Seasonal detection of coal overburden dump regions in unsupervised manner using landsat 8 OLI/TIRS images at jharia coal fields
Classification and monitoring of surface mining areas have various research challenges. Surface mining produces various land classes such as, quarry, dump, overburden dump, reclamation area, etc. In the past, various land classes of surface mining areas are detected by supervised and semi-supervised...
Gespeichert in:
| Veröffentlicht in: | Multimedia tools and applications Jg. 80; H. 28-29; S. 35605 - 35627 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.11.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1380-7501, 1573-7721 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Classification and monitoring of surface mining areas have various research challenges. Surface mining produces various land classes such as, quarry, dump, overburden dump, reclamation area, etc. In the past, various land classes of surface mining areas are detected by supervised and semi-supervised machine learning techniques. It has been found challenging to detect such land classes using only spectral responses from satellite images. Coal Mine Index (
CMI
) detects coal quarry and coal dump region as a single land class. These regions have distinct properties as minerals stayed open in such regions. Though coal overburden dump regions also have higher mineral content than various land classes, they show similar spectral characteristics with few bare soil classes in particular with river beds. Hence, it is found more challenging to detect coal overburden regions in an unsupervised manner using spectral information. In this paper, a K-Means clustering in hierarchical fashion has been proposed using
CMI
values as feature space to detect coal overburden dump regions in automated manner. Yet, this procedure detects coal overburden dump and river beds as a single class. The method is further extended to distinguish river bed regions from coal overburden regions exploiting their distinctive spectral characteristics. The proposed method has average precision and recall of [76.43
%
,62.75
%
], and [70.37
%
,65.63
%
] for coal mine, and overburden dump regions, respectively. |
|---|---|
| AbstractList | Classification and monitoring of surface mining areas have various research challenges. Surface mining produces various land classes such as, quarry, dump, overburden dump, reclamation area, etc. In the past, various land classes of surface mining areas are detected by supervised and semi-supervised machine learning techniques. It has been found challenging to detect such land classes using only spectral responses from satellite images. Coal Mine Index (CMI) detects coal quarry and coal dump region as a single land class. These regions have distinct properties as minerals stayed open in such regions. Though coal overburden dump regions also have higher mineral content than various land classes, they show similar spectral characteristics with few bare soil classes in particular with river beds. Hence, it is found more challenging to detect coal overburden regions in an unsupervised manner using spectral information. In this paper, a K-Means clustering in hierarchical fashion has been proposed using CMI values as feature space to detect coal overburden dump regions in automated manner. Yet, this procedure detects coal overburden dump and river beds as a single class. The method is further extended to distinguish river bed regions from coal overburden regions exploiting their distinctive spectral characteristics. The proposed method has average precision and recall of [76.43%,62.75%], and [70.37%,65.63%] for coal mine, and overburden dump regions, respectively. Classification and monitoring of surface mining areas have various research challenges. Surface mining produces various land classes such as, quarry, dump, overburden dump, reclamation area, etc. In the past, various land classes of surface mining areas are detected by supervised and semi-supervised machine learning techniques. It has been found challenging to detect such land classes using only spectral responses from satellite images. Coal Mine Index ( CMI ) detects coal quarry and coal dump region as a single land class. These regions have distinct properties as minerals stayed open in such regions. Though coal overburden dump regions also have higher mineral content than various land classes, they show similar spectral characteristics with few bare soil classes in particular with river beds. Hence, it is found more challenging to detect coal overburden regions in an unsupervised manner using spectral information. In this paper, a K-Means clustering in hierarchical fashion has been proposed using CMI values as feature space to detect coal overburden dump regions in automated manner. Yet, this procedure detects coal overburden dump and river beds as a single class. The method is further extended to distinguish river bed regions from coal overburden regions exploiting their distinctive spectral characteristics. The proposed method has average precision and recall of [76.43 % ,62.75 % ], and [70.37 % ,65.63 % ] for coal mine, and overburden dump regions, respectively. |
| Author | Mukherjee, Jit Aikat, Subhash Mukherjee, Jayanta Chakravarty, Debashish |
| Author_xml | – sequence: 1 givenname: Jit orcidid: 0000-0001-9045-2091 surname: Mukherjee fullname: Mukherjee, Jit email: jit.mukherjee@iitkgp.ac.in organization: Advanced Technology Development Centre, Indian Institute of Technology – sequence: 2 givenname: Jayanta surname: Mukherjee fullname: Mukherjee, Jayanta organization: Department of Computer Science and Engineering, Indian Institute of Technology – sequence: 3 givenname: Debashish surname: Chakravarty fullname: Chakravarty, Debashish organization: Department of Mining Engineering, Indian Institute of Technology – sequence: 4 givenname: Subhash surname: Aikat fullname: Aikat, Subhash organization: Department of Computer Science and Engineering, Indian Institute of Technology |
| BookMark | eNp9kE1r3DAQhkVJoUnaP9CToGc3M5JseY8h9GNhIdCkZyHb440Wr7TV2IGe-ter1IFADzlpGL3PaPRciLOYIgnxEeEzAtgrRgSjKlBQlcJuKv1GnGNtdWWtwrNS6xYqWwO-ExfMBwBsamXOxZ878pyin-RAM_VzSFGmUfapdNIj5W7JA0U5LMeTzLQv1yxDlEvk5UT5MTAN8uhjpCwXDnEvJx8H9rNs5e1ue3W__XEnw9HviWVpHh58Dn6dPgaaBn4v3o5-YvrwfF6Kn1-_3N98r3a337Y317uq17iZKzS-NqqzpgPolKo1Yqs6NIAtKIXtaD1RA9rWzWC8asBjNzZ1028QR21RX4pP69xTTr8W4tkd0pLLv9mVtGlqa7AtKbWm-pyYM43ulMv2-bdDcE-i3SraFdHun2inC9T-B_Vh9k8m5-zD9DqqV5TLO3FP-WWrV6i_qYSTaQ |
| CitedBy_id | crossref_primary_10_3390_land11030325 crossref_primary_10_1007_s12040_025_02655_6 crossref_primary_10_1016_j_rsase_2024_101446 crossref_primary_10_1007_s44288_025_00192_9 |
| Cites_doi | 10.1109/JSTARS.2019.2895385 10.1080/10106040802395648 10.1016/j.cviu.2019.04.006 10.1080/01431169608948714 10.5194/isprs-archives-XLII-2-W7-1017-2017 10.1109/TPAMI.2002.1017616 10.1080/10106049.2012.706648 10.1080/14498596.2017.1345666 10.1109/JSTARS.2019.2896842 10.1016/j.envsci.2016.07.011 10.3390/rs10081178 10.1016/j.rse.2016.04.008 10.1016/0169-1368(93)90014-P 10.1016/j.apgeog.2006.09.007 10.1179/1743286313Y.0000000039 10.1007/978-3-030-34869-4_43 10.1109/IGARSS.2019.8898789 10.5721/EuJRS20164951 10.1007/s41095-018-0123-y 10.1109/TPAMI.2008.173 10.1109/CVPR42600.2020.00312 10.1109/TPAMI.2012.120 10.1016/S0034-4257(96)00067-3 10.1145/3293353.3293405 10.1080/01969727408546059 10.1016/j.neucom.2019.04.062 10.1117/1.JRS.11.015025 10.1109/JSTARS.2016.2602390 10.3390/rs13010015 10.1007/s10489-018-1190-6 10.1080/0143116032000160499 10.1080/00288230709510408 10.1080/01431161.2017.1381355 10.3390/rs8060514 10.1080/17480930.2011.608889 10.1016/j.coal.2010.11.010 10.1016/0377-0427(87)90125-7 10.1080/12269328.2012.674430 10.1016/j.coal.2003.03.002 10.1109/CVPR42600.2020.00285 10.1016/S0016-2361(03)00209-6 10.1007/BF03007217 10.1109/IGARSS.2004.1370429 10.1109/TPAMI.1979.4766909 10.1109/ICCV.2019.00887 10.1007/978-3-030-10674-4 10.3390/rs12010082 10.3390/rs70303088 10.1016/j.jenvman.2016.07.070 10.1080/0143116031000150112 10.1109/IGARSS.2018.8517579 10.1080/10106049.2017.1333534 10.1007/BF03017779 10.1080/10106040608542399 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-020-10479-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 35627 |
| ExternalDocumentID | 10_1007_s11042_020_10479_3 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-14a542b74b00b22531182b1401802218f7aee603756d4a260a1bf656c911f3713 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620422600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Wed Nov 05 01:07:25 EST 2025 Sat Nov 29 06:20:10 EST 2025 Tue Nov 18 22:27:59 EST 2025 Fri Feb 21 02:47:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 28-29 |
| Keywords | Coal overburden region Clay mineral ratio Surface mining K-Means clustering Silhouette score Coal mine index |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-14a542b74b00b22531182b1401802218f7aee603756d4a260a1bf656c911f3713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9045-2091 |
| PQID | 2604657418 |
| PQPubID | 54626 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2604657418 crossref_primary_10_1007_s11042_020_10479_3 crossref_citationtrail_10_1007_s11042_020_10479_3 springer_journals_10_1007_s11042_020_10479_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20211100 2021-11-00 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 20211100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Zeng, Liu, He, Ma, Wu (CR56) 2017; 11 CR39 CR38 CR37 Petropoulos, Partsinevelos, Mitraka (CR40) 2013; 28 Karan, Samadder (CR25) 2018; 39 Karan, Samadder, Maiti (CR26) 2016; 182 Silleos, Alexandridis, Gitas, Perakis (CR47) 2006; 21 Rai, Paul, Singh (CR43) 2011; 1 Lima, Mitchell, O’Connell, Verhoeven, Van Cappellen (CR30) 2016; 66 Wang, Rich, Price, Kettle (CR55) 2004; 25 CR2 Fu, Zhao, Gu, Yang (CR18) 2019; 356 CR5 Kanungo, Mount, Netanyahu, Piatko, Silverman, Wu (CR23) 2002; 24 CR8 Kuenzer, Zhang, Tetzlaff, Van Dijk, Voigt, Mehl, Wagner (CR27) 2007; 27 CR46 Raval, Merton, Laurence (CR44) 2013; 122 CR42 Zhao, Bo, Hou, Cheng, Rosin (CR58) 2018; 4 Rousseeuw (CR45) 1987; 20 Wan, Deng, Yan (CR54) 2004; 25 Vermote, Justice, Claverie, Franch (CR53) 2016; 185 Li, Chen, Cheng, Wang (CR29) 2016; 8 McFeeters (CR32) 1996; 17 CR17 Aswatha, Mukherjee, Biswas, Aikat (CR4) 2017; 10 CR16 CR59 CR14 Dunn (CR15) 1974; 4 Abualigah, Khader, Hanandeh (CR1) 2018; 48 CR57 Cloutis (CR9) 2003; 82 CR11 CR52 Sinha (CR48) 1986; 14 Huo, Ni, Gao, Zhao, Zhang, Lian, Zhang, Zhang, Jiang, Song, Zhou, Cui (CR22) 2015; 7 CR50 Chen, Li, Wang (CR7) 2020; 12 Karan, Samadder (CR24) 2018; 33 Tracher (CR51) 2004; 59 Cousty, Bertrand, Najman, Couprie (CR10) 2008; 31 Mezned, Dkhala, Abdeljaouad (CR33) 2018; 63 Han, Li, Li (CR21) 2007; 50 Gao, Kerle, Mas (CR20) 2009; 24 Popelková, Mulková (CR41) 2016; 49 Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (CR3) 2012; 34 Mukherjee, Mukherjee, Chakravarty (CR35) 2019; 12 CR28 Sinha (CR49) 1987; 15 Demirel, Düzgün, Emil (CR12) 2011; 25 Gao (CR19) 1996; 58 Demirel, Emil, Duzgun (CR13) 2011; 86 Mien (CR34) 2012; 15 Lobo, Souza-Filho, Novo, Carlos, Barbosa (CR31) 2018; 10 Mukherjee, Mukherjee, Chakravarty, Aikat (CR36) 2019; 12 Chen, Li, He, Wang (CR6) 2018; 10 SK Karan (10479_CR25) 2018; 39 EA Cloutis (10479_CR9) 2003; 82 10479_CR39 10479_CR38 N Mezned (10479_CR33) 2018; 63 N Demirel (10479_CR13) 2011; 86 10479_CR37 Y Wan (10479_CR54) 2004; 25 AK Rai (10479_CR43) 2011; 1 X Li (10479_CR29) 2016; 8 SK McFeeters (10479_CR32) 1996; 17 T Kanungo (10479_CR23) 2002; 24 GB Tracher (10479_CR51) 2004; 59 GP Petropoulos (10479_CR40) 2013; 28 LM Abualigah (10479_CR1) 2018; 48 PJ Rousseeuw (10479_CR45) 1987; 20 A Sinha (10479_CR48) 1986; 14 JC Dunn (10479_CR15) 1974; 4 A Sinha (10479_CR49) 1987; 15 SK Karan (10479_CR24) 2018; 33 10479_CR28 S Raval (10479_CR44) 2013; 122 Y Han (10479_CR21) 2007; 50 R Achanta (10479_CR3) 2012; 34 C Kuenzer (10479_CR27) 2007; 27 J Cousty (10479_CR10) 2008; 31 W Chen (10479_CR6) 2018; 10 J Wang (10479_CR55) 2004; 25 W Chen (10479_CR7) 2020; 12 10479_CR8 J Mukherjee (10479_CR35) 2019; 12 J Zhao (10479_CR58) 2018; 4 10479_CR5 10479_CR52 10479_CR11 10479_CR2 10479_CR50 10479_CR17 10479_CR16 NG Silleos (10479_CR47) 2006; 21 10479_CR57 K Fu (10479_CR18) 2019; 356 10479_CR59 10479_CR14 FdL Lobo (10479_CR31) 2018; 10 X Zeng (10479_CR56) 2017; 11 SM Aswatha (10479_CR4) 2017; 10 SK Karan (10479_CR26) 2016; 182 J Mukherjee (10479_CR36) 2019; 12 10479_CR42 T Mien (10479_CR34) 2012; 15 BC Gao (10479_CR19) 1996; 58 H Huo (10479_CR22) 2015; 7 10479_CR46 E Vermote (10479_CR53) 2016; 185 N Demirel (10479_CR12) 2011; 25 Y Gao (10479_CR20) 2009; 24 AT Lima (10479_CR30) 2016; 66 R Popelková (10479_CR41) 2016; 49 |
| References_xml | – volume: 28 start-page: 323 issue: 4 year: 2013 end-page: 342 ident: CR40 article-title: Change detection of surface mining activity and reclamation based on a machine learning approach of multi-temporal landsat tm imagery publication-title: Geocarto International – volume: 86 start-page: 3 issue: 1 year: 2011 end-page: 11 ident: CR13 article-title: Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery publication-title: Int J Coal Geol – volume: 12 start-page: 891 issue: 3 year: 2019 end-page: 897 ident: CR36 article-title: A novel index to detect opencast coal mine areas from landsat 8 oli/tirs publication-title: IEEE J Select Topics Appl Earth Observ Remote Sens – volume: 4 start-page: 95 issue: 1 year: 1974 end-page: 104 ident: CR15 article-title: Well-separated clusters and optimal fuzzy partitions publication-title: J Cybern – volume: 49 start-page: 973 issue: 1 year: 2016 end-page: 1009 ident: CR41 article-title: Multitemporal aerial image analysis for the monitoring of the processes in the landscape affected by deep coal mining publication-title: European J Remote Sens – ident: CR39 – ident: CR16 – volume: 15 start-page: 66 issue: 1 year: 2012 end-page: 70 ident: CR34 article-title: Mine waste water management and treatment in coal mines in vietnam publication-title: Geosystem Eng – ident: CR8 – volume: 24 start-page: 25 issue: 1 year: 2009 end-page: 36 ident: CR20 article-title: Object-based image analysis for coal fire-related land cover mapping in coal mining areas publication-title: Geocarto Int – volume: 356 start-page: 69 year: 2019 end-page: 82 ident: CR18 article-title: Deepside: a general deep framework for salient object detection publication-title: Neurocomputing – volume: 10 start-page: 1178 issue: 8 year: 2018 ident: CR31 article-title: Mapping mining areas in the brazilian amazon using msi/sentinel-2 imagery (2017) publication-title: Remote Sens – volume: 12 start-page: 2550 issue: 7 year: 2019 end-page: 2556 ident: CR35 article-title: Automated seasonal separation of mine and non mine water bodies from landsat 8 oli/tirs using clay mineral and iron oxide ratio publication-title: IEEE J Select Topics Appl Earth Observ Remote Sens doi: 10.1109/JSTARS.2019.2895385 – ident: CR42 – volume: 11 start-page: 015025 issue: 1 year: 2017 ident: CR56 article-title: Detecting surface coal mining areas from remote sensing imagery: An approach based on object-oriented decision trees publication-title: J Appl Remote Sens – volume: 82 start-page: 2239 issue: 18 year: 2003 end-page: 2254 ident: CR9 article-title: Quantitative characterization of coal properties using bidirectional diffuse reflectance spectroscopy publication-title: Fuel – ident: CR46 – volume: 27 start-page: 42 issue: 1 year: 2007 end-page: 62 ident: CR27 article-title: Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central china publication-title: Appl Geogr – volume: 17 start-page: 1425 issue: 7 year: 1996 end-page: 1432 ident: CR32 article-title: The use of the normalized difference water index (ndwi) in the delineation of open water features publication-title: Int J Remote Sens – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: CR45 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J Comput Appl Math – volume: 34 start-page: 2274 issue: 11 year: 2012 end-page: 2282 ident: CR3 article-title: Slic superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans Pattern Anal Mach Intel – volume: 25 start-page: 342 issue: 4 year: 2011 end-page: 349 ident: CR12 article-title: Landuse change detection in a surface coal mine area using multi-temporal high-resolution satellite images publication-title: Int J Mining Reclam Environ – volume: 63 start-page: 135 issue: 1 year: 2018 end-page: 153 ident: CR33 article-title: Multitemporal and multisensory landsat etm+ and oli 8 data for mine waste change detection in northern tunisia publication-title: J Spat Sci – ident: CR50 – ident: CR11 – ident: CR57 – volume: 66 start-page: 227 year: 2016 end-page: 233 ident: CR30 article-title: The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation publication-title: Environ Sci Policy – ident: CR5 – volume: 31 start-page: 1362 issue: 8 year: 2008 end-page: 1374 ident: CR10 article-title: Watershed cuts: Minimum spanning forests and the drop of water principle publication-title: IEEE Trans Pattern Anal Mach Intel – volume: 24 start-page: 881 issue: 7 year: 2002 end-page: 892 ident: CR23 article-title: An efficient k-means clustering algorithm:analysis and implementation publication-title: IEEE Trans Pattern Anal Mach Intel – volume: 25 start-page: 3127 issue: 16 year: 2004 end-page: 3138 ident: CR55 article-title: Relations between NDVI and tree productivity in the central great plains publication-title: Int J Remote Sens – volume: 8 start-page: 514 issue: 6 year: 2016 ident: CR29 article-title: A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using ziyuan-3 stereo satellite imagery publication-title: Remote Sens – ident: CR14 – ident: CR2 – ident: CR37 – volume: 4 start-page: 333 issue: 4 year: 2018 end-page: 348 ident: CR58 article-title: Flic: Fast linear iterative clustering with active search publication-title: Computational Visual Media – volume: 10 start-page: 1096 issue: 3 year: 2017 end-page: 1104 ident: CR4 article-title: Toward automated land cover classification in landsat images using spectral slopes at different bands publication-title: IEEE J Sel Topics Appl Earth Observ Remote Sens – volume: 1 start-page: 1350 issue: 6 year: 2011 ident: CR43 article-title: A study on physico chemical properties of overburden dump materials from selected coal mining areas of jharia coalfields, jharkhand, india publication-title: Int J Environ Sci – volume: 21 start-page: 21 issue: 4 year: 2006 end-page: 28 ident: CR47 article-title: Vegetation indices: advances made in biomass estimation and vegetation monitoring in the last 30 years publication-title: Geocarto Int – volume: 50 start-page: 1243 issue: 5 year: 2007 end-page: 1248 ident: CR21 article-title: Vegetation index analysis of multi-source remote sensing data in coal mine wasteland publication-title: N Z J Agric Res – volume: 33 start-page: 1084 issue: 10 year: 2018 end-page: 1094 ident: CR24 article-title: Dual-tree complex wavelet transform-based image enhancement for accurate long-term change assessment in coal mining areas publication-title: Geocarto Int – volume: 7 start-page: 3088 issue: 3 year: 2015 end-page: 3113 ident: CR22 article-title: A study of coal fire propagation with remotely sensed thermal infrared data publication-title: Remote Sens – volume: 39 start-page: 84 issue: 1 year: 2018 end-page: 100 ident: CR25 article-title: Improving accuracy of long-term land-use change in coal mining areas using wavelets and support vector machines publication-title: Int J Remote Sens – volume: 182 start-page: 272 year: 2016 end-page: 283 ident: CR26 article-title: Assessment of the capability of remote sensing and gis techniques for monitoring reclamation success in coal mine degraded lands publication-title: J Environ Manage – volume: 122 start-page: 200 issue: 4 year: 2013 end-page: 207 ident: CR44 article-title: Satellite based mine rehabilitation monitoring using worldview-2 imagery publication-title: Min Technol – volume: 185 start-page: 46 year: 2016 end-page: 56 ident: CR53 article-title: Preliminary analysis of the performance of the landsat 8/oli land surface reflectance product publication-title: Remote Sens Environ – volume: 14 start-page: 1 issue: 1 year: 1986 end-page: 9 ident: CR48 article-title: Spectral reflectance characteristics of soils and its correlation with soil properties and surface conditions publication-title: J Indian Soc Remote Sens – ident: CR38 – ident: CR52 – volume: 25 start-page: 593 issue: 3 year: 2004 end-page: 602 ident: CR54 article-title: Mapping coal fires based on omis1 thermal infrared band image publication-title: Int J Remote Sens – ident: CR17 – volume: 15 start-page: 7 issue: 2 year: 1987 end-page: 11 ident: CR49 article-title: Variations in soil spectral reflectance related to soil moisture, organic matter and particle size publication-title: J Indian Soc Remote Sens – volume: 59 start-page: 7 year: 2004 end-page: 17 ident: CR51 article-title: Coal fire burning out of control around the world: Thermodynamic recipe for environmental catastrophe publication-title: Int J Coal Geol – volume: 48 start-page: 4047 issue: 11 year: 2018 end-page: 4071 ident: CR1 article-title: Hybrid clustering analysis using improved krill herd algorithm publication-title: Appl Intell – volume: 12 start-page: 82 issue: 1 year: 2020 ident: CR7 article-title: Fine land cover classification in an open pit mining area using optimized support vector machine and worldview-3 imagery publication-title: Remote Sens – ident: CR59 – volume: 58 start-page: 257 issue: 3 year: 1996 end-page: 266 ident: CR19 article-title: Ndwi—a normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens Environ – ident: CR28 – volume: 10 start-page: 15 issue: 1 year: 2018 ident: CR6 article-title: A review of fine-scale land use and land cover classification in open-pit mining areas by remote sensing techniques publication-title: Remote Sens – volume: 24 start-page: 25 issue: 1 year: 2009 ident: 10479_CR20 publication-title: Geocarto Int doi: 10.1080/10106040802395648 – ident: 10479_CR28 doi: 10.1016/j.cviu.2019.04.006 – volume: 17 start-page: 1425 issue: 7 year: 1996 ident: 10479_CR32 publication-title: Int J Remote Sens doi: 10.1080/01431169608948714 – ident: 10479_CR52 – ident: 10479_CR57 doi: 10.5194/isprs-archives-XLII-2-W7-1017-2017 – volume: 24 start-page: 881 issue: 7 year: 2002 ident: 10479_CR23 publication-title: IEEE Trans Pattern Anal Mach Intel doi: 10.1109/TPAMI.2002.1017616 – volume: 28 start-page: 323 issue: 4 year: 2013 ident: 10479_CR40 publication-title: Geocarto International doi: 10.1080/10106049.2012.706648 – volume: 63 start-page: 135 issue: 1 year: 2018 ident: 10479_CR33 publication-title: J Spat Sci doi: 10.1080/14498596.2017.1345666 – volume: 12 start-page: 891 issue: 3 year: 2019 ident: 10479_CR36 publication-title: IEEE J Select Topics Appl Earth Observ Remote Sens doi: 10.1109/JSTARS.2019.2896842 – volume: 66 start-page: 227 year: 2016 ident: 10479_CR30 publication-title: Environ Sci Policy doi: 10.1016/j.envsci.2016.07.011 – volume: 10 start-page: 1178 issue: 8 year: 2018 ident: 10479_CR31 publication-title: Remote Sens doi: 10.3390/rs10081178 – volume: 185 start-page: 46 year: 2016 ident: 10479_CR53 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2016.04.008 – ident: 10479_CR14 doi: 10.1016/0169-1368(93)90014-P – volume: 27 start-page: 42 issue: 1 year: 2007 ident: 10479_CR27 publication-title: Appl Geogr doi: 10.1016/j.apgeog.2006.09.007 – volume: 122 start-page: 200 issue: 4 year: 2013 ident: 10479_CR44 publication-title: Min Technol doi: 10.1179/1743286313Y.0000000039 – ident: 10479_CR42 – ident: 10479_CR46 – ident: 10479_CR37 doi: 10.1007/978-3-030-34869-4_43 – ident: 10479_CR39 doi: 10.1109/IGARSS.2019.8898789 – volume: 49 start-page: 973 issue: 1 year: 2016 ident: 10479_CR41 publication-title: European J Remote Sens doi: 10.5721/EuJRS20164951 – volume: 4 start-page: 333 issue: 4 year: 2018 ident: 10479_CR58 publication-title: Computational Visual Media doi: 10.1007/s41095-018-0123-y – volume: 31 start-page: 1362 issue: 8 year: 2008 ident: 10479_CR10 publication-title: IEEE Trans Pattern Anal Mach Intel doi: 10.1109/TPAMI.2008.173 – ident: 10479_CR17 doi: 10.1109/CVPR42600.2020.00312 – volume: 34 start-page: 2274 issue: 11 year: 2012 ident: 10479_CR3 publication-title: IEEE Trans Pattern Anal Mach Intel doi: 10.1109/TPAMI.2012.120 – volume: 58 start-page: 257 issue: 3 year: 1996 ident: 10479_CR19 publication-title: Remote Sens Environ doi: 10.1016/S0034-4257(96)00067-3 – ident: 10479_CR5 doi: 10.1145/3293353.3293405 – volume: 4 start-page: 95 issue: 1 year: 1974 ident: 10479_CR15 publication-title: J Cybern doi: 10.1080/01969727408546059 – volume: 356 start-page: 69 year: 2019 ident: 10479_CR18 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.062 – volume: 11 start-page: 015025 issue: 1 year: 2017 ident: 10479_CR56 publication-title: J Appl Remote Sens doi: 10.1117/1.JRS.11.015025 – volume: 1 start-page: 1350 issue: 6 year: 2011 ident: 10479_CR43 publication-title: Int J Environ Sci – volume: 10 start-page: 1096 issue: 3 year: 2017 ident: 10479_CR4 publication-title: IEEE J Sel Topics Appl Earth Observ Remote Sens doi: 10.1109/JSTARS.2016.2602390 – volume: 10 start-page: 15 issue: 1 year: 2018 ident: 10479_CR6 publication-title: Remote Sens doi: 10.3390/rs13010015 – volume: 48 start-page: 4047 issue: 11 year: 2018 ident: 10479_CR1 publication-title: Appl Intell doi: 10.1007/s10489-018-1190-6 – ident: 10479_CR50 – volume: 25 start-page: 3127 issue: 16 year: 2004 ident: 10479_CR55 publication-title: Int J Remote Sens doi: 10.1080/0143116032000160499 – volume: 50 start-page: 1243 issue: 5 year: 2007 ident: 10479_CR21 publication-title: N Z J Agric Res doi: 10.1080/00288230709510408 – volume: 39 start-page: 84 issue: 1 year: 2018 ident: 10479_CR25 publication-title: Int J Remote Sens doi: 10.1080/01431161.2017.1381355 – volume: 8 start-page: 514 issue: 6 year: 2016 ident: 10479_CR29 publication-title: Remote Sens doi: 10.3390/rs8060514 – volume: 25 start-page: 342 issue: 4 year: 2011 ident: 10479_CR12 publication-title: Int J Mining Reclam Environ doi: 10.1080/17480930.2011.608889 – volume: 86 start-page: 3 issue: 1 year: 2011 ident: 10479_CR13 publication-title: Int J Coal Geol doi: 10.1016/j.coal.2010.11.010 – volume: 20 start-page: 53 year: 1987 ident: 10479_CR45 publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90125-7 – volume: 15 start-page: 66 issue: 1 year: 2012 ident: 10479_CR34 publication-title: Geosystem Eng doi: 10.1080/12269328.2012.674430 – volume: 59 start-page: 7 year: 2004 ident: 10479_CR51 publication-title: Int J Coal Geol doi: 10.1016/j.coal.2003.03.002 – ident: 10479_CR16 doi: 10.1109/CVPR42600.2020.00285 – volume: 82 start-page: 2239 issue: 18 year: 2003 ident: 10479_CR9 publication-title: Fuel doi: 10.1016/S0016-2361(03)00209-6 – volume: 14 start-page: 1 issue: 1 year: 1986 ident: 10479_CR48 publication-title: J Indian Soc Remote Sens doi: 10.1007/BF03007217 – ident: 10479_CR8 doi: 10.1109/IGARSS.2004.1370429 – ident: 10479_CR11 doi: 10.1109/TPAMI.1979.4766909 – ident: 10479_CR59 doi: 10.1109/ICCV.2019.00887 – ident: 10479_CR2 doi: 10.1007/978-3-030-10674-4 – volume: 12 start-page: 82 issue: 1 year: 2020 ident: 10479_CR7 publication-title: Remote Sens doi: 10.3390/rs12010082 – volume: 7 start-page: 3088 issue: 3 year: 2015 ident: 10479_CR22 publication-title: Remote Sens doi: 10.3390/rs70303088 – volume: 182 start-page: 272 year: 2016 ident: 10479_CR26 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2016.07.070 – volume: 25 start-page: 593 issue: 3 year: 2004 ident: 10479_CR54 publication-title: Int J Remote Sens doi: 10.1080/0143116031000150112 – ident: 10479_CR38 doi: 10.1109/IGARSS.2018.8517579 – volume: 33 start-page: 1084 issue: 10 year: 2018 ident: 10479_CR24 publication-title: Geocarto Int doi: 10.1080/10106049.2017.1333534 – volume: 15 start-page: 7 issue: 2 year: 1987 ident: 10479_CR49 publication-title: J Indian Soc Remote Sens doi: 10.1007/BF03017779 – volume: 12 start-page: 2550 issue: 7 year: 2019 ident: 10479_CR35 publication-title: IEEE J Select Topics Appl Earth Observ Remote Sens doi: 10.1109/JSTARS.2019.2895385 – volume: 21 start-page: 21 issue: 4 year: 2006 ident: 10479_CR47 publication-title: Geocarto Int doi: 10.1080/10106040608542399 |
| SSID | ssj0016524 |
| Score | 2.3015146 |
| Snippet | Classification and monitoring of surface mining areas have various research challenges. Surface mining produces various land classes such as, quarry, dump,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 35605 |
| SubjectTerms | 1166: Advances of machine learning in data analytics and visual information processing Cluster analysis Clustering Coal mines Coal mining Computer Communication Networks Computer Science Data Structures and Information Theory Image classification Land reclamation Landsat satellites Machine learning Mine reclamation Multimedia Information Systems Overburden River beds Satellite imagery Special Purpose and Application-Based Systems Spectra Strip mining Surface mining Vector quantization |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4V2gMcSnmJLbSaAzewWCd2snuqKgQqEqUIaMUtsh0HtirZLcn22r_eGa_DUqRy6dWJrSjz8Iz9zXwAuxSy-6TkZni5VEKViRF2WEmR6cr3rauyNKAtvp3mZ2eD6-vheTxwayKssvOJwVGXY8dn5AcUd6tMc6-VD5Ofglmj-HY1UmgswEuObBjS97l_-HCLkOlIajvoC9oZZSyamZXOSS5M4eSJmxUMRfr3xjSPNp9ckIZ953jlf7_4DbyOESd-nKnIKrzw9RqsdGwOGI17DZYftSZch9-X3oQoHUvfBrhWjeMK3ZhGGPVpQ_kDlqQNyOQOpLw4qnFaN9MJu5_Gl3hnmNcLGVp_g6Gm2LQ4wC-nJwdXJxeXOLojZ9YgDX6_pZTdzFYPmLpmA74eH10dfhKRrEE4suJWSGW0SmyuyI4tOYmUMxfL6RsX88pBlRvvM2bczUpl6N8YaSsKJh1524oUJd2ExXpc-y1Acjtea5eX2iYqr7Tpe-mVGUrr8sxr3wPZSapwsZM5E2r8KOY9mFm6BUm3CNIt0h7sPcyZzPp4PPv2TifSItp0U8zl2YP9Tinmj_-92tvnV9uGpYSBMqHAcQcW2_upfwev3K921Ny_Dxr9B46s-R4 priority: 102 providerName: ProQuest |
| Title | Seasonal detection of coal overburden dump regions in unsupervised manner using landsat 8 OLI/TIRS images at jharia coal fields |
| URI | https://link.springer.com/article/10.1007/s11042-020-10479-3 https://www.proquest.com/docview/2604657418 |
| Volume | 80 |
| WOSCitedRecordID | wos000620422600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9iGwc4bDBAFEb1DtzAok7sOD2OadMmRle1YwwukZ04UMTSaUm58q_vPTdZAQESXCwlcSzL71t-7_0AnpPL7qOCm-EZqYQqIivcsJQi0aUfuLxM4pBtcXZsRqP0_Hw4bovC6i7bvbuSDJp6VewmuZSEwx1uLzAU8RpskLlLGbBhMj27uTtIdAtlmw4E2UPZlsr8fo2fzdHKx_zlWjRYm4Ot_9vnPdhsvUvcXbLDfbjlq23Y6pAbsBXkbbj7QxvCB_B96m3wyLHwTUjNqnBeYj6nN5zh6UKpAxZEeWQgB2JUnFW4qOrFJaua2hd4YRnDCzmN_hOG-mHbYIonx0evTo8mU5xdkOKqkV5--UzhuV2uHvLn6ofw7mD_dO9QtMAMIieJbYRUVqvIGUUy60ghxBylOA7VuHBXpqWx3ieMrpsUylLEZKUryXHMSbOWxBTxI1iv5pV_DEgqxmudm0K7SJlS24GXXtmhdLlJvPY9kB19srztWs7gGV-zVb9lPu-MzjsL553FPXhx88_lsmfHX2fvdGTPWvmtM9qzSjR39unBy47Mq89_Xu3Jv01_CnciTpIJxY07sN5cLfwzuJ1_a2b1VR_WzPsPfdh4vT8aT-jpjRE0vh3s8Rid0DjWH_uB-68BvTX1YQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQcKBQQCwV8gBNYXSd2nD0ghICqq10WRBfUW2o7Dt2KZpcmC-LEP-I3MuMkXUCitx645mOiOG_G43jePIBHmLL7KKdmeFpILvPIcDsoBE9U4fvWFUkcqi0-jvVkku7vD96twc-OC0NllV1MDIE6nzv6R76NebdMFPVaeb74wkk1inZXOwmNBhYj__0bLtmqZ8NX-H0fR9HO6-nLXd6qCnCHcKu5kEbJyGqJgLOI5phSbEvrDGKdirTQxvuEpGGTXBp8rBG2wKzHYVgo8I1itHsBLso41eRXI81Pdy0S1Yropn2OM7FoSToNVU8QEYYWa9QcYcDjPyfCVXb714ZsmOd2Nv63EboO19qMmr1oXOAGrPlyEzY6tQrWBq9NuPpb68Wb8GPPm7AKYbmvQzlayeYFc3M8QlWtNtA7WI5oZyRegc7JZiVbltVyQeG18jk7NqRbxog68IkFzrSpWcrejofb0-H7PTY7xmBdMTx4dGjQ0RvroWawugUfzmVQbsN6OS_9HWAYVr1STufKRlIXyvS98NIMhHU68cr3QHTIyFzbqZ0EQz5nqx7ThKYM0ZQFNGVxD56c3rNo-pScefVWB6GsjVlVtsJPD552IFyd_re1u2dbewiXd6dvxtl4OBndgysRFQUFMucWrNcnS38fLrmv9aw6eRC8icHBeYPzF-PUUKQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFH4aG0LjwGAwUdjABziB1Tqxk_aAEGJUVKtKxQaauATbsaGIpWVJQZz4X_w63nOSFZDYbQeuaWo17ufP78Xvex_AAwzZXZRTM7xUSC7zSHMz8IInyruesT6JQ7XF23E6mfSPjwfTNfjZamGorLLlxEDU-dzSO_Iuxt0yUdRrpeubsojp_vDp4gsnByk6aW3tNGqIHLjv3zB9K5-M9vG_fhhFwxdHz1_yxmGAW4RexYXUSkYmlQg-g8iOKdw2lHOQAlX0faqdS8gmNsmlxp-ghfEYAVmkCI9PF-O4l2AjxRyTygmn6t3ZCUaiGkPdfo_jriwawU4t2xMkiqHEjRolDHj856a4inT_OpwNe95w63-eretwrYm02bN6adyANVdsw1brYsEaUtuGq7-1ZLwJPw6dDtkJy10VytQKNvfMzvEKVbuaIPtgOa4CRqYWuGjZrGDLolwuiHZLl7MTTX5mjCQFH1jQUuuK9dmr8ah7NHp9yGYnSOIlw4ufPmokgHr0UEtY3oI3FzIpO7BezAt3GxjSrVPKprkykUy90j0nnNQDYWyaOOU6IFqUZLbp4E5GIp-zVe9pQlaGyMoCsrK4A4_OvrOo-5ece_duC6es4bIyW2GpA49bQK4-_vdod84f7T5cQUxm49Hk4C5sRlQrFDSeu7BenS7dHly2X6tZeXovLCwG7y8am78AjtlZyA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seasonal+detection+of+coal+overburden+dump+regions+in+unsupervised+manner+using+landsat+8+OLI%2FTIRS+images+at+jharia+coal+fields&rft.jtitle=Multimedia+tools+and+applications&rft.au=Mukherjee%2C+Jit&rft.au=Mukherjee%2C+Jayanta&rft.au=Chakravarty%2C+Debashish&rft.au=Aikat%2C+Subhash&rft.date=2021-11-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=28-29&rft.spage=35605&rft.epage=35627&rft_id=info:doi/10.1007%2Fs11042-020-10479-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_020_10479_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |