A Centered Convolutional Restricted Boltzmann Machine Optimized by Hybrid Atom Search Arithmetic Optimization Algorithm for Sentimental Analysis

Sentiment analysis uses natural language processing (NLP) to track online conversations and uncover additional information about a subject, business, or theme. Existing machine-learning algorithms are accurate and perform well, but they struggle to reduce computational time and cope with the noisy a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural processing letters Ročník 54; číslo 5; s. 4123 - 4151
Hlavní autoři: Karthik, E., Sethukarasi, T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2022
Springer Nature B.V
Témata:
ISSN:1370-4621, 1573-773X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Sentiment analysis uses natural language processing (NLP) to track online conversations and uncover additional information about a subject, business, or theme. Existing machine-learning algorithms are accurate and perform well, but they struggle to reduce computational time and cope with the noisy and high-dimensional feature space of social media data. To resolve these concerns, this paper introduced a Centered Convolutional Restricted Boltzmann Machines (CCRBM), a revolutionary deep learning technique for user behavioral sentimental analysis. The DBN architecture is mainly selected in this work due to its ability to extract in-depth sentimental features, dimensionality reduction, and higher classification accuracy. However, the improper parameter setting can lead to non-convergence, large randomness, and weak generalization capability. To tackle this issue, this work proposes a Hybrid Atom Search Arithmetic Optimization (HASAO) approach, which optimizes DBN parameters such as batch size and decay rate while minimizing DBN issues such as randomness and instability. The performance of the proposed model is analyzed by comparing it with different baseline models and the accuracy value above 90% for the nine datasets proves the efficiency of the proposed technique. When compared to the existing techniques, the proposed methodology offers improved accuracy and speedup capacity.
AbstractList Sentiment analysis uses natural language processing (NLP) to track online conversations and uncover additional information about a subject, business, or theme. Existing machine-learning algorithms are accurate and perform well, but they struggle to reduce computational time and cope with the noisy and high-dimensional feature space of social media data. To resolve these concerns, this paper introduced a Centered Convolutional Restricted Boltzmann Machines (CCRBM), a revolutionary deep learning technique for user behavioral sentimental analysis. The DBN architecture is mainly selected in this work due to its ability to extract in-depth sentimental features, dimensionality reduction, and higher classification accuracy. However, the improper parameter setting can lead to non-convergence, large randomness, and weak generalization capability. To tackle this issue, this work proposes a Hybrid Atom Search Arithmetic Optimization (HASAO) approach, which optimizes DBN parameters such as batch size and decay rate while minimizing DBN issues such as randomness and instability. The performance of the proposed model is analyzed by comparing it with different baseline models and the accuracy value above 90% for the nine datasets proves the efficiency of the proposed technique. When compared to the existing techniques, the proposed methodology offers improved accuracy and speedup capacity.
Author Sethukarasi, T.
Karthik, E.
Author_xml – sequence: 1
  givenname: E.
  surname: Karthik
  fullname: Karthik, E.
  email: ekarthik.phd@gmail.com, auphdpapers@gmail.com
  organization: Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram campus
– sequence: 2
  givenname: T.
  surname: Sethukarasi
  fullname: Sethukarasi, T.
  organization: Department of Computer Science and Engineering, R.M.K Engineering College
BookMark eNp9UE1LAzEUDKJgrf4BTwHPq3lJd9M9rsUvqBT8AG8hm6Ztym5Sk1RYf4U_2bRVBA-95AVm5s2bOUGH1lmN0DmQSyCEXwUAUrCMUJoB4SXP-AHqQc5Zxjl7O0x_xkk2KCgco5MQloQkGSU99FXhkbZRez3FI2c_XLOOxlnZ4CcdojcqJuDaNfGzldbiR6kWxmo8WUXTms-E1R2-72pvpriKrsXPWnq1wJU3cdHqaNQvVW7W4qqZuy2EZ84nsk1YepJdlTy7YMIpOprJJuizn9lHr7c3L6P7bDy5exhV40wxKGMGg5pJlUPJGaHAJaM1ySkoqaEgMs-LlJBTVbOcED3kfAZlUU9rXiqqi3pQsD662O1defe-TlnF0q19OiIIWsKQDXhZQmLRHUt5F4LXM7HyppW-E0DEpnmxa16k5sW2ecGTaPhPpEzc5o9emma_lO2kIfnYufZ_V-1RfQPnSJvf
CitedBy_id crossref_primary_10_1007_s11042_022_13702_5
crossref_primary_10_1007_s11831_023_09902_3
crossref_primary_10_1007_s11042_023_17084_0
crossref_primary_10_1088_1361_6501_ad8811
crossref_primary_10_1007_s11042_023_16314_9
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1007_s10115_025_02389_3
Cites_doi 10.7910/DVN/PDI7IN
10.1016/j.cma.2020.113609
10.1016/j.eswa.2019.112834
10.1016/j.techsoc.2016.10.003
10.1016/j.future.2020.10.027
10.1016/j.cogsys.2018.10.001
10.1007/s13042-020-01181-9
10.1109/TNN.2008.2000444
10.1016/j.bspc.2021.102480
10.1016/j.eswa.2018.03.055
10.1016/j.ipm.2020.102290
10.1609/icwsm.v14i1.7347
10.1007/s11227-021-04028-4
10.1109/ACCESS.2020.3028260
10.1016/j.jocs.2015.04.014
10.1109/ACCESS.2021.3053917
10.1016/j.knosys.2018.08.030
10.1109/IACC.2017.0186
10.1109/NGCT.2016.7877399
10.1016/j.knosys.2020.106091
10.4249/scholarpedia.5947
10.1016/j.ijhcs.2017.09.005
10.1016/j.comcom.2020.02.044
10.1016/j.neucom.2016.06.055
10.1016/j.future.2018.05.037
10.1016/j.patrec.2020.07.035
10.1016/j.knosys.2021.107332
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
Copyright Springer Nature B.V. Oct 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: Copyright Springer Nature B.V. Oct 2022
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
DOI 10.1007/s11063-022-10797-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Psychology
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
EndPage 4151
ExternalDocumentID 10_1007_s11063_022_10797_7
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PSYQQ
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
77I
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-14b3ac519730217a32b0521cae160a55600172cb3500e877f196bdb79c2e6b463
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000777065000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1370-4621
IngestDate Sat Oct 18 23:15:29 EDT 2025
Sat Nov 29 02:27:53 EST 2025
Tue Nov 18 22:25:29 EST 2025
Fri Feb 21 02:47:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Sentiment analysis
Hybrid optimization
Centered convolutional restricted Boltzmann machines
Social media
User behavioral analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-14b3ac519730217a32b0521cae160a55600172cb3500e877f196bdb79c2e6b463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918347991
PQPubID 2043838
PageCount 29
ParticipantIDs proquest_journals_2918347991
crossref_primary_10_1007_s11063_022_10797_7
crossref_citationtrail_10_1007_s11063_022_10797_7
springer_journals_10_1007_s11063_022_10797_7
PublicationCentury 2000
PublicationDate 20221000
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Srinivasa-Desikan, Bhargav. Natural Language Processing and Computational Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing Ltd, 2018.
BaccianellaSAndreaEFabrizioSSentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion miningLrec201010201022002204
ZhangLWangSLiuBDeep learning for sentiment analysis: a surveyWiley Interdisc Rev201884e1253
You Z, Wang J, Zhang X (2021) Conciseness is better: recurrent attention LSTM model for document-level sentiment analysis. Neurocomputing
MukherjeeSBalaPKSarcasm detection in microblogs using Naïve Bayes and fuzzy clusteringTechnol Soc201748192710.1016/j.techsoc.2016.10.003
Es-SaberyFHairAQadirJSainz-De-AbajoBGarcía-ZapirainBDe La Torre-DíezISentence-level classification using parallel fuzzy deep learning classifierIEEE Access20219179431798510.1109/ACCESS.2021.3053917
AbdalgaderKAl ShibliAExperimental results on customer reviews using lexicon-based word polarity identification methodIEEE Access2020817995517996910.1109/ACCESS.2020.3028260
AlhalabiWJariJussilaKJVisviziAQureshiHMiltiadisLytrasAreejMalibariAdhamRSSocial mining for terroristic behavior detection through Arabic tweets characterizationFutur Gener Comput Syst202111613214410.1016/j.future.2020.10.027
AbualigahLDiabatAMirjaliliSElazizMAGandomiAHThe arithmetic optimization algorithmComput Methods Appl Mech Eng2021376113609419929910.1016/j.cma.2020.113609
Trupthi M, Pabboju S, Narasimha G (2017) Sentiment analysis on twitter using streaming API. In: 2017 IEEE 7th International Advance Computing Conference (IACC), pp 915–919. IEEE.
Ji, Yu, Wen Wu, Shiyun Chen, Qin Chen, Wenxin Hu, and Liang He. (2020) Two-stage sentiment classification based on user-product interactive information. Knowledge-Based Systems 203: 106091.
Salakhutdinov R, Hinton G (2009) Deep boltzmann machines. In: Artificial Intelligence and Statistics, pp. 448–455. PMLR
GaoJYangJWangGLiMA novel feature extraction method for scene recognition based on centered convolutional restricted Boltzmann machinesNeurocomputing201621470871710.1016/j.neucom.2016.06.055
Baumgartner J, Savvas Z, Brian K, Megan S, Jeremy B (2020) The pushshift reddit dataset. In: Proceedings of the International AAAI Conference on Web and Social Media, vol 14, pp 830–839.
SundararajVAn efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithmInt J Intell Eng Syst201693117126
GohC-KTeohE-JTanKCHybrid multiobjective evolutionary design for artificial neural networksIEEE Trans Neural Netw20081991531154810.1109/TNN.2008.2000444
Alharbi ASM, de Doncker E (2019) Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information. Cogn Syst Res 54: 50-61.
ZhaoWWangLZhangZAtom search optimization and its application to solve a hydrogeologic parameter estimation problemKnowl-Based Syst201916328330410.1016/j.knosys.2018.08.030
Li, Da, RafalRzepka, Michal Ptaszynski, and Kenji Araki. (2020) HEMOS: A novel deep learning-based fine-grained humor detecting method for sentiment analysis of social media. Information Processing & Management 57(6): 102290.
Perikos I, Spyridon K, Ioannis H (2021) Sentiment analysis using novel and interpretable architectures of Hidden Markov Models. Knowl Based Syst 107332.
ChenLYanDWangFUser perception of sentiment-integrated critiquing in recommender systemsInt J Hum Comput Stud201912142010.1016/j.ijhcs.2017.09.005
Demographics of Social Media Users and Adoption in the United States (2021) Pew Research Center: Internet, Science & Tech, 05-Jun-2020. Retrieved February 13, 2021, from https://www.pewresearch.org/internet/fact-sheet/social-media
Littman J, Wrubel L, Kerchner D (2016) 2016 United States Presidential Election Tweet Ids. https://doi.org/10.7910/DVN/PDI7IN, Harvard Dataverse, V3
VashishthaSSebaSFuzzy rule based unsupervised sentiment analysis from social media postsExpert Syst Appl201913811283410.1016/j.eswa.2019.112834
ZhaoJZengDXiaoYCheLWangMUser personality prediction based on topic preference and sentiment analysis using LSTM modelPattern Recogn Lett202013839740210.1016/j.patrec.2020.07.035
HintonGEDeep belief networksScholarpedia200945594710.4249/scholarpedia.5947
KarthikESethukarasiTSarcastic user behavior classification and prediction from social media data using firebug swarm optimization-based long short-term memoryJ Supercomput20217845333535710.1007/s11227-021-04028-4
YooSoYeopSongJeInJeongOkRanSocial media contents based sentiment analysis and prediction systemExpert Syst Appl201810510211110.1016/j.eswa.2018.03.055
N, L. (2019, March 09). IMDB Dataset of 50K Movie Reviews. Retrieved from https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
AlamMAbidFGuangpeiCYunrongLVSocial media sentiment analysis through parallel dilated convolutional neural network for smart city applicationsComput Commun202015412913710.1016/j.comcom.2020.02.044
PapaJPRosaGHMaranaANScheirerWCoxDDModel selection for discriminative restricted Boltzmann machines through meta-heuristic techniquesJ Comput Sci20159141810.1016/j.jocs.2015.04.014
Rana S, Archana S (2016) Comparative analysis of sentiment orientation using SVM and Naive Bayes techniques. In: 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), pp. 106–111. IEEE
ZhaoWWangLZhangZA novel atom search optimization for dispersion coefficient estimation in groundwaterFutur Gener Comput Syst20199160161010.1016/j.future.2018.05.037
Yelp, I. (2020, March 26). Yelp Dataset. Retrieved from https://www.kaggle.com/yelp-dataset/yelp-dataset
Feng, Shi, Kaisong Song, Daling Wang, Wei Gao, and Yifei Zhang. (2020) InterSentiment: combining deep neural models on interaction and sentiment for review rating prediction. International Journal of Machine Learning and Cybernetics pp: 1–12.
Jose J, Gautam N, Tiwari M, Tiwari T, Suresh A, Sundararaj V, and ejeesh MR (2021) An image quality enhancement scheme employing adolescent identity search algorithm in the NSST domain for multimodal medical image fusion. In: Biomedical Signal Processing and Control, 66, p.102480.
10797_CR27
10797_CR5
L Chen (10797_CR14) 2019; 121
10797_CR28
W Zhao (10797_CR24) 2019; 163
10797_CR29
10797_CR3
JP Papa (10797_CR12) 2015; 9
10797_CR22
V Sundararaj (10797_CR35) 2016; 9
10797_CR1
M Alam (10797_CR4) 2020; 154
C-K Goh (10797_CR13) 2008; 19
10797_CR20
10797_CR21
E Karthik (10797_CR37) 2021; 78
L Abualigah (10797_CR26) 2021; 376
W Alhalabi (10797_CR19) 2021; 116
10797_CR15
W Zhao (10797_CR25) 2019; 91
10797_CR17
10797_CR33
J Zhao (10797_CR16) 2020; 138
F Es-Sabery (10797_CR34) 2021; 9
10797_CR36
10797_CR30
S Vashishtha (10797_CR6) 2019; 138
10797_CR31
K Abdalgader (10797_CR7) 2020; 8
L Zhang (10797_CR9) 2018; 8
10797_CR32
L Abualigah (10797_CR2) 2021; 376
S Mukherjee (10797_CR18) 2017; 48
SoYeop Yoo (10797_CR8) 2018; 105
J Gao (10797_CR10) 2016; 214
GE Hinton (10797_CR11) 2009; 4
S Baccianella (10797_CR23) 2010; 10
References_xml – reference: HintonGEDeep belief networksScholarpedia200945594710.4249/scholarpedia.5947
– reference: Perikos I, Spyridon K, Ioannis H (2021) Sentiment analysis using novel and interpretable architectures of Hidden Markov Models. Knowl Based Syst 107332.
– reference: Yelp, I. (2020, March 26). Yelp Dataset. Retrieved from https://www.kaggle.com/yelp-dataset/yelp-dataset
– reference: PapaJPRosaGHMaranaANScheirerWCoxDDModel selection for discriminative restricted Boltzmann machines through meta-heuristic techniquesJ Comput Sci20159141810.1016/j.jocs.2015.04.014
– reference: KarthikESethukarasiTSarcastic user behavior classification and prediction from social media data using firebug swarm optimization-based long short-term memoryJ Supercomput20217845333535710.1007/s11227-021-04028-4
– reference: MukherjeeSBalaPKSarcasm detection in microblogs using Naïve Bayes and fuzzy clusteringTechnol Soc201748192710.1016/j.techsoc.2016.10.003
– reference: Jose J, Gautam N, Tiwari M, Tiwari T, Suresh A, Sundararaj V, and ejeesh MR (2021) An image quality enhancement scheme employing adolescent identity search algorithm in the NSST domain for multimodal medical image fusion. In: Biomedical Signal Processing and Control, 66, p.102480.
– reference: Rana S, Archana S (2016) Comparative analysis of sentiment orientation using SVM and Naive Bayes techniques. In: 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), pp. 106–111. IEEE
– reference: ZhangLWangSLiuBDeep learning for sentiment analysis: a surveyWiley Interdisc Rev201884e1253
– reference: You Z, Wang J, Zhang X (2021) Conciseness is better: recurrent attention LSTM model for document-level sentiment analysis. Neurocomputing
– reference: ChenLYanDWangFUser perception of sentiment-integrated critiquing in recommender systemsInt J Hum Comput Stud201912142010.1016/j.ijhcs.2017.09.005
– reference: ZhaoJZengDXiaoYCheLWangMUser personality prediction based on topic preference and sentiment analysis using LSTM modelPattern Recogn Lett202013839740210.1016/j.patrec.2020.07.035
– reference: Li, Da, RafalRzepka, Michal Ptaszynski, and Kenji Araki. (2020) HEMOS: A novel deep learning-based fine-grained humor detecting method for sentiment analysis of social media. Information Processing & Management 57(6): 102290.
– reference: BaccianellaSAndreaEFabrizioSSentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion miningLrec201010201022002204
– reference: Baumgartner J, Savvas Z, Brian K, Megan S, Jeremy B (2020) The pushshift reddit dataset. In: Proceedings of the International AAAI Conference on Web and Social Media, vol 14, pp 830–839.
– reference: AlamMAbidFGuangpeiCYunrongLVSocial media sentiment analysis through parallel dilated convolutional neural network for smart city applicationsComput Commun202015412913710.1016/j.comcom.2020.02.044
– reference: YooSoYeopSongJeInJeongOkRanSocial media contents based sentiment analysis and prediction systemExpert Syst Appl201810510211110.1016/j.eswa.2018.03.055
– reference: AbualigahLDiabatAMirjaliliSElazizMAGandomiAHThe arithmetic optimization algorithmComput Methods Appl Mech Eng2021376113609419929910.1016/j.cma.2020.113609
– reference: AbdalgaderKAl ShibliAExperimental results on customer reviews using lexicon-based word polarity identification methodIEEE Access2020817995517996910.1109/ACCESS.2020.3028260
– reference: Feng, Shi, Kaisong Song, Daling Wang, Wei Gao, and Yifei Zhang. (2020) InterSentiment: combining deep neural models on interaction and sentiment for review rating prediction. International Journal of Machine Learning and Cybernetics pp: 1–12.
– reference: Trupthi M, Pabboju S, Narasimha G (2017) Sentiment analysis on twitter using streaming API. In: 2017 IEEE 7th International Advance Computing Conference (IACC), pp 915–919. IEEE.
– reference: Demographics of Social Media Users and Adoption in the United States (2021) Pew Research Center: Internet, Science & Tech, 05-Jun-2020. Retrieved February 13, 2021, from https://www.pewresearch.org/internet/fact-sheet/social-media/
– reference: N, L. (2019, March 09). IMDB Dataset of 50K Movie Reviews. Retrieved from https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
– reference: GohC-KTeohE-JTanKCHybrid multiobjective evolutionary design for artificial neural networksIEEE Trans Neural Netw20081991531154810.1109/TNN.2008.2000444
– reference: ZhaoWWangLZhangZAtom search optimization and its application to solve a hydrogeologic parameter estimation problemKnowl-Based Syst201916328330410.1016/j.knosys.2018.08.030
– reference: Srinivasa-Desikan, Bhargav. Natural Language Processing and Computational Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing Ltd, 2018.
– reference: Alharbi ASM, de Doncker E (2019) Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information. Cogn Syst Res 54: 50-61.
– reference: Littman J, Wrubel L, Kerchner D (2016) 2016 United States Presidential Election Tweet Ids. https://doi.org/10.7910/DVN/PDI7IN, Harvard Dataverse, V3
– reference: Es-SaberyFHairAQadirJSainz-De-AbajoBGarcía-ZapirainBDe La Torre-DíezISentence-level classification using parallel fuzzy deep learning classifierIEEE Access20219179431798510.1109/ACCESS.2021.3053917
– reference: ZhaoWWangLZhangZA novel atom search optimization for dispersion coefficient estimation in groundwaterFutur Gener Comput Syst20199160161010.1016/j.future.2018.05.037
– reference: GaoJYangJWangGLiMA novel feature extraction method for scene recognition based on centered convolutional restricted Boltzmann machinesNeurocomputing201621470871710.1016/j.neucom.2016.06.055
– reference: AlhalabiWJariJussilaKJVisviziAQureshiHMiltiadisLytrasAreejMalibariAdhamRSSocial mining for terroristic behavior detection through Arabic tweets characterizationFutur Gener Comput Syst202111613214410.1016/j.future.2020.10.027
– reference: Salakhutdinov R, Hinton G (2009) Deep boltzmann machines. In: Artificial Intelligence and Statistics, pp. 448–455. PMLR
– reference: SundararajVAn efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithmInt J Intell Eng Syst201693117126
– reference: Ji, Yu, Wen Wu, Shiyun Chen, Qin Chen, Wenxin Hu, and Liang He. (2020) Two-stage sentiment classification based on user-product interactive information. Knowledge-Based Systems 203: 106091.
– reference: VashishthaSSebaSFuzzy rule based unsupervised sentiment analysis from social media postsExpert Syst Appl201913811283410.1016/j.eswa.2019.112834
– ident: 10797_CR31
  doi: 10.7910/DVN/PDI7IN
– ident: 10797_CR33
– ident: 10797_CR29
– volume: 9
  start-page: 117
  issue: 3
  year: 2016
  ident: 10797_CR35
  publication-title: Int J Intell Eng Syst
– volume: 376
  start-page: 113609
  year: 2021
  ident: 10797_CR2
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– volume: 138
  start-page: 112834
  year: 2019
  ident: 10797_CR6
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.112834
– volume: 48
  start-page: 19
  year: 2017
  ident: 10797_CR18
  publication-title: Technol Soc
  doi: 10.1016/j.techsoc.2016.10.003
– volume: 116
  start-page: 132
  year: 2021
  ident: 10797_CR19
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2020.10.027
– volume: 10
  start-page: 2200
  issue: 2010
  year: 2010
  ident: 10797_CR23
  publication-title: Lrec
– ident: 10797_CR15
  doi: 10.1016/j.cogsys.2018.10.001
– volume: 376
  start-page: 113609
  year: 2021
  ident: 10797_CR26
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– ident: 10797_CR21
  doi: 10.1007/s13042-020-01181-9
– volume: 8
  start-page: e1253
  issue: 4
  year: 2018
  ident: 10797_CR9
  publication-title: Wiley Interdisc Rev
– volume: 19
  start-page: 1531
  issue: 9
  year: 2008
  ident: 10797_CR13
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2000444
– ident: 10797_CR36
  doi: 10.1016/j.bspc.2021.102480
– volume: 105
  start-page: 102
  year: 2018
  ident: 10797_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.03.055
– ident: 10797_CR20
  doi: 10.1016/j.ipm.2020.102290
– ident: 10797_CR28
  doi: 10.1609/icwsm.v14i1.7347
– volume: 78
  start-page: 5333
  issue: 4
  year: 2021
  ident: 10797_CR37
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04028-4
– volume: 8
  start-page: 179955
  year: 2020
  ident: 10797_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028260
– volume: 9
  start-page: 14
  year: 2015
  ident: 10797_CR12
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2015.04.014
– volume: 9
  start-page: 17943
  year: 2021
  ident: 10797_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053917
– volume: 163
  start-page: 283
  year: 2019
  ident: 10797_CR24
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.08.030
– ident: 10797_CR27
  doi: 10.1109/IACC.2017.0186
– ident: 10797_CR30
– ident: 10797_CR5
  doi: 10.1109/NGCT.2016.7877399
– ident: 10797_CR3
– ident: 10797_CR17
  doi: 10.1016/j.knosys.2020.106091
– ident: 10797_CR22
– volume: 4
  start-page: 5947
  issue: 5
  year: 2009
  ident: 10797_CR11
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.5947
– ident: 10797_CR1
– volume: 121
  start-page: 4
  year: 2019
  ident: 10797_CR14
  publication-title: Int J Hum Comput Stud
  doi: 10.1016/j.ijhcs.2017.09.005
– volume: 154
  start-page: 129
  year: 2020
  ident: 10797_CR4
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2020.02.044
– volume: 214
  start-page: 708
  year: 2016
  ident: 10797_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.055
– volume: 91
  start-page: 601
  year: 2019
  ident: 10797_CR25
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2018.05.037
– volume: 138
  start-page: 397
  year: 2020
  ident: 10797_CR16
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2020.07.035
– ident: 10797_CR32
  doi: 10.1016/j.knosys.2021.107332
SSID ssj0010020
Score 2.358177
Snippet Sentiment analysis uses natural language processing (NLP) to track online conversations and uncover additional information about a subject, business, or theme....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4123
SubjectTerms Accuracy
Algorithms
Arithmetic
Artificial Intelligence
Complex Systems
Computational Intelligence
Computer Science
Computing time
Data mining
Datasets
Decay rate
Deep learning
Machine learning
Mathematical models
Natural language processing
Neural networks
Optimization
Parameters
Randomness
Sentiment analysis
Social networks
Stability analysis
User behavior
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYo9NBLKbRVtwXkQ2_Fqu1k4_iEUgRaCQFVBdLeIttx25V2E8qmSLu_oj-ZGcchaiW49OxHIs0347Hn8RHyURg4E0zimNLaMrB-ntkMW-77PAFvOdO2MoFsQl1c5NOp_hof3JYxrbK3icFQV43DN_LPUgP4UthRHN38YsgahdHVSKHxjGwJKQXi_EyxhygC-kLhwqU4SzMpYtFMVzoHdyGMYEowREorpv4-mAZv858AaTh3Trf_949fkZfR46RFB5EdsuHrXbLdsznQqNyvyZ-C4lMvcnfS46a-i5iEpd88kns48E3pl2berhemrul5yML09BJszmK2hjG7opMVFoDRom0WtEtkhu_O2p8LLJXspwYs0GL-owlDFNxmmFy3kWeA9n1S3pDr05Or4wmLfA3MgSK3TKQ2MQ4rYRO86ZhEWiwNdsaLjJtx8K2UdDYZc-5zpb6D9tvKKu2kz2yaJW_JZt3U_h2hOU9dmuVujP2RtK5yyzPurRxbQFZl-IiIXlili83MkVNjXg5tmFHAJQi4DAIu1Yh8elhz07XyeHL2Xi_VMqr1shxEOiKHPS6G4cd3e__0bh_IC9lBkXGxRzbb299-nzx3d-1seXsQQH0P1hj8Kg
  priority: 102
  providerName: ProQuest
Title A Centered Convolutional Restricted Boltzmann Machine Optimized by Hybrid Atom Search Arithmetic Optimization Algorithm for Sentimental Analysis
URI https://link.springer.com/article/10.1007/s11063-022-10797-7
https://www.proquest.com/docview/2918347991
Volume 54
WOSCitedRecordID wos000777065000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: P5Z
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: K7-
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Link Journals
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LThsxcFQCh16AQivShsgHbq0l79PrY4gSISHSKBSEelnZjoFIyS4iS6TkK_rJHTteIqpSiV724rF3Ne_Z8cwAnAQSbYKMNOVCKIraz1CV2pb7JovQW06FGks3bIIPBtnNjRj6orB5fdu9Tkk6Tb0pdsPoxeYcQ1QdXHDKt2AbzV1mxXF0ef2cO7AekAuzOKNxGga-VObvZ7w0Rxsf84-0qLM2_b3_-8592PXeJems2eEDvDPFAezVkxuIF-RD-NUh9reundNJumWx8PyHW0fGDvLQ6IeS03JarWayKMiFu3FpyHfUL7PJCtfUkpwtbbEX6VTljKwvLeN7J9X9zJZF1qCO7qQzvSvdEkEXGYGLys8UIHVPlI9w1e_96J5RP5uBahTaigaxiqS2Va-RjWpkFCpbBqylCVImE-dH8VCrKGHMZJzfoqSrseJChyZVcRp9gkZRFuYISMZiHaeZTmwvJCHGmWIpw4A_UchFY8maENQkyrVvXG7nZ0zzTctli_IcUZ47lOe8CV-f9zys23b8E7pVUz73IjzPQ4HaLkYWDprwrab0Zvn10z6_DfwLvA_XzEJZ0IJG9fhkjmFHL6rJ_LEN26e9wXDUhq1zTvE5TH62Hbv_Bm_X9cE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQvlF91oYAPcAILx_lxfEBoKVRbtV0qVKSKS7AdAyvtJqUbirZPwZPwjMw4SVcg0VsPnG1PJOeb8YzHMx_Ak8jgmWBix5XWlqP189xm1HLf5zF6y5m2pQlkE2o8zo-O9MEK_OprYehZZW8Tg6Eua0d35C-kRvAlKDF6dfyNE2sUZVd7Co0WFrt-8QNDtvnLnTf4f59Kuf32cGvEO1YB7hBuDY8SGxtH9Zox-eMmlpYKWJ3xUSZMGjwAJZ2NUyF8rtRnxKgtrdJO-swmWYxyr8DVJMFgCfXnIP14nrUg3ysEeErwJJNRV6TTluph7EUZU4mGT2nF1Z8H4dK7_SshG8657fX_bYduwo3Oo2bDVgVuwYqvbsN6z1bBOuN1B34OGV1lEzcp26qr007ncOl7T-QlDn1v9rqeNmczU1VsP7wy9ewd2tTZ5AzH7IKNFlTgxoZNPWPtQ2387qT5OqNS0H5qwDobTr_UYYhhWICTq6bjUWB9H5i78OFS9uUerFZ15TeA5SJxSZa7lPo_aV3mVmTCW5la1JzSiAFEPTgK1zVrJ86QabFsM02AKhBQRQBUoQbw7HzNcduq5MLZmz2Kis5szYslhAbwvMfhcvjf0u5fLO0xXB8d7u8Vezvj3QewJls14CLahNXm5Lt_CNfcaTOZnzwKCsXg02Xj8zcIwVXy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RqCouPItYCtSH3sDCeWwcH5fHCtR2QW2puEW2Y2Cl3QRBQIJf0Z_MjJOwFJVKVc-eOJH9eTwT-5sP4FOgcU_QkeVSKcPR-zluEiq579IIo-VEmVx7sQk5GKRnZ-rkGYvf33ZvjyRrTgNVaSqqnav8fGdCfMNMhs4fQ3QjUkku38BMTKJBlK9___l0jkDRkE-5pOBxEgYNbebPffy-NU3izRdHpH7n6c___zcvwFwTdbJeDZNFmHLFEsy3ig6sWeDL8KvH6Hcv6XeyvbK4a3CJj35zJPBhMT5lu-WoehjromBf_U1Mx47R74yHD9hm7tnhPZHAWK8qx6y-zIzvHVaXY6JLtqYeD6w3uih9E8PQGY2LqtEaYG2tlPdw2j_4sXfIG80GbnExVzyITaQtsWEjynZ0FBqiB1vtgkToro-vZGhN1BXCpVKeowcwuZHKhi4xcRKtwHRRFm4VWCpiGyep7VKNJKXy1IhEOBN2DaIr16IDQTtdmW0KmpOuxiiblGKmIc9wyDM_5JnswNbTM1d1OY-_Wq-3KMiapX2ThQq9YIzQDjqw3c76pPn13tb-zfwjvDvZ72dfjgafP8BsWOOGi2AdpqvrW7cBb-1dNby53vSIfwRe0_4f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Centered+Convolutional+Restricted+Boltzmann+Machine+Optimized+by+Hybrid+Atom+Search+Arithmetic+Optimization+Algorithm+for+Sentimental+Analysis&rft.jtitle=Neural+processing+letters&rft.au=Karthik%2C+E.&rft.au=Sethukarasi%2C+T.&rft.date=2022-10-01&rft.pub=Springer+US&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=54&rft.issue=5&rft.spage=4123&rft.epage=4151&rft_id=info:doi/10.1007%2Fs11063-022-10797-7&rft.externalDocID=10_1007_s11063_022_10797_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon