A new approach of shifted Jacobi spectral Galerkin methods (SJSGM) for weakly singular Fredholm integral equation with non-smooth solution

This article presents a new approach of shifted Jacobi spectral Galerkin methods to solve weakly singular Fredholm integral equations with non-smooth solutions. We have incorporated the singular part of the kernel into a single Jacobi weight function, by dividing the integration into two parts and u...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms Vol. 96; no. 4; pp. 1553 - 1582
Main Authors: Kayal, Arnab, Mandal, Moumita
Format: Journal Article
Language:English
Published: New York Springer US 01.08.2024
Springer Nature B.V
Subjects:
ISSN:1017-1398, 1572-9265
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article presents a new approach of shifted Jacobi spectral Galerkin methods to solve weakly singular Fredholm integral equations with non-smooth solutions. We have incorporated the singular part of the kernel into a single Jacobi weight function, by dividing the integration into two parts and using a simple variable transformation. Taking advantage of orthogonal projection operator and weighted inner product with respect to that same Jacobi weight function, we are able to obtain improved convergence rate for iterated shifted Jacobi spectral Galerkin method (SJSGM) and iterated shifted Jacobi spectral multi-Galerkin method (SJSMGM) in both weighted and infinity norms. Further, we obtain improved superconvergence rate for iterated SJSGM and iterated SJSMGM, by improving the regularity of exact solution, using smoothing transformation. Increasing the value of the smoothing parameter we can improve the regularity of the exact solution upto the desired degree. Numerical results with a comparative study of pre and post smoothing transformation are given to illustrate the theoretical results and efficiency of our proposed methods.
AbstractList This article presents a new approach of shifted Jacobi spectral Galerkin methods to solve weakly singular Fredholm integral equations with non-smooth solutions. We have incorporated the singular part of the kernel into a single Jacobi weight function, by dividing the integration into two parts and using a simple variable transformation. Taking advantage of orthogonal projection operator and weighted inner product with respect to that same Jacobi weight function, we are able to obtain improved convergence rate for iterated shifted Jacobi spectral Galerkin method (SJSGM) and iterated shifted Jacobi spectral multi-Galerkin method (SJSMGM) in both weighted and infinity norms. Further, we obtain improved superconvergence rate for iterated SJSGM and iterated SJSMGM, by improving the regularity of exact solution, using smoothing transformation. Increasing the value of the smoothing parameter we can improve the regularity of the exact solution upto the desired degree. Numerical results with a comparative study of pre and post smoothing transformation are given to illustrate the theoretical results and efficiency of our proposed methods.
Author Mandal, Moumita
Kayal, Arnab
Author_xml – sequence: 1
  givenname: Arnab
  surname: Kayal
  fullname: Kayal, Arnab
  email: kayal.1@iitj.ac.in
  organization: Department of Mathematics, Indian Institute of Technology Jodhpur
– sequence: 2
  givenname: Moumita
  surname: Mandal
  fullname: Mandal, Moumita
  organization: Department of Mathematics, Indian Institute of Technology Jodhpur
BookMark eNp9kMtOGzEUhq0KpALtC3RlqZuyMLXn5niJEElBVF1A15YvxxnDxA62RxGvwFPXIZUqdcHKR_L_nct3io5CDIDQF0YvGKX8e2aM8p7QpiWUDZwT8QGdsJ43RDRDf1RryjhhrVh8RKc5P1JasYafoNdLHGCH1XabojIjjg7n0bsCFt8qE7XHeQumJDXhlZogPfmAN1DGaDP-dn97v_p5jl1MeAfqaXrB2Yf1PKmElwnsGKcN9qHAeo_D86yKjwHvfBlx3Z_kTYy1zHGa9x-f0LFTU4bPf98z9Ht5_XD1g9z9Wt1cXd4R0zJRCOtNJ8xghXaN0wo0bahTC9qB1ZY5ZS00mg5adIPRuuODEtZ0rNecUqu1ac_Q10PfevLzDLnIxzinUEfKlnLR8zpmUVOLQ8qkmHMCJ40vbwdUGX6SjMq9eXkwL6t5-WZeioo2_6Hb5DcqvbwPtQco13BYQ_q31TvUH9hmm4s
CitedBy_id crossref_primary_10_1186_s10033_025_01293_9
crossref_primary_10_1007_s12190_024_02264_4
Cites_doi 10.1216/jiea/1181076030
10.1090/S0025-5718-98-01005-9
10.3934/cpaa.2006.5.395
10.1017/S0004972700037916
10.1216/jiea/1181075816
10.1090/S0025-5718-1982-0669644-3
10.1007/978-3-540-30728-0
10.1016/j.amc.2018.01.046
10.3934/dcdss.2019043
10.1016/j.apnum.2006.07.007
10.1017/CBO9780511626340
10.1017/S0334270000002769
10.1016/j.amc.2021.126870
10.1007/978-3-642-97146-4
10.1016/j.cam.2010.01.033
10.1007/BF01404695
10.1007/s12190-013-0658-0
10.1137/070693308
10.1016/j.amc.2018.12.035
10.4171/zaa/501
10.2307/2007737
10.1090/S0002-9947-1970-0410210-0
10.1007/s00607-004-0088-9
10.1007/s11075-022-01376-x
10.1201/9781420035827
10.1063/1.1742352
10.1090/S0025-5718-1994-1218345-X
10.1007/BF01732317
10.1016/j.cam.2018.07.010
10.1016/j.cam.2018.09.032
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11075-023-01677-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1582
ExternalDocumentID 10_1007_s11075_023_01677_9
GrantInformation_xml – fundername: Dr. Moumita Mandal
  grantid: 02011/18/2021NBHM(R.P)/R &D II/8216 and dated 19/07/2021
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-15c49c6d9bf2fbaeb020fa804edbd1fadde2b06b946cbb476a9dc415b700dbbc3
IEDL.DBID M7S
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001087815300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
IngestDate Wed Nov 05 06:51:27 EST 2025
Sat Nov 29 01:35:01 EST 2025
Tue Nov 18 22:24:59 EST 2025
Fri Feb 21 02:39:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Jacobi polynomials
Jacobi spectral Galerkin method
Fredholm integral equations
Superconvergence rate
Weakly singular kernel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-15c49c6d9bf2fbaeb020fa804edbd1fadde2b06b946cbb476a9dc415b700dbbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3079573198
PQPubID 2043837
PageCount 30
ParticipantIDs proquest_journals_3079573198
crossref_citationtrail_10_1007_s11075_023_01677_9
crossref_primary_10_1007_s11075_023_01677_9
springer_journals_10_1007_s11075_023_01677_9
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References YangYTangZHuangYNumerical solutions for Fredholm integral equations of the second kind with weakly singular kernel using spectral collocation methodAppl. Math. Comput.2019349314324389828110.1016/j.amc.2018.12.035
CaoYXuYSingularity preserving Galerkin methods for weakly singular Fredholm integral equationsJ. Integral Equations Appl.199463303334131251910.1216/jiea/1181075816
PedasAVainikkoGSuperconvergence of piecewise polynomial collocations for nonlinear weakly singular integral equationsJ. Integral Equations Appl.199794379406161431810.1216/jiea/1181076030
WangMMultistep collocation method for Fredholm integral equations of the second kindAppl. Math. Comput.2022420435763610.1016/j.amc.2021.126870
PedasAVainikkoGSmoothing transformation and piecewise polynomial collocation for weakly singular Volterra integral equationsComputing200473271293210625110.1007/s00607-004-0088-9
AtkinsonKThe numerical solution of Fredholm integral equations of the second kind with singular kernelsNumer. Math.197219324825930751210.1007/BF01404695
KressRLinear integral equations1989New YorkSpringer10.1007/978-3-642-97146-4
VainikkoGPedasAThe properties of solutions of weakly singular integral equationsThe ANZIAM Journal198122441943062693310.1017/S0334270000002769
SchneiderCProduct integration for weakly singular integral equationsMath. Comput.19813615320721359505310.2307/2007737
GrammontLKulkarniRPVasconcelosPBFast and accurate solvers for weakly singular integral equationsNumerical Algorithms20239220452070456288510.1007/s11075-022-01376-x
RagozinDLPolynomial approximation on compact manifolds and homogeneous spacesTrans. Am. Math. Soc.19701501415341021010.1090/S0002-9947-1970-0410210-0
VainikkoEVainikkoGA spline product quasi-interpolation method for weakly singular Fredholm integral equationsSIAM J. Numer. Anal.200846417991820239939610.1137/070693308
PanigrahiBLNelakantiGLegendre Galerkin method for weakly singular Fredholm integral equations and the corresponding eigenvalue problemJ. Appl. Math. Comput.201343175197309639710.1007/s12190-013-0658-0
MonegatoGScuderiLHigh order methods for weakly singular integral equations with nonsmooth input functionsMath. Comput.19986722414931515160439510.1090/S0025-5718-98-01005-9
KulkarniRPA superconvergence result for solutions of compact operator equationsBull. Aust. Math. Soc.2003683517528202769410.1017/S0004972700037916
AuerPLGardnerCSNote on singular integral equations of the Kirkwood-Riseman typeJ. Chem. Phys.19552381545154610.1063/1.1742352
Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral methods: fundamentals in single domains, Springer Science & Business Media (2007)
Ahues, M., Largillier, A., Limaye, B.: Spectral computations for bounded operators, CRC press (2001)
Orav-PuurandKPedasAVainikkoGNyström type methods for Fredholm integral equations with weak singularitiesJ. Comput. Appl. Math.2010234928482858265213010.1016/j.cam.2010.01.033
MandalMNelakantiGSuperconvergence results of Legendre spectral projection methods for weakly singular Fredholm-Hammerstein integral equationsJ. Comput. Appl. Math.2019349114131388670010.1016/j.cam.2018.09.032
PedasAVainikkoGSmoothing transformation and piecewise polynomial projection methods for weakly singular Fredholm integral equationsCommun. Pure Appl. Anal.200652395413220010210.3934/cpaa.2006.5.395
KanekoHNorenRXuYRegularity of the solution of Hammerstein equations with weakly singular kernelIntegr. Eqn. Oper. Theory199013660670106612810.1007/BF01732317
Atkinson, K. E.: The numerical solution of integral equations of the second kind (Vol. 4), Cambridge university press (1997)
PanigrahiBLMandalMNelakantiGLegendre multi-Galerkin methods for Fredholm integral equations with weakly singular kernel and the corresponding eigenvalue problemJ. Comput. Appl. Math.2019346224236386415710.1016/j.cam.2018.07.010
YangYHuangYSpectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernelDiscrete Contin. Dyn. Syst. Ser. S.201912685702391777110.3934/dcdss.2019043
GrahamIGGalerkin methods for second kind integral equations with singularitiesMath. Comput.19823916051953366964410.1090/S0025-5718-1982-0669644-3
KanekoHXuYGauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kindMath. Comput.199462206739753121834510.1090/S0025-5718-1994-1218345-X
AllouchCSbibihDTahrichiMNumerical solutions of weakly singular Hammerstein integral equationsAppl. Math. Comput.2018329118128377331510.1016/j.amc.2018.01.046
PedasAVainikkoGThe smoothness of solutions to nonlinear weakly singular integral equationsZeitschrift für Analysis und ihre Anwendungen1994133463476129031410.4171/zaa/501
CaoYHuangMLiuLXuYHybrid collocation methods for Fredholm integral equations with weakly singular kernelsAppl. Numer. Math.2007575–7549561232243010.1016/j.apnum.2006.07.007
DL Ragozin (1677_CR24) 1970; 150
A Pedas (1677_CR21) 1997; 9
Y Cao (1677_CR7) 2007; 57
G Monegato (1677_CR16) 1998; 67
Y Cao (1677_CR8) 1994; 6
RP Kulkarni (1677_CR14) 2003; 68
M Wang (1677_CR28) 2022; 420
PL Auer (1677_CR5) 1955; 23
BL Panigrahi (1677_CR18) 2013; 43
E Vainikko (1677_CR27) 2008; 46
Y Yang (1677_CR29) 2019; 12
C Allouch (1677_CR2) 2018; 329
1677_CR6
G Vainikko (1677_CR26) 1981; 22
L Grammont (1677_CR10) 2023; 92
1677_CR4
1677_CR1
R Kress (1677_CR13) 1989
C Schneider (1677_CR25) 1981; 36
A Pedas (1677_CR23) 2006; 5
A Pedas (1677_CR20) 1994; 13
BL Panigrahi (1677_CR19) 2019; 346
K Orav-Puurand (1677_CR17) 2010; 234
Y Yang (1677_CR30) 2019; 349
IG Graham (1677_CR9) 1982; 39
A Pedas (1677_CR22) 2004; 73
H Kaneko (1677_CR12) 1994; 62
H Kaneko (1677_CR11) 1990; 13
K Atkinson (1677_CR3) 1972; 19
M Mandal (1677_CR15) 2019; 349
References_xml – reference: KulkarniRPA superconvergence result for solutions of compact operator equationsBull. Aust. Math. Soc.2003683517528202769410.1017/S0004972700037916
– reference: GrahamIGGalerkin methods for second kind integral equations with singularitiesMath. Comput.19823916051953366964410.1090/S0025-5718-1982-0669644-3
– reference: PedasAVainikkoGSuperconvergence of piecewise polynomial collocations for nonlinear weakly singular integral equationsJ. Integral Equations Appl.199794379406161431810.1216/jiea/1181076030
– reference: Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral methods: fundamentals in single domains, Springer Science & Business Media (2007)
– reference: VainikkoEVainikkoGA spline product quasi-interpolation method for weakly singular Fredholm integral equationsSIAM J. Numer. Anal.200846417991820239939610.1137/070693308
– reference: PedasAVainikkoGSmoothing transformation and piecewise polynomial collocation for weakly singular Volterra integral equationsComputing200473271293210625110.1007/s00607-004-0088-9
– reference: VainikkoGPedasAThe properties of solutions of weakly singular integral equationsThe ANZIAM Journal198122441943062693310.1017/S0334270000002769
– reference: AtkinsonKThe numerical solution of Fredholm integral equations of the second kind with singular kernelsNumer. Math.197219324825930751210.1007/BF01404695
– reference: PedasAVainikkoGThe smoothness of solutions to nonlinear weakly singular integral equationsZeitschrift für Analysis und ihre Anwendungen1994133463476129031410.4171/zaa/501
– reference: WangMMultistep collocation method for Fredholm integral equations of the second kindAppl. Math. Comput.2022420435763610.1016/j.amc.2021.126870
– reference: AuerPLGardnerCSNote on singular integral equations of the Kirkwood-Riseman typeJ. Chem. Phys.19552381545154610.1063/1.1742352
– reference: Orav-PuurandKPedasAVainikkoGNyström type methods for Fredholm integral equations with weak singularitiesJ. Comput. Appl. Math.2010234928482858265213010.1016/j.cam.2010.01.033
– reference: AllouchCSbibihDTahrichiMNumerical solutions of weakly singular Hammerstein integral equationsAppl. Math. Comput.2018329118128377331510.1016/j.amc.2018.01.046
– reference: MandalMNelakantiGSuperconvergence results of Legendre spectral projection methods for weakly singular Fredholm-Hammerstein integral equationsJ. Comput. Appl. Math.2019349114131388670010.1016/j.cam.2018.09.032
– reference: PanigrahiBLNelakantiGLegendre Galerkin method for weakly singular Fredholm integral equations and the corresponding eigenvalue problemJ. Appl. Math. Comput.201343175197309639710.1007/s12190-013-0658-0
– reference: Ahues, M., Largillier, A., Limaye, B.: Spectral computations for bounded operators, CRC press (2001)
– reference: KressRLinear integral equations1989New YorkSpringer10.1007/978-3-642-97146-4
– reference: RagozinDLPolynomial approximation on compact manifolds and homogeneous spacesTrans. Am. Math. Soc.19701501415341021010.1090/S0002-9947-1970-0410210-0
– reference: PanigrahiBLMandalMNelakantiGLegendre multi-Galerkin methods for Fredholm integral equations with weakly singular kernel and the corresponding eigenvalue problemJ. Comput. Appl. Math.2019346224236386415710.1016/j.cam.2018.07.010
– reference: Atkinson, K. E.: The numerical solution of integral equations of the second kind (Vol. 4), Cambridge university press (1997)
– reference: SchneiderCProduct integration for weakly singular integral equationsMath. Comput.19813615320721359505310.2307/2007737
– reference: KanekoHNorenRXuYRegularity of the solution of Hammerstein equations with weakly singular kernelIntegr. Eqn. Oper. Theory199013660670106612810.1007/BF01732317
– reference: YangYTangZHuangYNumerical solutions for Fredholm integral equations of the second kind with weakly singular kernel using spectral collocation methodAppl. Math. Comput.2019349314324389828110.1016/j.amc.2018.12.035
– reference: MonegatoGScuderiLHigh order methods for weakly singular integral equations with nonsmooth input functionsMath. Comput.19986722414931515160439510.1090/S0025-5718-98-01005-9
– reference: PedasAVainikkoGSmoothing transformation and piecewise polynomial projection methods for weakly singular Fredholm integral equationsCommun. Pure Appl. Anal.200652395413220010210.3934/cpaa.2006.5.395
– reference: GrammontLKulkarniRPVasconcelosPBFast and accurate solvers for weakly singular integral equationsNumerical Algorithms20239220452070456288510.1007/s11075-022-01376-x
– reference: KanekoHXuYGauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kindMath. Comput.199462206739753121834510.1090/S0025-5718-1994-1218345-X
– reference: YangYHuangYSpectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernelDiscrete Contin. Dyn. Syst. Ser. S.201912685702391777110.3934/dcdss.2019043
– reference: CaoYHuangMLiuLXuYHybrid collocation methods for Fredholm integral equations with weakly singular kernelsAppl. Numer. Math.2007575–7549561232243010.1016/j.apnum.2006.07.007
– reference: CaoYXuYSingularity preserving Galerkin methods for weakly singular Fredholm integral equationsJ. Integral Equations Appl.199463303334131251910.1216/jiea/1181075816
– volume: 9
  start-page: 379
  issue: 4
  year: 1997
  ident: 1677_CR21
  publication-title: J. Integral Equations Appl.
  doi: 10.1216/jiea/1181076030
– volume: 67
  start-page: 1493
  issue: 224
  year: 1998
  ident: 1677_CR16
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-98-01005-9
– volume: 5
  start-page: 395
  issue: 2
  year: 2006
  ident: 1677_CR23
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2006.5.395
– volume: 68
  start-page: 517
  issue: 3
  year: 2003
  ident: 1677_CR14
  publication-title: Bull. Aust. Math. Soc.
  doi: 10.1017/S0004972700037916
– volume: 6
  start-page: 303
  issue: 3
  year: 1994
  ident: 1677_CR8
  publication-title: J. Integral Equations Appl.
  doi: 10.1216/jiea/1181075816
– volume: 39
  start-page: 519
  issue: 160
  year: 1982
  ident: 1677_CR9
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1982-0669644-3
– ident: 1677_CR6
  doi: 10.1007/978-3-540-30728-0
– volume: 329
  start-page: 118
  year: 2018
  ident: 1677_CR2
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2018.01.046
– volume: 12
  start-page: 685
  year: 2019
  ident: 1677_CR29
  publication-title: Discrete Contin. Dyn. Syst. Ser. S.
  doi: 10.3934/dcdss.2019043
– volume: 57
  start-page: 549
  issue: 5–7
  year: 2007
  ident: 1677_CR7
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2006.07.007
– ident: 1677_CR4
  doi: 10.1017/CBO9780511626340
– volume: 22
  start-page: 419
  issue: 4
  year: 1981
  ident: 1677_CR26
  publication-title: The ANZIAM Journal
  doi: 10.1017/S0334270000002769
– volume: 420
  year: 2022
  ident: 1677_CR28
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2021.126870
– volume-title: Linear integral equations
  year: 1989
  ident: 1677_CR13
  doi: 10.1007/978-3-642-97146-4
– volume: 234
  start-page: 2848
  issue: 9
  year: 2010
  ident: 1677_CR17
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2010.01.033
– volume: 19
  start-page: 248
  issue: 3
  year: 1972
  ident: 1677_CR3
  publication-title: Numer. Math.
  doi: 10.1007/BF01404695
– volume: 43
  start-page: 175
  year: 2013
  ident: 1677_CR18
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-013-0658-0
– volume: 46
  start-page: 1799
  issue: 4
  year: 2008
  ident: 1677_CR27
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/070693308
– volume: 349
  start-page: 314
  year: 2019
  ident: 1677_CR30
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2018.12.035
– volume: 13
  start-page: 463
  issue: 3
  year: 1994
  ident: 1677_CR20
  publication-title: Zeitschrift für Analysis und ihre Anwendungen
  doi: 10.4171/zaa/501
– volume: 36
  start-page: 207
  issue: 153
  year: 1981
  ident: 1677_CR25
  publication-title: Math. Comput.
  doi: 10.2307/2007737
– volume: 150
  start-page: 41
  issue: 1
  year: 1970
  ident: 1677_CR24
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1970-0410210-0
– volume: 73
  start-page: 271
  year: 2004
  ident: 1677_CR22
  publication-title: Computing
  doi: 10.1007/s00607-004-0088-9
– volume: 92
  start-page: 2045
  year: 2023
  ident: 1677_CR10
  publication-title: Numerical Algorithms
  doi: 10.1007/s11075-022-01376-x
– ident: 1677_CR1
  doi: 10.1201/9781420035827
– volume: 23
  start-page: 1545
  issue: 8
  year: 1955
  ident: 1677_CR5
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1742352
– volume: 62
  start-page: 739
  issue: 206
  year: 1994
  ident: 1677_CR12
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1994-1218345-X
– volume: 13
  start-page: 660
  year: 1990
  ident: 1677_CR11
  publication-title: Integr. Eqn. Oper. Theory
  doi: 10.1007/BF01732317
– volume: 346
  start-page: 224
  year: 2019
  ident: 1677_CR19
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.07.010
– volume: 349
  start-page: 114
  year: 2019
  ident: 1677_CR15
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.09.032
SSID ssj0010027
Score 2.3776174
Snippet This article presents a new approach of shifted Jacobi spectral Galerkin methods to solve weakly singular Fredholm integral equations with non-smooth...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1553
SubjectTerms Algebra
Algorithms
Comparative studies
Computer Science
Exact solutions
Fredholm equations
Galerkin method
Integral equations
Mathematical analysis
Methods
Numeric Computing
Numerical Analysis
Operators (mathematics)
Original Paper
Polynomials
Regularity
Smoothing
Theory of Computation
Transformations (mathematics)
Weighting functions
SummonAdditionalLinks – databaseName: Springer Online Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH64HfTgLtaNd_CgaCCN2eYoYhVREaviLcwWLNZWm6r4F_zVvklmWhQV9DqZzCS8Zb55K8BmzNMoVkqYyseRF0qVezxNuKeF4gSwA6XK_ik3p8n5eXp7yy5sUljhot2dS7LU1MNkN7qpmGxiE_8TG8fjKIzTcZeahg2XzZuB78DctEofJ-lfwjepTZX5fo3Px9EQY35xi5anTWPmf985C9MWXeJ-xQ5zMKI78zBjkSZaOS5oyDVzcGPzMHU2KOBaLMD7PhLeRldxHLs5FnetnOApnpAOFS0sUzR7tNkRHTHG4I5VM-oCt5onzaOzbSQ4jK-a37ff0BgkTLwrNnpaGTss2jIVbdRPVbFxNBZh7HQ7XvHQJfZBJxSLcN04vDo49mzbBk-SPPe9eiRDJmPFRB7kgmtBiDTnqR9qJVQ9Nwo1EH4sWBhLIcIk5kxJwhEi8X0lhNxbgjHaTS8DpoIuPDzgpvl4qPyER6rOQhURKok4C6Ma1B31MmlrmpvWGu1sWI3ZUCMjamQlNTJWg53BO49VRY9fZ685psisdBcZ6UUWJfSzaQ12HRMMH_-82srfpq_CZEAYqoo3XIOxfu9Zr8OEfOm3it5GyfUfEBf9kg
  priority: 102
  providerName: Springer Nature
Title A new approach of shifted Jacobi spectral Galerkin methods (SJSGM) for weakly singular Fredholm integral equation with non-smooth solution
URI https://link.springer.com/article/10.1007/s11075-023-01677-9
https://www.proquest.com/docview/3079573198
Volume 96
WOSCitedRecordID wos001087815300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7x6KEcCqWtSIFoDj20ale1jV97qigiVLREiLSIm7UvqxFpAnEK4i_0V3fGXieiElx68cX22quZnf12Ht8AvElVnqTWamY-TkRsbClUninhtFUEsCNr6_4p59-yfj-_uJCn3uFW-bTK1ibWhtpODPvIP5IuyiQjhck_XV0L7hrF0VXfQmMZVpklIaxT9wbzKAKfuepoJ1liQjq5L5ppSufo3MO1yZxNlHIY8_7GtECb_wRI632nt_6_f7wBzzzixP1GRZ7DkhtvwrpHn-jXdrUJaydzBtfqBfzZRwLc2FKO46TE6uewJHyKx2RE9RDrGs0pjXxEewx73LHpRl3h28Hx4OjkHRIexlunLkd3yB4JTnjF3tRZdsSi56kYobtu2MaRXcI4noxF9WtC-oPtqngJP3qH3w--CN-3QRia7UyEiYmlSa3UZVRq5TRB0lLlQeystmHJFjXSQaplnBqt4yxV0hoCEjoLAqu12XsFK_Q1twWYazrxqEhx9_HYBplKbChjmxAsSZSMkw6ErdAK40nNubfGqFjQMbOgCxJ0UQu6kB14P3_nqqH0ePTpnVa6hV_eVbEQbQc-tPqxuP3waK8fH20bnkYEmpoEwx1YmU1_u114Ym5mw2rahdXPh_3Tsy4sf81Et1Z1up4Nzv8C3WgE9A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC2FgEQ4JBCCMASoA0ggaDGe9Cx9QCgCnMWLkBJQbpPeRrEwduIxRPmFfAzfSNUstkAitxw4z3SP1POq6lXXBvA81mkUO2e483EkpHW50GmihTdOE8EOnSvnp3ztJYNBenSkPi_Br6YWhtMqG51YKmo3sXxH_pawqKKEAJO-Pz0TPDWKo6vNCI0KFl1_cU4uW_Fu7yP93xdh2Pl0-GFX1FMFhKXVM9GOrFQ2dsrkYW60N0SYcp0G0jvj2jnLe2iC2CgZW2NkEmvlLJk5kwSBM8Zu0b434KbcShOWq24i5lEL9vHK6CppfmJWaV2kU5XqkZ_FtdCcvRRz2PRPQ7hgt38FZEs711n7307oLqzWjBq3KxG4B0t-vA5rNbvGWncV63CnP-9QW9yHy20khwKbluo4ybE4GebEv3GfjIQZYlmDOqWdd8iGckQBq2nbBb482D_Y6b9C4vt47vW30QXyjQsn9GJn6h1fNGPdh2OE_qzqpo585Y3jyVgU3yckH9hI_QZ8uZbzeQDL9DX_EDA15NHpUPN0demCREeuraSLiHZFWsmoBe0GJJmtm7bz7JBRtmg3zcDKCFhZCaxMteD1fM1p1bLkyrc3GzRltfoqsgWUWvCmwePi8b93e3T1bs_g9u5hv5f19gbdx7ASEkGskik3YXk2_eGfwC37czYspk9LwUI4vm6c_gZkx2MJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VWiF6KOVRkRbKHDgUUSuOWT_2iIBQKERIKYibtS-rESGBOG3Vv8CvZsaPpEUtEuK6Xu_a2pnZb3dmvgHYjFQSRtZqZj4OPWFs5qkkVp7TVhHADqwt6qdcnMSdTnJ5Kc_-yOIvot1rl2SZ08AsTYNx88ZmzWniG51aOLOYY4EidkLOwEvBgfR8Xu9eTPwIfOoq_J1kiwnrJFXazL_H-HtrmuLNBy7SYudpLzz_m9_Cmwp14m4pJovwwg2WYKFCoFjpd05NdZGHum0JXp9OiF3zZbjbRcLhWDOR4zDD_HsvI9iKx2RbdQ-L1M0RTXZIWw9fxGNZpDrHT93j7uHpFhJMxl9OXfV_I19UcBwstkfO8v0sVvQVfXS3JQk58k0xDoYDL78eklhhrSwrcN4--Lb3xavKOXiG9HzstUIjpIms1FmQaeU0IdVMJb5wVttWxoY20H6kpYiM1iKOlLSG8IWOfd9qbXbewSzN5lYBE00HIRUoLkourB-r0LaksCGhlVBJETagVa9kaiqucy650U-nLM28GimtRlqsRiobsD1556Zk-ni091otIGml9XlK9lKGMf1s0oDPtUBMH_9_tPdP674Bc2f77fTkqPP1A8wHBLPKkMQ1mB2Pfrh1eGV-jnv56GOhDPebwwlp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+approach+of+shifted+Jacobi+spectral+Galerkin+methods+%28SJSGM%29+for+weakly+singular+Fredholm+integral+equation+with+non-smooth+solution&rft.jtitle=Numerical+algorithms&rft.au=Kayal%2C+Arnab&rft.au=Mandal%2C+Moumita&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=96&rft.issue=4&rft.spage=1553&rft.epage=1582&rft_id=info:doi/10.1007%2Fs11075-023-01677-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon