Grade Control with Ensembled Machine Learning: A Comparative Case Study at the Carmen de Andacollo Copper Mine

The main goal of grade control is the prediction of material destination based on all available data. The common approach to grade control is based on estimated maps obtained through kriging, inverse distance estimation, or nearest neighbor; however, capturing complex relations from data is not stra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Natural resources research (New York, N.Y.) Ročník 31; číslo 2; s. 785 - 800
Hlavní autoři: da Silva, Camilla Zacche, Nisenson, Jed, Boisvert, Jeff
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2022
Springer Nature B.V
Témata:
ISSN:1520-7439, 1573-8981
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The main goal of grade control is the prediction of material destination based on all available data. The common approach to grade control is based on estimated maps obtained through kriging, inverse distance estimation, or nearest neighbor; however, capturing complex relations from data is not straightforward with such methodologies. Machine learning algorithms provide flexibility and simplicity when integrating data and incorporating complex patterns that cannot be easily accounted for with geostatistical workflows, leading to higher model accuracy and promotes better decision making. The methodology implemented in this case study uses machine learning algorithms to model copper grade, which is incorporated in an intrinsic collocated co-kriging framework as secondary information to generate a final grade model. The workflow presented (1) is not more difficult to implement compared to ordinary kriging, (2) allows for automatic data incorporation in a geostatistical framework and (3) improves grade control decision-making when compared to common approaches. The workflow is demonstrated on 10 blasts from Teck Resources Limited’s Carmen de Andacollo copper mine in Chile and is compared to ordinary kriging and inverse distance. Two machine learning algorithms are implemented and evaluated for grade control decision-making. The algorithms considered are (1) an ensemble of radial basis function neural networks and (2) an ensemble of support vector regressors. These two algorithms are used to obtain an exhaustive secondary model used in copper grade estimation. Incorporating radial basis function neural networks improves the quality of the classified model, with average classification accuracy of 89% over 10 blasts and can reduce the volume of misclassified material on average over 10 blasts by 7% and 1% when compared to inverse distance, ordinary kriging and support vector regressor approach, respectively.
AbstractList The main goal of grade control is the prediction of material destination based on all available data. The common approach to grade control is based on estimated maps obtained through kriging, inverse distance estimation, or nearest neighbor; however, capturing complex relations from data is not straightforward with such methodologies. Machine learning algorithms provide flexibility and simplicity when integrating data and incorporating complex patterns that cannot be easily accounted for with geostatistical workflows, leading to higher model accuracy and promotes better decision making. The methodology implemented in this case study uses machine learning algorithms to model copper grade, which is incorporated in an intrinsic collocated co-kriging framework as secondary information to generate a final grade model. The workflow presented (1) is not more difficult to implement compared to ordinary kriging, (2) allows for automatic data incorporation in a geostatistical framework and (3) improves grade control decision-making when compared to common approaches. The workflow is demonstrated on 10 blasts from Teck Resources Limited’s Carmen de Andacollo copper mine in Chile and is compared to ordinary kriging and inverse distance. Two machine learning algorithms are implemented and evaluated for grade control decision-making. The algorithms considered are (1) an ensemble of radial basis function neural networks and (2) an ensemble of support vector regressors. These two algorithms are used to obtain an exhaustive secondary model used in copper grade estimation. Incorporating radial basis function neural networks improves the quality of the classified model, with average classification accuracy of 89% over 10 blasts and can reduce the volume of misclassified material on average over 10 blasts by 7% and 1% when compared to inverse distance, ordinary kriging and support vector regressor approach, respectively.
Author da Silva, Camilla Zacche
Boisvert, Jeff
Nisenson, Jed
Author_xml – sequence: 1
  givenname: Camilla Zacche
  orcidid: 0000-0003-4227-3149
  surname: da Silva
  fullname: da Silva, Camilla Zacche
  email: cdasilva@ualberta.ca
  organization: Department of Civil and Environmental Engineering, University of Alberta
– sequence: 2
  givenname: Jed
  surname: Nisenson
  fullname: Nisenson, Jed
  organization: Teck Resources Limited
– sequence: 3
  givenname: Jeff
  surname: Boisvert
  fullname: Boisvert, Jeff
  organization: Department of Civil and Environmental Engineering, University of Alberta
BookMark eNp9kM1LwzAchoNMcJv-A54Cnqv5WNrE2xhzChMP6jmkSbp1dGlNMmX_vakVBA875YP3eX8_ngkYudZZAK4xusUIFXcBY8RohgjJ0puIjJ-BMWYFzbjgeNTfCcqKGRUXYBLCDiWIcjYGbuWVsXDRuujbBn7VcQuXLth92VgDn5Xe1s7CtVXe1W5zD-cpuu-UV7H-TJgKFr7GgzlCFWHc9j9-bx1MlXNnlG6bpk1E11kPn1PTJTivVBPs1e85Be8Py7fFY7Z-WT0t5utMUyxihhnOS8EKpGdVPquMEFrhghg-s4pzzXRVGqErJjDXhHAlRMlMTqoCM6UwNXQKbobezrcfBxui3LUH79JISRJEaV7kKKXIkNK-DcHbSna-3it_lBjJ3qscvMrkVf54lTxB_B-k65h09AZV3ZxG6YCGNMdtrP_b6gT1DXyxjhg
CitedBy_id crossref_primary_10_1016_j_coal_2023_104328
crossref_primary_10_1016_j_resourpol_2023_103340
crossref_primary_10_3390_min15010044
crossref_primary_10_1007_s11004_024_10172_3
crossref_primary_10_1016_j_asoc_2025_113580
crossref_primary_10_2118_208885_PA
Cites_doi 10.1190/segam2018-2997218.1
10.3390/ijgi8040174
10.1007/BF02083491
10.1371/journal.pone.0205872
10.1016/j.petrol.2012.03.019
10.1007/s10852-005-9020-3
10.1007/s11004-005-6660-9
10.1179/1743286314Y.0000000062
10.1007/s11004-010-9264-y
10.1016/j.aca.2013.04.034
10.1007/BF02089242
10.1007/BF02478259
10.1080/14749009.2017.1363991
10.1016/j.egypro.2019.01.219
10.1007/978-1-4302-5990-9
10.1016/j.neucom.2017.01.016
10.1007/s11053-010-9115-z
10.1016/j.ecolind.2014.04.003
10.1023/A:1007553013388
10.1007/s42461-019-0072-8
10.1007/s11053-020-09628-0
10.1016/j.envsoft.2003.03.004
10.1016/j.ins.2017.10.049
10.1007/978-1-4757-2440-0
10.1007/s10596-018-9758-0
10.1016/S0893-6080(05)80023-1
10.1016/j.petrol.2009.08.001
10.2118/24742-MS
10.2112/SI90-023.1
10.5120/ijca2017914643
10.7717/peerj.5518
ContentType Journal Article
Copyright International Association for Mathematical Geosciences 2022
International Association for Mathematical Geosciences 2022.
Copyright_xml – notice: International Association for Mathematical Geosciences 2022
– notice: International Association for Mathematical Geosciences 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOI 10.1007/s11053-022-10029-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Geology
Physics
Computer Science
EISSN 1573-8981
EndPage 800
ExternalDocumentID 10_1007_s11053_022_10029_8
GrantInformation_xml – fundername: Mitacs
  grantid: IT16277
  funderid: http://dx.doi.org/10.13039/501100004489
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PATMY
PCBAR
PDBOC
PF0
PT4
PT5
PYCSY
QOK
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-1516b9570c4f64fd99ca172d84ea88c5cfbd9cf5918c228a99b5d62f715aa13d3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000763818700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-7439
IngestDate Wed Nov 05 01:47:05 EST 2025
Sat Nov 29 06:27:46 EST 2025
Tue Nov 18 22:22:49 EST 2025
Fri Feb 21 02:47:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Support vector regression
Collocated co-kriging
Short term modeling
Neural networks
Kriging
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1516b9570c4f64fd99ca172d84ea88c5cfbd9cf5918c228a99b5d62f715aa13d3
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0003-4227-3149
PQID 2918336760
PQPubID 2043663
PageCount 16
ParticipantIDs proquest_journals_2918336760
crossref_primary_10_1007_s11053_022_10029_8
crossref_citationtrail_10_1007_s11053_022_10029_8
springer_journals_10_1007_s11053_022_10029_8
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Official Journal of the International Association for Mathematical Geosciences
PublicationTitle Natural resources research (New York, N.Y.)
PublicationTitleAbbrev Nat Resour Res
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ChatterjeeSBandopahyaySMuchacaDOre grade estimation using a genetic algorithm and clustering based ensemble neural networksMathematical Geosciences20104230932610.1007/s11004-010-9264-y
Larrondo, P., Neufeld, C. T., Deutsch, C. V. (2003). VARFIT: A program for semiautomatic variogram modeling. 5th CCG Annual report. Alberta, Canada.
PedregosaFVoroquauxGGramfortAMichelVThirionBGriselODuchenaryEScikit-learn: ML in pythonJournal of ML2011128528252830
Almeida, A. S. (1993). Joint Simulation of multiple variables with a Markov-type coregionalization model. PhD Thesis. Stanford University.
JafrastehBFathianpourNA hybrid simultaneous perturbation artificial bee colony and back-propagation algorithm for training a local linear radial basis neural network on ore grade estimationNeurocomputing201723521722710.1016/j.neucom.2017.01.016
Xu, W., Tran, T. T., Srivastava, R. M., & Journel, A. G. (1992). Integrating seismic data in reservoir modelling: The collocated cokriging alternative. Society of Petroleum Engineers, pp. 833–842.
ChenLRenCLiLWangYZhangBWangZLiLA comparative assessment of geostatistical, machine learning, and hybrid approaches for mapping topsoil organic carbon contentISPRS International Journal of Geo-Information20198417410.3390/ijgi8040174
WittenIHFrankEHallMAPalCJEnsemble learningData mining20174Springer
Deutsch, J. (2015). Variogram program refresh. 17th CCG Annual report, Alberta, Canada.
DowdPASaraçCA NN approach to geostatistical simulationMathematical Geology19942649150310.1007/BF02083491
VapnikVNThe nature of statistical learning theory1995Springer10.1007/978-1-4757-2440-0
VasylchukYVDeutschCVImproved grade control in open pit minesMining Technology20181272849110.1080/14749009.2017.1363991
ChandraAYaoXEnsemble learning using multi-objective evolutionary algorithmJournal of Mathematical Modelling and Algorithms2006541744510.1007/s10852-005-9020-3
BabakODeutschCVImproved spatial modeling by merging multiple secondary for intrinsic collocated cokrigingJournal of Petroleum Science and Engineering200969110.1016/j.petrol.2009.08.001
McCullochWSPittsWA logical calculus of the ideas immanent in nervous activityBulletin of Mathematical Biophysics19435411513310.1007/BF02478259
SchapireREThe strength of weak learnabilityMachine Learning199052197227
VapnikVNStatistical learning theory1998Wiley
GangappaMMaiCKSammulalPTechniques for machine learning based spatial data analysis: Research directionsInternational Journal of Computer Applications2017170191310.5120/ijca2017914643
TahmasebiPHezarkhaniAA fast and independent architecture of artificial NN for permeability predictionJournal of Petroleum Science and Engineering20128611812610.1016/j.petrol.2012.03.019
WalchACastelloRMohajeriNGuinardFKanevskiMScartezziniJLSpatio-temporal modelling and uncertainty estimation of hourly global solar irradiance using extreme learning machinesEnergy Procedia20191586378638310.1016/j.egypro.2019.01.219
Raschka, S. (2018). Model evaluation, model selection, and algorithm selection in machine learning. Technical report, University of Wisconsin-Maddison. https://arxiv.org/1811.12808
VasylchukYVDeutschCVOptimization of surface mining dig limits with a practical heuristic algorithmMining, Metallurgy and Exploration201936477378410.1007/s42461-019-0072-8
MaZWangPGaoZWangRKhalighiKEnsemble of machine learning algorithms using the stacked generalization approach to estimate the warfarin dosePLoS ONE20191310e020587210.1371/journal.pone.0205872
SamsonMDeutschCVA hybrid estimation technique using elliptical radial basis neural networks and cokrigingMathematical Geosciences202110.1016/j.ins.2017.10.049
WolpertDHStacked generalizationNeural Networks19925224125910.1016/S0893-6080(05)80023-1
Kapagerdis, I. K. (1999). Application of NNs systems to grade estimation from exploration data. (PhD). University of Nottingham.
LiSSariYAKumralMOptimization of mining-mineral processing integration using unsupervised machine learning algorithmsNatural Resources Research2020293035304610.1007/s11053-020-09628-0
TodeschiniRBallabioDConsonniVSahigaraFFilzmoserPLocally centred Mahalanobis distance: A new distance measure with salient features towards outlier detectionAnalytica Chimica Acta20137871910.1016/j.aca.2013.04.034
AggarwalCCNNs and deep learning2018Springer International Publishing
HenglTNussbaumMWrightMNHeuvelinkGBMGralerBRandom Forest as a generic framework for predictive modeling of spatial and spatio-temporal variablesPeerJ20186e551810.7717/peerj.5518
SamantaBRadial basis function network for ore grade estimationNatural Resources and Research20101929110210.1007/s11053-010-9115-z
AlmeidaASJournelAGJoint simulation of multiple variables with a Markov-type coregionalization modelMathematical Geology19942656558810.1007/BF02089242
AwadMKahnnaREfficient learning machines: Theories, concepts, and applications for engineers and system designers2015Apress Open10.1007/978-1-4302-5990-9
Costa, J. F. C. L. (1997). Developments in recoverable reserves estimation and ore body modelling. PhD thesis. University of Queensland. Australia.
VerlyGGrade control classification of ore and waste: A critical review of estimation and simulation-based proceduresMathematical Geology20053745147510.1007/s11004-005-6660-9
ParkNGeostatistical integration of field measurements and multi-sensor remote sensing images for spatial prediction of grain size of intertidal surface sedimentsJournal of Coastal Research20199019019610.2112/SI90-023.1
WittenIHFrankEHallMAData mining – practical machine learning tools and techniques20113Morgan Kaufman Publishers
DaiFZhouQLvZWangXLiuGSpatial prediction of soil organic matter content integrating artificial NN and OK in Tibetan PlateauEcological Indicators20144518419410.1016/j.ecolind.2014.04.003
JafrastehBFathianpurNSuarezAComparison of machine learning methods for copper ore grade estimationComputational Geosciences2018221371138810.1007/s10596-018-9758-0
JournelAMarkov model for cross-covariancesMathmatical Geology19993195596410.1023/A:1007553013388
KanevskiMParkinRPozdnukhovATimoninVMaignanMDemyanovVCanuSEnvironmental data mining and modeling based on machine learning algorithms and geostatisticsEnvironmental Modeling and Software200419984585510.1016/j.envsoft.2003.03.004
Breiman, L. (1994). Bagging predictors. Technical report no. 421. University of California at Berkeley.
Maniar, H., Srikanth, R., Kulkarni, M. S., Abubakar, A. (2018). Machine Learning methods in geoscience. Society of Exploration Geophysicists. International Exposition and 88th Annual Meeting. https://doi.org/10.1190/segam2018-2997218.1
DimitrakopoulosRGodoyMGrade control based on economic ore/waste classification functions and stochastic simulation: Examples, comparisons and applicationsMining Technology201412329010610.1179/1743286314Y.0000000062
Isaaks, E. H. (1990). The application of Monte Carlo methods to the analysis of spatially correlated data. PhD thesis. Stanford University, Unites States of America.
10029_CR30
A Walch (10029_CR41) 2019; 158
10029_CR2
M Samson (10029_CR32) 2021
P Tahmasebi (10029_CR34) 2012; 86
A Chandra (10029_CR7) 2006; 5
10029_CR12
10029_CR10
O Babak (10029_CR5) 2009; 69
IH Witten (10029_CR43) 2017
AS Almeida (10029_CR3) 1994; 26
M Awad (10029_CR4) 2015
S Chatterjee (10029_CR8) 2010; 42
WS McCulloch (10029_CR27) 1943; 5
RE Schapire (10029_CR33) 1990; 5
10029_CR17
B Samanta (10029_CR31) 2010; 19
A Journel (10029_CR20) 1999; 31
YV Vasylchuk (10029_CR38) 2018; 127
R Todeschini (10029_CR35) 2013; 787
VN Vapnik (10029_CR36) 1995
DH Wolpert (10029_CR44) 1992; 5
G Verly (10029_CR40) 2005; 37
10029_CR22
VN Vapnik (10029_CR37) 1998
T Hengl (10029_CR16) 2018; 6
10029_CR23
10029_CR45
F Dai (10029_CR11) 2014; 45
PA Dowd (10029_CR14) 1994; 26
N Park (10029_CR28) 2019; 90
10029_CR26
M Gangappa (10029_CR15) 2017; 170
L Chen (10029_CR9) 2019; 8
M Kanevski (10029_CR21) 2004; 19
S Li (10029_CR24) 2020; 29
Z Ma (10029_CR25) 2019; 13
B Jafrasteh (10029_CR18) 2017; 235
YV Vasylchuk (10029_CR39) 2019; 36
B Jafrasteh (10029_CR19) 2018; 22
F Pedregosa (10029_CR29) 2011; 12
R Dimitrakopoulos (10029_CR13) 2014; 123
CC Aggarwal (10029_CR1) 2018
IH Witten (10029_CR42) 2011
10029_CR6
References_xml – reference: SchapireREThe strength of weak learnabilityMachine Learning199052197227
– reference: WittenIHFrankEHallMAPalCJEnsemble learningData mining20174Springer
– reference: JafrastehBFathianpurNSuarezAComparison of machine learning methods for copper ore grade estimationComputational Geosciences2018221371138810.1007/s10596-018-9758-0
– reference: PedregosaFVoroquauxGGramfortAMichelVThirionBGriselODuchenaryEScikit-learn: ML in pythonJournal of ML2011128528252830
– reference: Breiman, L. (1994). Bagging predictors. Technical report no. 421. University of California at Berkeley.
– reference: AwadMKahnnaREfficient learning machines: Theories, concepts, and applications for engineers and system designers2015Apress Open10.1007/978-1-4302-5990-9
– reference: DaiFZhouQLvZWangXLiuGSpatial prediction of soil organic matter content integrating artificial NN and OK in Tibetan PlateauEcological Indicators20144518419410.1016/j.ecolind.2014.04.003
– reference: Kapagerdis, I. K. (1999). Application of NNs systems to grade estimation from exploration data. (PhD). University of Nottingham.
– reference: VapnikVNThe nature of statistical learning theory1995Springer10.1007/978-1-4757-2440-0
– reference: VasylchukYVDeutschCVImproved grade control in open pit minesMining Technology20181272849110.1080/14749009.2017.1363991
– reference: AggarwalCCNNs and deep learning2018Springer International Publishing
– reference: WolpertDHStacked generalizationNeural Networks19925224125910.1016/S0893-6080(05)80023-1
– reference: Costa, J. F. C. L. (1997). Developments in recoverable reserves estimation and ore body modelling. PhD thesis. University of Queensland. Australia.
– reference: DimitrakopoulosRGodoyMGrade control based on economic ore/waste classification functions and stochastic simulation: Examples, comparisons and applicationsMining Technology201412329010610.1179/1743286314Y.0000000062
– reference: DowdPASaraçCA NN approach to geostatistical simulationMathematical Geology19942649150310.1007/BF02083491
– reference: AlmeidaASJournelAGJoint simulation of multiple variables with a Markov-type coregionalization modelMathematical Geology19942656558810.1007/BF02089242
– reference: SamantaBRadial basis function network for ore grade estimationNatural Resources and Research20101929110210.1007/s11053-010-9115-z
– reference: McCullochWSPittsWA logical calculus of the ideas immanent in nervous activityBulletin of Mathematical Biophysics19435411513310.1007/BF02478259
– reference: JafrastehBFathianpourNA hybrid simultaneous perturbation artificial bee colony and back-propagation algorithm for training a local linear radial basis neural network on ore grade estimationNeurocomputing201723521722710.1016/j.neucom.2017.01.016
– reference: JournelAMarkov model for cross-covariancesMathmatical Geology19993195596410.1023/A:1007553013388
– reference: GangappaMMaiCKSammulalPTechniques for machine learning based spatial data analysis: Research directionsInternational Journal of Computer Applications2017170191310.5120/ijca2017914643
– reference: WittenIHFrankEHallMAData mining – practical machine learning tools and techniques20113Morgan Kaufman Publishers
– reference: HenglTNussbaumMWrightMNHeuvelinkGBMGralerBRandom Forest as a generic framework for predictive modeling of spatial and spatio-temporal variablesPeerJ20186e551810.7717/peerj.5518
– reference: Larrondo, P., Neufeld, C. T., Deutsch, C. V. (2003). VARFIT: A program for semiautomatic variogram modeling. 5th CCG Annual report. Alberta, Canada.
– reference: WalchACastelloRMohajeriNGuinardFKanevskiMScartezziniJLSpatio-temporal modelling and uncertainty estimation of hourly global solar irradiance using extreme learning machinesEnergy Procedia20191586378638310.1016/j.egypro.2019.01.219
– reference: ChenLRenCLiLWangYZhangBWangZLiLA comparative assessment of geostatistical, machine learning, and hybrid approaches for mapping topsoil organic carbon contentISPRS International Journal of Geo-Information20198417410.3390/ijgi8040174
– reference: LiSSariYAKumralMOptimization of mining-mineral processing integration using unsupervised machine learning algorithmsNatural Resources Research2020293035304610.1007/s11053-020-09628-0
– reference: Maniar, H., Srikanth, R., Kulkarni, M. S., Abubakar, A. (2018). Machine Learning methods in geoscience. Society of Exploration Geophysicists. International Exposition and 88th Annual Meeting. https://doi.org/10.1190/segam2018-2997218.1
– reference: Isaaks, E. H. (1990). The application of Monte Carlo methods to the analysis of spatially correlated data. PhD thesis. Stanford University, Unites States of America.
– reference: Deutsch, J. (2015). Variogram program refresh. 17th CCG Annual report, Alberta, Canada.
– reference: KanevskiMParkinRPozdnukhovATimoninVMaignanMDemyanovVCanuSEnvironmental data mining and modeling based on machine learning algorithms and geostatisticsEnvironmental Modeling and Software200419984585510.1016/j.envsoft.2003.03.004
– reference: TahmasebiPHezarkhaniAA fast and independent architecture of artificial NN for permeability predictionJournal of Petroleum Science and Engineering20128611812610.1016/j.petrol.2012.03.019
– reference: SamsonMDeutschCVA hybrid estimation technique using elliptical radial basis neural networks and cokrigingMathematical Geosciences202110.1016/j.ins.2017.10.049
– reference: VasylchukYVDeutschCVOptimization of surface mining dig limits with a practical heuristic algorithmMining, Metallurgy and Exploration201936477378410.1007/s42461-019-0072-8
– reference: VerlyGGrade control classification of ore and waste: A critical review of estimation and simulation-based proceduresMathematical Geology20053745147510.1007/s11004-005-6660-9
– reference: BabakODeutschCVImproved spatial modeling by merging multiple secondary for intrinsic collocated cokrigingJournal of Petroleum Science and Engineering200969110.1016/j.petrol.2009.08.001
– reference: Raschka, S. (2018). Model evaluation, model selection, and algorithm selection in machine learning. Technical report, University of Wisconsin-Maddison. https://arxiv.org/1811.12808
– reference: TodeschiniRBallabioDConsonniVSahigaraFFilzmoserPLocally centred Mahalanobis distance: A new distance measure with salient features towards outlier detectionAnalytica Chimica Acta20137871910.1016/j.aca.2013.04.034
– reference: VapnikVNStatistical learning theory1998Wiley
– reference: MaZWangPGaoZWangRKhalighiKEnsemble of machine learning algorithms using the stacked generalization approach to estimate the warfarin dosePLoS ONE20191310e020587210.1371/journal.pone.0205872
– reference: ParkNGeostatistical integration of field measurements and multi-sensor remote sensing images for spatial prediction of grain size of intertidal surface sedimentsJournal of Coastal Research20199019019610.2112/SI90-023.1
– reference: Almeida, A. S. (1993). Joint Simulation of multiple variables with a Markov-type coregionalization model. PhD Thesis. Stanford University.
– reference: ChandraAYaoXEnsemble learning using multi-objective evolutionary algorithmJournal of Mathematical Modelling and Algorithms2006541744510.1007/s10852-005-9020-3
– reference: Xu, W., Tran, T. T., Srivastava, R. M., & Journel, A. G. (1992). Integrating seismic data in reservoir modelling: The collocated cokriging alternative. Society of Petroleum Engineers, pp. 833–842.
– reference: ChatterjeeSBandopahyaySMuchacaDOre grade estimation using a genetic algorithm and clustering based ensemble neural networksMathematical Geosciences20104230932610.1007/s11004-010-9264-y
– ident: 10029_CR30
– ident: 10029_CR26
  doi: 10.1190/segam2018-2997218.1
– volume-title: NNs and deep learning
  year: 2018
  ident: 10029_CR1
– volume: 8
  start-page: 174
  issue: 4
  year: 2019
  ident: 10029_CR9
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi8040174
– volume: 26
  start-page: 491
  year: 1994
  ident: 10029_CR14
  publication-title: Mathematical Geology
  doi: 10.1007/BF02083491
– volume: 13
  start-page: e0205872
  issue: 10
  year: 2019
  ident: 10029_CR25
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0205872
– volume: 86
  start-page: 118
  year: 2012
  ident: 10029_CR34
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2012.03.019
– volume: 5
  start-page: 417
  year: 2006
  ident: 10029_CR7
  publication-title: Journal of Mathematical Modelling and Algorithms
  doi: 10.1007/s10852-005-9020-3
– volume: 37
  start-page: 451
  year: 2005
  ident: 10029_CR40
  publication-title: Mathematical Geology
  doi: 10.1007/s11004-005-6660-9
– volume: 123
  start-page: 90
  issue: 2
  year: 2014
  ident: 10029_CR13
  publication-title: Mining Technology
  doi: 10.1179/1743286314Y.0000000062
– volume: 42
  start-page: 309
  year: 2010
  ident: 10029_CR8
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-010-9264-y
– volume-title: Data mining
  year: 2017
  ident: 10029_CR43
– volume: 787
  start-page: 1
  year: 2013
  ident: 10029_CR35
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2013.04.034
– volume: 26
  start-page: 565
  year: 1994
  ident: 10029_CR3
  publication-title: Mathematical Geology
  doi: 10.1007/BF02089242
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 10029_CR27
  publication-title: Bulletin of Mathematical Biophysics
  doi: 10.1007/BF02478259
– ident: 10029_CR2
– volume: 127
  start-page: 84
  issue: 2
  year: 2018
  ident: 10029_CR38
  publication-title: Mining Technology
  doi: 10.1080/14749009.2017.1363991
– volume: 158
  start-page: 6378
  year: 2019
  ident: 10029_CR41
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.219
– ident: 10029_CR22
– ident: 10029_CR6
– volume-title: Efficient learning machines: Theories, concepts, and applications for engineers and system designers
  year: 2015
  ident: 10029_CR4
  doi: 10.1007/978-1-4302-5990-9
– volume: 235
  start-page: 217
  year: 2017
  ident: 10029_CR18
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.016
– volume: 19
  start-page: 91
  issue: 2
  year: 2010
  ident: 10029_CR31
  publication-title: Natural Resources and Research
  doi: 10.1007/s11053-010-9115-z
– volume: 5
  start-page: 197
  issue: 2
  year: 1990
  ident: 10029_CR33
  publication-title: Machine Learning
– volume: 45
  start-page: 184
  year: 2014
  ident: 10029_CR11
  publication-title: Ecological Indicators
  doi: 10.1016/j.ecolind.2014.04.003
– volume: 31
  start-page: 955
  year: 1999
  ident: 10029_CR20
  publication-title: Mathmatical Geology
  doi: 10.1023/A:1007553013388
– volume: 36
  start-page: 773
  issue: 4
  year: 2019
  ident: 10029_CR39
  publication-title: Mining, Metallurgy and Exploration
  doi: 10.1007/s42461-019-0072-8
– ident: 10029_CR10
– ident: 10029_CR12
– volume: 29
  start-page: 3035
  year: 2020
  ident: 10029_CR24
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09628-0
– volume: 12
  start-page: 2825
  issue: 85
  year: 2011
  ident: 10029_CR29
  publication-title: Journal of ML
– volume-title: Data mining – practical machine learning tools and techniques
  year: 2011
  ident: 10029_CR42
– ident: 10029_CR17
– volume: 19
  start-page: 845
  issue: 9
  year: 2004
  ident: 10029_CR21
  publication-title: Environmental Modeling and Software
  doi: 10.1016/j.envsoft.2003.03.004
– volume-title: Statistical learning theory
  year: 1998
  ident: 10029_CR37
– ident: 10029_CR23
– year: 2021
  ident: 10029_CR32
  publication-title: Mathematical Geosciences
  doi: 10.1016/j.ins.2017.10.049
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 10029_CR36
  doi: 10.1007/978-1-4757-2440-0
– volume: 22
  start-page: 1371
  year: 2018
  ident: 10029_CR19
  publication-title: Computational Geosciences
  doi: 10.1007/s10596-018-9758-0
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  ident: 10029_CR44
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 69
  start-page: 1
  year: 2009
  ident: 10029_CR5
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2009.08.001
– ident: 10029_CR45
  doi: 10.2118/24742-MS
– volume: 90
  start-page: 190
  year: 2019
  ident: 10029_CR28
  publication-title: Journal of Coastal Research
  doi: 10.2112/SI90-023.1
– volume: 170
  start-page: 9
  issue: 1
  year: 2017
  ident: 10029_CR15
  publication-title: International Journal of Computer Applications
  doi: 10.5120/ijca2017914643
– volume: 6
  start-page: e5518
  year: 2018
  ident: 10029_CR16
  publication-title: PeerJ
  doi: 10.7717/peerj.5518
SSID ssj0007385
Score 2.2967415
Snippet The main goal of grade control is the prediction of material destination based on all available data. The common approach to grade control is based on...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 785
SubjectTerms Algorithms
Case studies
Chemistry and Earth Sciences
Comparative studies
Computer Science
Copper
Decision making
Earth and Environmental Science
Earth Sciences
Fossil Fuels (incl. Carbon Capture)
Geography
Geostatistics
Learning algorithms
Machine learning
Mathematical Modeling and Industrial Mathematics
Mineral Resources
Model accuracy
Neural networks
Original Paper
Physics
Quality
Radial basis function
Statistics for Engineering
Sustainable Development
Workflow
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEB3UKujBb7FaJQdvurifbeJFaql6sYgo9LZkk6wIuq3bKvjvnUnTrgp68brZDLu8STLJvLwBOEp0GJlQBei8XOEGJUg8wYkBIEUmSCrQN9wWm2j1erzfF7fuwG3kaJXTOdFO1Hqg6Iz8NBTofCQv5p8PXz2qGkXZVVdCYx5qpFSGfl676PZu72ZzMWm1WMVU3CRR6O2uzUwuz2FoQTnM0AssCYR_X5qqePNHitSuPJdr__3mdVh1MSdrT5xkA-ZMsQkrX5QIN2Hpylb4_diC4qqU2rDOhMLO6JyWdYuRecmejWY3lntpmJNlfTxjbdapBMRZBxdFRtzEDybHDINLfFK-mIKhyTbu_sntBthjODQlu0FL2_Bw2b3vXHuuKIOncLSOPYwQmplIWr6K82acayGUxCBI89hIzlWi8kwLlSf46yoMuRQiS3QzzFtBImUQ6WgHFopBYXaBKcEVj3M_x6ZYZT7XJJ4TJ5HUkZ9FUR2CKR6pcorlVDjjOa20lgnDFDFMLYYpr8PxrM9wotfx59uNKXCpG7ujtEKtDidT6Kvm363t_W1tH5ZD8jZL-2nAwrh8MwewqN7HT6Py0HnuJ1Ig8L4
  priority: 102
  providerName: ProQuest
Title Grade Control with Ensembled Machine Learning: A Comparative Case Study at the Carmen de Andacollo Copper Mine
URI https://link.springer.com/article/10.1007/s11053-022-10029-8
https://www.proquest.com/docview/2918336760
Volume 31
WOSCitedRecordID wos000763818700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: PCBAR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: PATMY
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: KB.
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: RSV
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD54RX3wMhXnZeTBN630uiW-bWMqiEO84VtJk1SFrY51Cvv3nmSpVVFB30qbHEJykvOl-fIdgP1I-oHyhYfOSwVuULzIYVQzADhLmJYKdBU1ySYa3S69v2eX9lJYXrDdiyNJs1KXl90QCugzR9_xDGmDTsMshjuqEzZcXd-9r79an8WopOLGSMNte1Xmexufw1GJMb8ci5poc7Lyv3auwrJFl6Q5cYc1mFJZBVaKzA3ETuQKLH2QIazAgs2E_jiuwPypSfWrnww5VOTrkJ0OuVSkPWG1E_3rlnSyXPWTnpLkwtAxFbFKrQ_HpEnapaY4aWOcJJquOCZ8RBBv4pthX2UETTYzqWWze89YYzDAFl6gpQ24PenctM8cm6fBETiBRw6ChnrCooYrwrQeppIxwREXSRoqTqmIRJpIJtKIeVT4PuWMJZGs-2nDizj3Ahlswkz2nKktIIJRQcPUTfFTKBKXSq2nE0YBl4GbBEEVvGK4YmFFzHUujV5cyi_r7o-x-2PT_TGtwsF7ncFEwuPX0ruFF8R2Ouexj00PtLadW4XDYtTLzz9b2_5b8R1Y9LXjGGbQLsyMhi9qD-bE6-gpH9ZgttXpXl7VYPq8dVQzTv8G59z0xA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6VDjR42MYAUTaGH-CJBRInae1JCJXup7ZWPGzS3jLHdiakLi1pAfWf4m_kzkmWgbS97YHXOL4o9ue7s-_8HcDb2PDQch0geIXGDUoQe1JQBoCSqSSqQN8KV2yiNxqJ83P5tQW_67swlFZZ60SnqM1E0xn5Ry4RfEQv5n-efveoahRFV-sSGiUsju3iF27ZZp-OdnF-33G-v3c6OPSqqgKeRrjNPTRx3VTGPV9HWTfKjJRaoRU3IrJKCB3rLDVSZzF-T3MulJRpbLo86wWxUkFoQpT7AJaiEH1TCgJ_-XCt-YkZxvGz4paMHP3qkk55VQ8dGYqYci9wKSfib0PYeLf_BGSdndtf_d9GaA1WKo-a9csl8BRaNl-HJzd4Ftfh0YGrX7x4BvlBoYxlgzJBn9EpNNvLZ_YqHVvDhi6z1LKKdPZyh_XZoKFHZwM0-YwyLxdMzRm6zvikuLI5Q5H93BAD-HiCPaZTW7AhSnoOZ_fy6y-gnU9y-xKYlkKLKPMzbIp06gtD1EBRHCoT-mkYdiCo5z_RFR87lQUZJw2TNGEmQcwkDjOJ6MD76z7Tko3kzrc3a6AklWaaJQ1KOrBdQ61pvl3aq7ulvYHlw9PhSXJyNDregMeckO4SnDahPS9-2NfwUP-cf5sVW27NMLi4bwj-AaNUTM4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5BGdt4GFA2raPb_MAbRORna--tKm1BjKrSAPEWObYDk0qo2mxS__vduUnTIZg08RbF9slyzvFn-7vvAA4i7QfGVx46L1e4QfEiR3BiAEiRCJIKdA23ySbawyG_uRGjlSh-y3YvryQXMQ2k0pTlxxOdHleBbwgL6P7RdzxL4ODrsBESkZ726z-ul_9i0mqxiqm4SSLoXYTNPG3j76WpwpuPrkjtytPffnmfd-BdgTpZZ-Emu7BmsjpslxkdWDHB67C1Ik9YhzdFhvS7eR02BzYFMD1Z0qia7UE2mEptWHfBdmd0pMt62czcJ2Oj2YWlaRpWKLjefmMd1q20xlkX109GNMY5kzlDHIpvpvcmY2iyk2mS0x4_YIvJBHt4gZbew1W_d9k9dYr8DY7CiZ07CCZaiYjargrTVphqIZREvKR5aCTnKlJpooVKI-Fx5ftcCpFEuuWnbS-S0gt08AFq2UNmPgJTgisepm6KRaFKXK5JZyeMAqkDNwmCBnjlp4tVIW5OOTbGcSXLTMMf4_DHdvhj3oDDZZvJQtrjn7WbpUfExTSfxT52PSDNO7cBR6UHVMXPW_v0f9W_wuvRST_-fjY834e3PvmQJQ81oZZPf5nP8Er9zn_Opl-s9_8B9R_-Fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grade+Control+with+Ensembled+Machine+Learning%3A+A+Comparative+Case+Study+at+the+Carmen+de+Andacollo+Copper+Mine&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=da+Silva%2C+Camilla+Zacche&rft.au=Nisenson%2C+Jed&rft.au=Boisvert%2C+Jeff&rft.date=2022-04-01&rft.pub=Springer+US&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=31&rft.issue=2&rft.spage=785&rft.epage=800&rft_id=info:doi/10.1007%2Fs11053-022-10029-8&rft.externalDocID=10_1007_s11053_022_10029_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon