Bi-objective feature selection in high-dimensional datasets using improved binary chimp optimization algorithm
The machine learning process in high-dimensional datasets is far more complicated than in low-dimensional datasets. In high-dimensional datasets, Feature Selection (FS) is necessary to decrease the complexity of learning. However, FS in high-dimensional datasets is a complex process that requires th...
Uloženo v:
| Vydáno v: | International journal of machine learning and cybernetics Ročník 15; číslo 12; s. 6107 - 6148 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1868-8071, 1868-808X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!