Strong Convergence of Forward–Reflected–Backward Splitting Methods for Solving Monotone Inclusions with Applications to Image Restoration and Optimal Control

In this paper, we propose and study several strongly convergent versions of the forward–reflected–backward splitting method of Malitsky and Tam for finding a zero of the sum of two monotone operators in a real Hilbert space. Our proposed methods only require one forward evaluation of the single-valu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 94; číslo 3; s. 73
Hlavní autoři: Izuchukwu, Chinedu, Reich, Simeon, Shehu, Yekini, Taiwo, Adeolu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2023
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose and study several strongly convergent versions of the forward–reflected–backward splitting method of Malitsky and Tam for finding a zero of the sum of two monotone operators in a real Hilbert space. Our proposed methods only require one forward evaluation of the single-valued operator and one backward evaluation of the set-valued operator at each iteration; a feature that is absent in many other available strongly convergent splitting methods in the literature. We also develop inertial versions of our methods and strong convergence results are obtained for these methods when the set-valued operator is maximal monotone and the single-valued operator is Lipschitz continuous and monotone. Finally, we discuss some examples from image restorations and optimal control regarding the implementations of our methods in comparisons with known related methods in the literature.
AbstractList In this paper, we propose and study several strongly convergent versions of the forward–reflected–backward splitting method of Malitsky and Tam for finding a zero of the sum of two monotone operators in a real Hilbert space. Our proposed methods only require one forward evaluation of the single-valued operator and one backward evaluation of the set-valued operator at each iteration; a feature that is absent in many other available strongly convergent splitting methods in the literature. We also develop inertial versions of our methods and strong convergence results are obtained for these methods when the set-valued operator is maximal monotone and the single-valued operator is Lipschitz continuous and monotone. Finally, we discuss some examples from image restorations and optimal control regarding the implementations of our methods in comparisons with known related methods in the literature.
ArticleNumber 73
Author Izuchukwu, Chinedu
Reich, Simeon
Shehu, Yekini
Taiwo, Adeolu
Author_xml – sequence: 1
  givenname: Chinedu
  orcidid: 0000-0002-8262-8605
  surname: Izuchukwu
  fullname: Izuchukwu, Chinedu
  organization: School of Mathematics, University of the Witwatersrand
– sequence: 2
  givenname: Simeon
  orcidid: 0000-0003-0780-1559
  surname: Reich
  fullname: Reich, Simeon
  organization: Department of Mathematics, The Technion – Israel Institute of Technology
– sequence: 3
  givenname: Yekini
  orcidid: 0000-0001-9224-7139
  surname: Shehu
  fullname: Shehu, Yekini
  email: yekini.shehu@zjnu.edu.cn
  organization: Department of Applied Mathematics, Zhejiang Normal University
– sequence: 4
  givenname: Adeolu
  orcidid: 0000-0001-5939-935X
  surname: Taiwo
  fullname: Taiwo, Adeolu
  organization: Department of Mathematics, The Technion – Israel Institute of Technology
BookMark eNp9kctKAzEYhYMoWC8v4CrgejQXZ5JZavFSUApW1yGTSx0dkzFJFXe-g0_gq_kkplNBcNFFSDicL__5OTtg03lnADjA6AgjxI4jRjUuC0RoPpiSotoAI1wyWrCqxptghDgvC3bCTrbBToyPCKGa12QEvmYpeDeHY-9eTZgbpwz0Fl748CaD_v74vDW2MyqZ5ftMqqelDGd916bUZu7GpAevI7Q-wJnvXgfNO59yPjhxqlvE1rsI39r0AE_7zCmZBiV5OHmWcwNvTUw-DCqUTsNpn9pn2S0j5WzdHtiysotm__feBfcX53fjq-J6ejkZn14XiuI6FZgqRhrOm6bUyja20nl9zWhWKsVURVDTEFpqKjmtKmp0rVCtOUKltSUrKd0Fh6t_--BfFjmTePSL4PJIQWrM8xBMUHbxlUsFH2MwVqg2DdlTkG0nMBLLQsSqEJELEUMhosoo-Yf2IS8a3tdDdAXFbHZzE_5SraF-AEJvpVA
CitedBy_id crossref_primary_10_3390_math12152360
crossref_primary_10_1007_s11075_025_02129_2
crossref_primary_10_1007_s10957_024_02410_9
crossref_primary_10_1007_s40314_023_02485_6
crossref_primary_10_1080_02331934_2023_2187664
crossref_primary_10_3390_math11224643
crossref_primary_10_1007_s41478_023_00611_5
crossref_primary_10_3390_math11214536
crossref_primary_10_1016_j_cam_2025_117035
crossref_primary_10_3390_axioms12060508
crossref_primary_10_4153_S0008414X24000889
crossref_primary_10_3390_axioms13040259
crossref_primary_10_1002_mma_9479
crossref_primary_10_1007_s12215_024_01127_y
crossref_primary_10_1515_anly_2022_1075
crossref_primary_10_1007_s40314_023_02583_5
crossref_primary_10_1080_00036811_2023_2233977
crossref_primary_10_1007_s11075_023_01674_y
crossref_primary_10_3390_axioms12100999
crossref_primary_10_1137_24M1677368
crossref_primary_10_1002_mma_10639
crossref_primary_10_1007_s10898_024_01444_7
Cites_doi 10.1007/s40314-019-0855-z
10.1080/02331934.2020.1723586
10.1137/0716071
10.1080/02331934.2021.1981895
10.1137/18M1207260
10.1007/s10589-020-00217-8
10.1137/14097238X
10.1016/j.jmaa.2005.12.066
10.1007/978-3-642-65024-6
10.1080/10556788.2019.1619729
10.1080/00036811.2021.1892080
10.1007/s00025-022-01694-5
10.1007/s11075-018-0547-6
10.1007/s10092-018-0292-1
10.1007/s11075-019-00758-y
10.1007/s10957-010-9713-2
10.1080/01630563.2021.2001826
10.1007/s10288-020-00440-3
10.1080/02331934.2014.883510
10.1007/s11075-020-00999-2
10.1007/s10440-019-00297-7
10.1007/s10898-014-0150-x
10.1007/s10107-019-01416-w
10.1016/0022-247X(79)90234-8
10.1137/S1052623495290179
10.1007/s10898-021-01095-y
10.1137/S0363012998338806
10.1007/s11228-020-00542-4
10.1007/s11750-021-00620-2
10.1016/j.apnum.2021.12.006
10.1016/j.na.2011.09.005
10.1080/02331934.2017.1411485
10.1007/978-3-642-59073-3_11
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-023-02132-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_023_02132_6
GrantInformation_xml – fundername: Israel Science Foundation
  grantid: 820/17
  funderid: http://dx.doi.org/10.13039/501100003977
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-13c72b88bb5dcfbf6d157d7388b6c7c620bb235d3a83663ed9c09d8005ff57533
IEDL.DBID P5Z
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000935524100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 09:06:03 EST 2025
Sat Nov 29 01:56:31 EST 2025
Tue Nov 18 22:28:06 EST 2025
Fri Feb 21 02:45:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Viscosity iteration
Monotone inclusion
Strong convergence
47H10
49J20
Forward–reflected–backward method
49J40
47H09
Halpern’s iteration
Inertial method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-13c72b88bb5dcfbf6d157d7388b6c7c620bb235d3a83663ed9c09d8005ff57533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8262-8605
0000-0001-5939-935X
0000-0001-9224-7139
0000-0003-0780-1559
PQID 2918319120
PQPubID 2043771
ParticipantIDs proquest_journals_2918319120
crossref_citationtrail_10_1007_s10915_023_02132_6
crossref_primary_10_1007_s10915_023_02132_6
springer_journals_10_1007_s10915_023_02132_6
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cholamjiak, Thong, Cho (CR7) 2020; 169
Liu, Yang (CR16) 2020; 77
Malitsky (CR18) 2020; 184
Qi, Xu (CR23) 2021; 42
CR37
Tan, Qin, Yao (CR31) 2022; 82
CR13
Thong, Cholamjiak (CR32) 2019; 38
Chen, Rockafellar (CR6) 1997; 7
Takahashi, Takahashi, Toyoda (CR30) 2010; 147
CR33
Bing, Cho (CR3) 2022; 101
Lions, Mercier (CR15) 1979; 16
Tseng (CR34) 2000; 38
Malitsky, Semenov (CR20) 2015; 61
Cevher, Vu (CR5) 2021; 29
Vuong, Shehu (CR35) 2019; 81
Shehu, Vuong, Zemkoho (CR27) 2021; 36
Shehu, Li, Dong (CR26) 2020; 84
Izuchukwu, Reich, Shehu (CR11) 2021
Hieu, Anh, Muu (CR10) 2021; 19
Izuchukwu, Reich, Shehu (CR12) 2022; 77
Malitsky (CR19) 2015; 25
Passty (CR22) 1979; 72
CR4
CR8
Gibali, Thong (CR9) 2018; 55
Malitsky, Tam (CR21) 2020; 30
Saejung, Yotkaew (CR24) 2012; 75
Suparatulatorn, Chaichana (CR29) 2022; 173
Lions (CR14) 1971
Maingé (CR17) 2007; 325
Sahu, Cho, Dong, Kashyap, Li (CR25) 2021; 87
Alakoya, Jolaoso, Mewomo (CR1) 2021; 70
Bello Cruz, Diaz Millan (CR2) 2015; 64
Shehu, Dong, Liu, Yao (CR28) 2021
Wang, Wang (CR36) 2018; 67
Y Shehu (2132_CR27) 2021; 36
2132_CR4
PE Maingé (2132_CR17) 2007; 325
C Izuchukwu (2132_CR11) 2021
2132_CR8
GB Passty (2132_CR22) 1979; 72
YV Malitsky (2132_CR20) 2015; 61
Y Malitsky (2132_CR21) 2020; 30
J Bello Cruz (2132_CR2) 2015; 64
P Cholamjiak (2132_CR7) 2020; 169
TO Alakoya (2132_CR1) 2021; 70
C Izuchukwu (2132_CR12) 2022; 77
P Tseng (2132_CR34) 2000; 38
2132_CR33
2132_CR13
Y Malitsky (2132_CR18) 2020; 184
B Tan (2132_CR31) 2022; 82
2132_CR37
S Takahashi (2132_CR30) 2010; 147
GH Chen (2132_CR6) 1997; 7
H Liu (2132_CR16) 2020; 77
PT Vuong (2132_CR35) 2019; 81
V Cevher (2132_CR5) 2021; 29
A Gibali (2132_CR9) 2018; 55
DV Thong (2132_CR32) 2019; 38
DV Hieu (2132_CR10) 2021; 19
JL Lions (2132_CR14) 1971
PL Lions (2132_CR15) 1979; 16
S Saejung (2132_CR24) 2012; 75
Y Shehu (2132_CR28) 2021
Y Shehu (2132_CR26) 2020; 84
R Suparatulatorn (2132_CR29) 2022; 173
DR Sahu (2132_CR25) 2021; 87
T Bing (2132_CR3) 2022; 101
H Qi (2132_CR23) 2021; 42
Y Wang (2132_CR36) 2018; 67
YV Malitsky (2132_CR19) 2015; 25
References_xml – volume: 38
  start-page: 94
  year: 2019
  ident: CR32
  article-title: Strong convergence of a forward–backward splitting method with a new step size for solving monotone inclusions
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-019-0855-z
– volume: 70
  start-page: 545
  year: 2021
  end-page: 574
  ident: CR1
  article-title: Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems
  publication-title: Optimization
  doi: 10.1080/02331934.2020.1723586
– volume: 16
  start-page: 964
  year: 1979
  end-page: 979
  ident: CR15
  article-title: Splitting algorithms for the sum of two nonlinear operators
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– ident: CR4
– ident: CR37
– year: 2021
  ident: CR11
  article-title: Relaxed inertial methods for solving the split monotone variational inclusion problem beyond co-coerciveness
  publication-title: Optimization
  doi: 10.1080/02331934.2021.1981895
– volume: 30
  start-page: 1451
  year: 2020
  end-page: 1472
  ident: CR21
  article-title: A forward–backward splitting method for monotone inclusions without cocoercivity
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1207260
– ident: CR33
– volume: 77
  start-page: 491
  issue: 2
  year: 2020
  end-page: 508
  ident: CR16
  article-title: Weak convergence of iterative methods for solving quasimonotone variational inequalities
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-020-00217-8
– volume: 25
  start-page: 502
  year: 2015
  end-page: 520
  ident: CR19
  article-title: Projected reflected gradient methods for monotone variational inequalities
  publication-title: SIAM J. Optim.
  doi: 10.1137/14097238X
– volume: 325
  start-page: 469
  issue: 1
  year: 2007
  end-page: 479
  ident: CR17
  article-title: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.12.066
– year: 1971
  ident: CR14
  publication-title: Optimal Control of Systems Governed by Partial Differential Equations
  doi: 10.1007/978-3-642-65024-6
– volume: 36
  start-page: 1
  year: 2021
  end-page: 19
  ident: CR27
  article-title: An inertial extrapolation method for convex simple bilevel optimization
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2019.1619729
– volume: 101
  start-page: 5386
  year: 2022
  end-page: 5414
  ident: CR3
  article-title: Strong convergence of inertial forward–backward methods for solving monotone inclusions
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2021.1892080
– ident: CR8
– volume: 77
  start-page: 143
  year: 2022
  ident: CR12
  article-title: Convergence of two simple methods for solving monotone inclusion problems in reflexive Banach spaces
  publication-title: Results Math.
  doi: 10.1007/s00025-022-01694-5
– volume: 81
  start-page: 269
  year: 2019
  end-page: 291
  ident: CR35
  article-title: Convergence of an extragradient-type method for variational inequality with applications to optimal control problems
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-018-0547-6
– volume: 55
  start-page: 49
  year: 2018
  ident: CR9
  article-title: Tseng type methods for solving inclusion problems and its applications
  publication-title: Calcolo
  doi: 10.1007/s10092-018-0292-1
– volume: 84
  start-page: 365
  year: 2020
  end-page: 388
  ident: CR26
  article-title: An efficient projection-type method for monotone variational inequalities in Hilbert spaces
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-019-00758-y
– volume: 147
  start-page: 27
  year: 2010
  end-page: 41
  ident: CR30
  article-title: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces
  publication-title: J. Optim Theory Appl.
  doi: 10.1007/s10957-010-9713-2
– volume: 42
  start-page: 1839
  year: 2021
  end-page: 1854
  ident: CR23
  article-title: Convergence of Halpern’s iteration method with applications in optimization
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2021.2001826
– volume: 19
  start-page: 127
  year: 2021
  end-page: 151
  ident: CR10
  article-title: Modified forward–backward splitting method for variational inclusions, 4OR-Q
  publication-title: J. Oper. Res.
  doi: 10.1007/s10288-020-00440-3
– volume: 64
  start-page: 1471
  year: 2015
  end-page: 1486
  ident: CR2
  article-title: A variant of forward–backward splitting method for the sum of two monotone operators with a new search strategy
  publication-title: Optimization
  doi: 10.1080/02331934.2014.883510
– volume: 87
  start-page: 1075
  year: 2021
  end-page: 1095
  ident: CR25
  article-title: Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-020-00999-2
– volume: 169
  start-page: 217
  year: 2020
  end-page: 245
  ident: CR7
  article-title: A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems
  publication-title: Acta Appl. Math.
  doi: 10.1007/s10440-019-00297-7
– volume: 61
  start-page: 193
  year: 2015
  end-page: 202
  ident: CR20
  article-title: A hybrid method without extrapolation step for solving variational inequality problems
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-014-0150-x
– volume: 184
  start-page: 383
  year: 2020
  end-page: 410
  ident: CR18
  article-title: Golden ratio algorithms for variational inequalities
  publication-title: Math. Program
  doi: 10.1007/s10107-019-01416-w
– volume: 72
  start-page: 383
  year: 1979
  end-page: 390
  ident: CR22
  article-title: Ergodic convergence to a zero of the sum of monotone operators in Hilbert spaces
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(79)90234-8
– volume: 7
  start-page: 421
  year: 1997
  end-page: 444
  ident: CR6
  article-title: Convergence rates in forward–backward splitting
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623495290179
– volume: 82
  start-page: 523
  year: 2022
  end-page: 557
  ident: CR31
  article-title: Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-021-01095-y
– ident: CR13
– volume: 38
  start-page: 431
  year: 2000
  end-page: 446
  ident: CR34
  article-title: A modified forward–backward splitting method for maximal monotone mappings
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012998338806
– volume: 29
  start-page: 163
  year: 2021
  end-page: 174
  ident: CR5
  article-title: A reflected forward–backward splitting method for monotone inclusions involving Lipschitzian operators
  publication-title: Set-Valued Var. Anal.
  doi: 10.1007/s11228-020-00542-4
– year: 2021
  ident: CR28
  article-title: Alternated inertial subgradient extragradient method for equilibrium problems
  publication-title: TOP
  doi: 10.1007/s11750-021-00620-2
– volume: 173
  start-page: 239
  year: 2022
  end-page: 248
  ident: CR29
  article-title: A strongly convergent algorithm for solving common variational inclusion with application to image recovery problems
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2021.12.006
– volume: 75
  start-page: 742
  year: 2012
  end-page: 750
  ident: CR24
  article-title: Approximation of zeros of inverse strongly monotone operators in Banach spaces
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.09.005
– volume: 67
  start-page: 493
  year: 2018
  end-page: 505
  ident: CR36
  article-title: Strong convergence of the forward–backward splitting method with multiple parameters in Hilbert spaces
  publication-title: Optimization
  doi: 10.1080/02331934.2017.1411485
– volume: 7
  start-page: 421
  year: 1997
  ident: 2132_CR6
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623495290179
– ident: 2132_CR37
– ident: 2132_CR33
– volume: 84
  start-page: 365
  year: 2020
  ident: 2132_CR26
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-019-00758-y
– volume: 72
  start-page: 383
  year: 1979
  ident: 2132_CR22
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(79)90234-8
– volume: 87
  start-page: 1075
  year: 2021
  ident: 2132_CR25
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-020-00999-2
– year: 2021
  ident: 2132_CR11
  publication-title: Optimization
  doi: 10.1080/02331934.2021.1981895
– volume: 38
  start-page: 94
  year: 2019
  ident: 2132_CR32
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-019-0855-z
– volume: 29
  start-page: 163
  year: 2021
  ident: 2132_CR5
  publication-title: Set-Valued Var. Anal.
  doi: 10.1007/s11228-020-00542-4
– volume: 25
  start-page: 502
  year: 2015
  ident: 2132_CR19
  publication-title: SIAM J. Optim.
  doi: 10.1137/14097238X
– volume: 81
  start-page: 269
  year: 2019
  ident: 2132_CR35
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-018-0547-6
– volume: 77
  start-page: 491
  issue: 2
  year: 2020
  ident: 2132_CR16
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-020-00217-8
– year: 2021
  ident: 2132_CR28
  publication-title: TOP
  doi: 10.1007/s11750-021-00620-2
– volume: 64
  start-page: 1471
  year: 2015
  ident: 2132_CR2
  publication-title: Optimization
  doi: 10.1080/02331934.2014.883510
– volume: 19
  start-page: 127
  year: 2021
  ident: 2132_CR10
  publication-title: J. Oper. Res.
  doi: 10.1007/s10288-020-00440-3
– volume: 30
  start-page: 1451
  year: 2020
  ident: 2132_CR21
  publication-title: SIAM J. Optim.
  doi: 10.1137/18M1207260
– volume: 101
  start-page: 5386
  year: 2022
  ident: 2132_CR3
  publication-title: Appl. Anal.
  doi: 10.1080/00036811.2021.1892080
– volume: 169
  start-page: 217
  year: 2020
  ident: 2132_CR7
  publication-title: Acta Appl. Math.
  doi: 10.1007/s10440-019-00297-7
– ident: 2132_CR13
  doi: 10.1007/978-3-642-59073-3_11
– volume: 173
  start-page: 239
  year: 2022
  ident: 2132_CR29
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2021.12.006
– volume: 36
  start-page: 1
  year: 2021
  ident: 2132_CR27
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2019.1619729
– volume: 325
  start-page: 469
  issue: 1
  year: 2007
  ident: 2132_CR17
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.12.066
– volume: 38
  start-page: 431
  year: 2000
  ident: 2132_CR34
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012998338806
– ident: 2132_CR8
– ident: 2132_CR4
– volume: 75
  start-page: 742
  year: 2012
  ident: 2132_CR24
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.09.005
– volume: 55
  start-page: 49
  year: 2018
  ident: 2132_CR9
  publication-title: Calcolo
  doi: 10.1007/s10092-018-0292-1
– volume: 77
  start-page: 143
  year: 2022
  ident: 2132_CR12
  publication-title: Results Math.
  doi: 10.1007/s00025-022-01694-5
– volume: 61
  start-page: 193
  year: 2015
  ident: 2132_CR20
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-014-0150-x
– volume: 42
  start-page: 1839
  year: 2021
  ident: 2132_CR23
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2021.2001826
– volume: 16
  start-page: 964
  year: 1979
  ident: 2132_CR15
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– volume: 82
  start-page: 523
  year: 2022
  ident: 2132_CR31
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-021-01095-y
– volume-title: Optimal Control of Systems Governed by Partial Differential Equations
  year: 1971
  ident: 2132_CR14
  doi: 10.1007/978-3-642-65024-6
– volume: 184
  start-page: 383
  year: 2020
  ident: 2132_CR18
  publication-title: Math. Program
  doi: 10.1007/s10107-019-01416-w
– volume: 67
  start-page: 493
  year: 2018
  ident: 2132_CR36
  publication-title: Optimization
  doi: 10.1080/02331934.2017.1411485
– volume: 70
  start-page: 545
  year: 2021
  ident: 2132_CR1
  publication-title: Optimization
  doi: 10.1080/02331934.2020.1723586
– volume: 147
  start-page: 27
  year: 2010
  ident: 2132_CR30
  publication-title: J. Optim Theory Appl.
  doi: 10.1007/s10957-010-9713-2
SSID ssj0009892
Score 2.4655488
Snippet In this paper, we propose and study several strongly convergent versions of the forward–reflected–backward splitting method of Malitsky and Tam for finding a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 73
SubjectTerms Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Convergence
Hilbert space
Image restoration
Inclusions
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Operators (mathematics)
Optimal control
Optimization
Splitting
Theoretical
Viscosity
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5R6KE98GpRw0tz6AFELSXr1_oIEREcoFUCiJu13kdVKcQoDpz7H_oL-Gv8EmY2NoEKKtGbNV6v1trZmW_nCfDVdaRLTVEEMrNRECVSBYr0ZCBs5IRySZQ645tNpKen8vIy-1EnhVVNtHvjkvSS-kmyW9bhbGL2O9IdKkjewQKpO8kNG_qDi1mpXelbIdPxiQMCy1GdKvPyHM_V0Qxj_uUW9dqmt_R_61yGxRpd4v6UHVZgzo5W4ePJY2nWahVW6tNc4U5dcnr3E9wN2CL-E7scg-7TMS2WDnvlmINq73__6VvH9n3Lzwds8iMyDgjA-rBpPPF9qCskBIyDcnjraeWo5ErfSCJoeMNGuQrZ6ov7T3zmOCnx-IpkGvZ9ixtPRTUy-J1k2RX9S3caS_8ZznuHZ92joG7eEGg61dziXqeikLIoYqNd4RLTiVOThkRJdKoT0S4KEcYmVDIk1GNNptuZIfgaO0cQMgzXYH5Ei_wCaK0gUUh3eKVkJF2iNJdJdG2lbMgArQWdZg9zXVc25wYbw3xWk5n3JKc9yf2e5EkL9h6_uZ7W9fjn6M2GNfL6jFe5yEgc0nVXtFvwrWGF2evXZ1t_2_AN-CA8N3Hg2ybMT8Y3dgve69vJr2q87Xn_AXQ4AaQ
  priority: 102
  providerName: Springer Nature
Title Strong Convergence of Forward–Reflected–Backward Splitting Methods for Solving Monotone Inclusions with Applications to Image Restoration and Optimal Control
URI https://link.springer.com/article/10.1007/s10915-023-02132-6
https://www.proquest.com/docview/2918319120
Volume 94
WOSCitedRecordID wos000935524100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB7RlgMXoPyIQInmwAEEFon3z3tCbdQIhAhRAqjisvL6ByGl2ZJNe-YdeAJejSdhxnFYQKIXLquVd9fyasbjzzPj-QAe-aHyha1roUqXijRXWmhaJ4V0qZfa52nhbSCbKCYTdXJSTqPDrY1plVubGAy1bQz7yJ_LkpSPNhdy8OLsi2DWKI6uRgqNHdjjKglM3TDNPnZFd1UgRaaJlAmCzWk8NBOPzpVDPpvMUUzakYn8z4WpQ5t_BUjDujO-8b8jvgnXI-LEw42K7MMVt7wF-3FOt_g4Fp5-chu-z9kv_glHnIkeDmU6bDyOmxWn1v74-m3mPHv5Hd8fseOPmnFOMDYkT-ObwEbdIuFgnDeLi9DWLBuu941kiBbn7JprkX2_ePhb5BzXDb46JcuGs0B0E1pRLy2-JYt2SqMfbTLq78D78fG70UsRKRyEoV9nontTyFqpus6s8bXP7TArbJFQS24Kk8tBXcsks4lWCWEfZ0szKC2B2Mx7ApJJchd2lzTIe4DOSTKItJPXWqXK59pwsUQ_0NolDNN6MNzKrzKxvjnTbCyqrjIzy7wimVdB5lXeg6e_vjnbVPe49O2DraCrONPbqpNyD55tVaV7_O_e7l_e2wO4JoN2crrbAeyuV-fuIVw1F-vP7aoPe0fHk-msDzuvC9EPWk_X2fzDTyjrCr4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF5VBQkuhfKjBgrMASQQrEjWP7s-IFQCUaO0ATVF6s2s9wchpXGJ06Le-g48AS_AQ_EkzGxsDEj01gM3a_0jy_7m29nZmfkYe-h7yktbFFxlLuZxqjTXOE9y4WIvtE9j6W0Qm5DjsTo4yN6tsO9NLQylVTacGIjaloZi5M9FhuDDxYXovjz6zEk1inZXGwmNJSxG7vQLLtmqF8PX-H8fCTF4s9_f5rWqADd4P2mvGykKpYoiscYXPrW9RFoZ4UhqpElFtyhElNhIqwinY2cz080s-lWJ9-jbUAAUKf9SHClJdjWSvG3yq4IIMxpuwtFNj-sinbpUL-tRLTTtmuIKkKd_ToStd_vXhmyY5wbX_rcvdJ2t1R41bC1NYJ2tuNkNtl5zVgWP68baT26ybxOK-3-EPmXah6JTB6WHQTmn1OEfZ1_3nKddDEfHryiwicMwQTc9JIfDblDbrgD9fJiU05MwVs5K6mcOSLTTYwo9VkCxbdj6LTMAFiUMD5G5YS8I-YRR0DMLb5GxD_Ht-8uKgVvs_YV8qttsdYYvucHAOYGEL2OhtYqVT7WhZpC-q7WLyA3tsF6Dl9zU_dtJRmSat52nCWM5YiwPGMvTDnv6656jZfeSc6_ebICV10xW5S2qOuxZA8329L-fduf8pz1gV7b3d3fyneF4dJddFcEyKLVvk60u5sfuHrtsThafqvn9YGPAPlw0ZH8CouljqA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BQQgOQAuIhQJz4AACqxvnzzmWhRUVdKm6gHqLHP8gpG1SbdKeeQeegFfjSZjxZrsLAiTELXIcy5E948_z8w3AYx8pn9uqEqpwiUgypYWmc1JIl3ipfZbk3oZiE_lkoo6OioO1LP4Q7b50SS5yGpilqe52TqzfWUt8KyLOLGYfJN2nRHYRLiUcSM_39enHFe2uCmWRSZRSQcA56dNmfj_Gz0fTCm_-4iINJ8_4xv_P-SZc71En7i62ySZccPUWXNs_p2xtt2Czl_IWn_RU1E9vwbcpW8o_4Yhj00OapsPG47iZc7Dt9y9fD51nu7_j5xdsCqRmnBKwDeHUuB_qU7dIyBinzewstDV1wwzgSKppdsrGuhbZGoy7a7507BrcOyZdh4eh9E1oRV1bfEc67pj-ZbSIsb8NH8av3o9ei76ogzAk7Z2IYpPLSqmqSq3xlc9slOY2j6klM7nJ5LCqZJzaWKuY0JCzhRkWlmBt6j1Byzi-Axs1TfIuoHOSVCTd7bVWifKZNkyf6Idau5iB2wCi5XqWpmc858Ibs3LF1cxrUtKalGFNymwAz86_OVnwffy19_Zym5S97LelLEhN0jVYDgfwfLktVq__PNq9f-v-CK4cvByXb_cmb-7DVRk2FsfGbcNGNz91D-CyOes-t_OHQSR-AF-2DWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+Convergence+of+Forward%E2%80%93Reflected%E2%80%93Backward+Splitting+Methods+for+Solving+Monotone+Inclusions+with+Applications+to+Image+Restoration+and+Optimal+Control&rft.jtitle=Journal+of+scientific+computing&rft.au=Izuchukwu%2C+Chinedu&rft.au=Reich%2C+Simeon&rft.au=Shehu%2C+Yekini&rft.au=Taiwo%2C+Adeolu&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=94&rft.issue=3&rft.spage=73&rft_id=info:doi/10.1007%2Fs10915-023-02132-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon