSLarkvTIwImXpom8dBuVZo0Ygi6aeuY-Pc4WbsNBEiIa9JGlePYn2v7C8Chx2sS3YiiQiN883nCKa9xh0otpA4R8PM4tpdNBI0Gb7XC5lQXv612L1KSo54Gw9KUZiddpU_GjW82wUZNJbrNFdDhLMz5ppDexOt3j5POyGDEw4woBW1x6OVtM9-v8dk1TfDmlxSp9Tz1lf9_8yos56iTnI7UZA1mkrQMKzkCJfn57uNQcclDMVaGpSnGwnV4vu6004x00YA_EfkyMDQLOEGNM1REKNE15pOotm2XEL13IlJF0Gr1-gmxBJpFs1NKEC4TW89IXzvKhgOk_YrmjeiB-YW3AQ_1i_uzS5pf10AlnuOMuky70oslBlg8iTnK3pB5ac4SEVerUgnf4cJRNURcbpyYdCPTXAZMS3TUQdWrbkIp7aTJFhBfoA4x7gSaCV8xV3BHxm4sWSjckDuiAm6xU5HMuczNlRov0ZiF2Uo7QmlHVtrRsAJH43e6IyaPX5_eLRQgyk91P_IYKi_GZzyswHGx4ZPpn1fb_tvjB7DQPK9Ht1eNmx1Y9KzKmKq2XShlvUGyB_PyLWv3e_tW2T8ALu3-oA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+patch+clustering-based+adaptive+dictionary+and+sparse+representation+for+multi-modality+image+fusion&rft.jtitle=Machine+vision+and+applications&rft.au=Wang%2C+Chang&rft.au=Wu%2C+Yang&rft.au=Yu%2C+Yi&rft.au=Zhao%2C+Jun+Qiang&rft.date=2022-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0932-8092&rft.eissn=1432-1769&rft.volume=33&rft.issue=5&rft_id=info:doi/10.1007%2Fs00138-022-01322-w&rft.externalDocID=10_1007_s00138_022_01322_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-8092&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-8092&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-8092&client=summon |