Probing epileptic disorders with lightweight neural network and EEG's intrinsic geometry

The nonlinear dynamical systems can be stabilized on attractors in chaotic states, where the attractors depicted by dynamical trajectories may take on specific geometries. Electroencephalogram (EEG) signals are typically chaotic signals that have various nonlinear dynamic characteristics. Intrinsic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics Jg. 111; H. 6; S. 5817 - 5832
Hauptverfasser: Song, Zhenxi, Deng, Bin, Zhu, Yulin, Cai, Lihui, Wang, Jiang, Yi, Guosheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.03.2023
Springer Nature B.V
Schlagworte:
ISSN:0924-090X, 1573-269X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The nonlinear dynamical systems can be stabilized on attractors in chaotic states, where the attractors depicted by dynamical trajectories may take on specific geometries. Electroencephalogram (EEG) signals are typically chaotic signals that have various nonlinear dynamic characteristics. Intrinsic geometry of EEG signals could contribute to tracking the recurrence of seizures and probing epileptic disorders, but it is ignored in most deep network-based seizure detection algorithms. Therefore, this paper presents an automatic detection framework called Recursive State-Space Neural Network (RSSNN) to infer the EEG geometry from single-channel signals and identify different epileptic patterns with a fast computational speed. RSSNN consists of a mathematical mapping module and a deep learning model. The former reconstructs EEG geometry in a high-dimensional state-space and maps it to a two-dimensional graph. The latter is a newly designed lightweight (0.68 MB) fully convolutional network that decodes geometry into brain states. We validated RSSNN on a public EEG dataset collected from epileptic patients with seizure and seizure-free conditions and healthy volunteers. A sliding window with a one-second length is utilized to verify the performance of RSSNN at the segment level. Moreover, the voting strategy is adopted to obtain the final prediction at the subject level. In the testing phase, RSSNN obtains an overall 99.79% accuracy at the EEG segment level and reaches 100% accuracy at the subject level. Notably, it takes less than 25 ms to predict one subject. This study proves the potential of EEG's intrinsic geometry as a seizure indicator for real-time monitoring by combining it with a lightweight neural network. It enriches the deep learning-based seizure prediction methodology in nonlinear dynamics.
AbstractList The nonlinear dynamical systems can be stabilized on attractors in chaotic states, where the attractors depicted by dynamical trajectories may take on specific geometries. Electroencephalogram (EEG) signals are typically chaotic signals that have various nonlinear dynamic characteristics. Intrinsic geometry of EEG signals could contribute to tracking the recurrence of seizures and probing epileptic disorders, but it is ignored in most deep network-based seizure detection algorithms. Therefore, this paper presents an automatic detection framework called Recursive State-Space Neural Network (RSSNN) to infer the EEG geometry from single-channel signals and identify different epileptic patterns with a fast computational speed. RSSNN consists of a mathematical mapping module and a deep learning model. The former reconstructs EEG geometry in a high-dimensional state-space and maps it to a two-dimensional graph. The latter is a newly designed lightweight (0.68 MB) fully convolutional network that decodes geometry into brain states. We validated RSSNN on a public EEG dataset collected from epileptic patients with seizure and seizure-free conditions and healthy volunteers. A sliding window with a one-second length is utilized to verify the performance of RSSNN at the segment level. Moreover, the voting strategy is adopted to obtain the final prediction at the subject level. In the testing phase, RSSNN obtains an overall 99.79% accuracy at the EEG segment level and reaches 100% accuracy at the subject level. Notably, it takes less than 25 ms to predict one subject. This study proves the potential of EEG's intrinsic geometry as a seizure indicator for real-time monitoring by combining it with a lightweight neural network. It enriches the deep learning-based seizure prediction methodology in nonlinear dynamics.
The nonlinear dynamical systems can be stabilized on attractors in chaotic states, where the attractors depicted by dynamical trajectories may take on specific geometries. Electroencephalogram (EEG) signals are typically chaotic signals that have various nonlinear dynamic characteristics. Intrinsic geometry of EEG signals could contribute to tracking the recurrence of seizures and probing epileptic disorders, but it is ignored in most deep network-based seizure detection algorithms. Therefore, this paper presents an automatic detection framework called Recursive State-Space Neural Network (RSSNN) to infer the EEG geometry from single-channel signals and identify different epileptic patterns with a fast computational speed. RSSNN consists of a mathematical mapping module and a deep learning model. The former reconstructs EEG geometry in a high-dimensional state-space and maps it to a two-dimensional graph. The latter is a newly designed lightweight (0.68 MB) fully convolutional network that decodes geometry into brain states. We validated RSSNN on a public EEG dataset collected from epileptic patients with seizure and seizure-free conditions and healthy volunteers. A sliding window with a one-second length is utilized to verify the performance of RSSNN at the segment level. Moreover, the voting strategy is adopted to obtain the final prediction at the subject level. In the testing phase, RSSNN obtains an overall 99.79% accuracy at the EEG segment level and reaches 100% accuracy at the subject level. Notably, it takes less than 25 ms to predict one subject. This study proves the potential of EEG's intrinsic geometry as a seizure indicator for real-time monitoring by combining it with a lightweight neural network. It enriches the deep learning-based seizure prediction methodology in nonlinear dynamics.
Author Song, Zhenxi
Zhu, Yulin
Deng, Bin
Wang, Jiang
Yi, Guosheng
Cai, Lihui
Author_xml – sequence: 1
  givenname: Zhenxi
  surname: Song
  fullname: Song, Zhenxi
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 2
  givenname: Bin
  surname: Deng
  fullname: Deng, Bin
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 3
  givenname: Yulin
  surname: Zhu
  fullname: Zhu, Yulin
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 4
  givenname: Lihui
  surname: Cai
  fullname: Cai, Lihui
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 5
  givenname: Jiang
  surname: Wang
  fullname: Wang, Jiang
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 6
  givenname: Guosheng
  orcidid: 0000-0002-9362-6605
  surname: Yi
  fullname: Yi, Guosheng
  email: guoshengyi@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University
BookMark eNp9kM1KAzEURoNUsFZfwNWAC1fR_MxMkqWUWoWCLhS6C5lMZpo6TWqSUvr2Th1BcNHN_TbfufdyLsHIeWcAuMHoHiPEHiLGiGGICIGIY8whOwNjXDAKSSmWIzBGguQQCbS8AJcxrhFClCA-Bsu34Cvr2sxsbWe2yeqsttGH2oSY7W1aZZ1tV2lvjjNzZhdU10fa-_CZKVdns9n8LmbWpWBd7OnW-I1J4XAFzhvVRXP9mxPw8TR7nz7Dxev8Zfq4gJpikSCmpNG6LIuciYZwbiqjKVGU5rSsam0KjnheKKxJrYSgtWGUFrkWglQc5WVNJ-B22LsN_mtnYpJrvwuuPykJY1QITknet_jQ0sHHGEwjtU0qWd__rWwnMZJHj3LwKHuP8sejZD1K_qHbYDcqHE5DdIBiX3atCX9fnaC-AYsXh_A
CitedBy_id crossref_primary_10_1088_1402_4896_ae04b0
crossref_primary_10_1007_s11071_024_09384_3
crossref_primary_10_1155_2022_8265275
Cites_doi 10.1103/PhysRevE.64.061907
10.1109/TNSRE.2019.2943707
10.1016/j.knosys.2015.08.004
10.1515/bmt-2018-0246
10.1016/j.eswa.2018.04.021
10.1016/j.eswa.2020.113788
10.1109/TBME.2017.2650259
10.1016/j.future.2018.08.044
10.1016/j.eswa.2011.04.149
10.1016/j.bbe.2018.01.002
10.1088/1741-2560/8/3/036015
10.1016/j.patrec.2017.05.007
10.1016/j.knosys.2019.105333
10.1016/j.bspc.2019.101569
10.1016/j.bspc.2017.05.007
10.1111/epi.14049
10.1088/1741-2552/ab5247
10.1109/TNNLS.2021.3072885
10.1088/1741-2552/abc1b7
10.1088/1741-2552/abf473
10.1016/j.patrec.2017.03.023
10.1016/j.physleta.2008.09.027
10.1007/s00521-018-3889-z
10.3390/e21090869
10.3389/fbioe.2020.01006
10.1016/S0167-2789(97)00118-8
10.1016/0375-9601(91)90651-N
10.1016/j.compbiomed.2019.04.031
10.1016/j.bspc.2021.103138
10.1088/1741-2552/ab094a
10.1088/1741-2552/ab0ab5
10.1016/j.bspc.2020.101921
10.1111/epi.16492
10.1088/1741-2560/11/2/024001
10.1109/JBHI.2019.2906400
10.1007/s00521-017-3003-y
10.1088/1741-2552/ab909d
10.1109/TBME.2014.2360101
10.1016/j.bspc.2021.103248
10.1088/1741-2552/abef8a
10.1016/j.compbiomed.2017.09.017
10.1016/S1388-2457(99)00125-X
10.1109/TNSRE.2015.2441835
10.1109/TCYB.2021.3071860
10.1093/brain/awu133
10.1088/1741-2552/aab2f2
10.1016/j.bspc.2021.102469
10.1088/1741-2552/abf28e
10.1016/j.amjmed.2021.01.038
10.1007/s00500-018-3487-0
10.1016/j.bspc.2017.07.022
10.1007/s00521-013-1368-0
10.1142/S0218127407019226
10.1016/j.compbiomed.2018.05.019
10.1111/epi.12507
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-022-08118-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 5832
ExternalDocumentID 10_1007_s11071_022_08118_7
GrantInformation_xml – fundername: Natural Science Foundation of Tianjin City
  grantid: 19JCQNJC01200; 19JCZDJC36500
  funderid: http://dx.doi.org/10.13039/501100006606
– fundername: National Natural Science Foundation of China
  grantid: 62071324
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-132fcc665479f288ebec32a33436bdce580845a1c2da993de73354c992b8046d3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000893245000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Wed Nov 05 04:18:28 EST 2025
Sat Nov 29 03:06:35 EST 2025
Tue Nov 18 22:24:59 EST 2025
Fri Feb 21 02:45:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords EEG geometry
Epileptic disorders
Electroencephalogram (EEG)
Seizure detection
Chaotic system
Fully convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-132fcc665479f288ebec32a33436bdce580845a1c2da993de73354c992b8046d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9362-6605
PQID 2773998324
PQPubID 2043746
PageCount 16
ParticipantIDs proquest_journals_2773998324
crossref_citationtrail_10_1007_s11071_022_08118_7
crossref_primary_10_1007_s11071_022_08118_7
springer_journals_10_1007_s11071_022_08118_7
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Acharya, Fujita, Sudarshan, Bhat, Koh (CR12) 2015; 88
Yildirim, Baloglu, Acharya (CR31) 2020; 32
CR37
San-Segundo, Gil-Martin, D'Haro-Enriquez, Pardo (CR30) 2019; 109
CR33
Wulsin, Gupta, Mani, Blanco, Litt (CR28) 2011; 8
Gupta, Pachori (CR48) 2019; 53
Khademi, Hendriks, Kleijn (CR57) 2017; 25
Dumpelmann (CR9) 2019; 16
Hassan, Subasi, Zhang (CR52) 2020; 191
Beniczky, Ryvlin (CR4) 2018; 59
Lotte (CR7) 2018; 15
Craik, He, Contreras-Vidal (CR5) 2019; 16
Shoeibi (CR38) 2021; 163
Sharma, Pachori, Acharya (CR26) 2017; 94
Lashkari, Sheikhani, Hashemi Golpayegan, Moghimi, Kobravi (CR39) 2018; 26
Binnie, Stefan (CR43) 1999; 110
Yavuz, Kasapbasi, Eyupoglu, Yazici (CR50) 2018; 38
Theiler (CR60) 1991; 155
Namazi, Kulish (CR13) 2015; 2015
Samiee, Kovacs, Gabbouj (CR14) 2015; 62
Arunkumar (CR16) 2017; 94
Lian, Qi, Pan, Wang (CR36) 2020; 17
Ugawa (CR44) 2018
Oliva, Rosa (CR49) 2021; 66
Beniczky, Arbune, Jeppesen, Ryvlin (CR2) 2020; 61
Orhan, Hekim, Ozer (CR10) 2011; 38
Zbilut, Marwan (CR55) 2008; 372
Bhattacharyya, Pachori (CR17) 2017; 64
Widge, Moritz (CR6) 2014; 11
Andrzejak (CR42) 2001
Toth (CR22) 2020; 17
Milligan (CR1) 2021; 134
Le Trung (CR23) 2020; 17
Ullah, Hussain, Aboalsamh (CR29) 2018; 107
Acharya (CR20) 2019; 91
Webber, Zbilut (CR62) 2007; 17
Krakovská, Mezeiová, Budáčová (CR58) 2015; 2015
Al Ghayab, Li, Siuly, Abdulla (CR21) 2019; 23
CR53
Zabihi, Kiranyaz, Jantti, Lipping, Gabbouj (CR24) 2020; 24
Tsiouris (CR34) 2018; 99
Nabil, Benali, Reguig (CR47) 2020; 65
Nasseri (CR3) 2021; 18
Sharma, Pachori, Sircar (CR25) 2020; 59
Anuragi, Singh Sisodia, Pachori (CR51) 2022; 71
Ozcan, Erturk (CR35) 2019; 27
Vergara, Estevez (CR56) 2014; 24
Jing, Pang, Pan, Fan, Meng (CR46) 2022; 71
Zou, Donner, Marwan, Donges, Kurths (CR61) 2019; 787
Li, Gao, Huang, Wu, Xu (CR27) 2020; 8
Geng (CR32) 2021; 18
Alickovic, Kevric, Subasi (CR18) 2018; 39
Baudot, Tapia, Bennequin, Goaillard (CR54) 2019; 21
Liu, Richardson (CR8) 2021; 18
Sayed, Kamel, Alhaddad, Malibary, Kadah (CR40) 2017; 38
Riaz, Hassan, Rehman, Niazi, Dremstrup (CR15) 2016; 24
Cao (CR59) 1997; 110
Gnatkovsky (CR11) 2014; 55
Subasi, Kevric, Canbaz (CR19) 2019; 31
Jirsa, Stacey, Quilichini, Ivanov, Bernard (CR41) 2014; 137
Acharya, Oh, Hagiwara, Tan, Adeli (CR45) 2018; 100
8118_CR33
Q Lian (8118_CR36) 2020; 17
KM Tsiouris (8118_CR34) 2018; 99
UR Acharya (8118_CR12) 2015; 88
F Riaz (8118_CR15) 2016; 24
TA Milligan (8118_CR1) 2021; 134
AR Ozcan (8118_CR35) 2019; 27
J Theiler (8118_CR60) 1991; 155
JP Zbilut (8118_CR55) 2008; 372
S Beniczky (8118_CR2) 2020; 61
CL Webber (8118_CR62) 2007; 17
AS Widge (8118_CR6) 2014; 11
S Lashkari (8118_CR39) 2018; 26
8118_CR37
O Yildirim (8118_CR31) 2020; 32
A Anuragi (8118_CR51) 2022; 71
U Orhan (8118_CR10) 2011; 38
A Subasi (8118_CR19) 2019; 31
E Toth (8118_CR22) 2020; 17
K Samiee (8118_CR14) 2015; 62
D Nabil (8118_CR47) 2020; 65
CD Binnie (8118_CR43) 1999; 110
HR Al Ghayab (8118_CR21) 2019; 23
D Geng (8118_CR32) 2021; 18
R Sharma (8118_CR25) 2020; 59
H Namazi (8118_CR13) 2015; 2015
VK Jirsa (8118_CR41) 2014; 137
8118_CR53
S Beniczky (8118_CR4) 2018; 59
K Sayed (8118_CR40) 2017; 38
A Shoeibi (8118_CR38) 2021; 163
Y Zou (8118_CR61) 2019; 787
N Arunkumar (8118_CR16) 2017; 94
M Zabihi (8118_CR24) 2020; 24
I Ullah (8118_CR29) 2018; 107
UR Acharya (8118_CR45) 2018; 100
V Gupta (8118_CR48) 2019; 53
Y Ugawa (8118_CR44) 2018
A Bhattacharyya (8118_CR17) 2017; 64
M Nasseri (8118_CR3) 2021; 18
J Jing (8118_CR46) 2022; 71
RG Andrzejak (8118_CR42) 2001
X Liu (8118_CR8) 2021; 18
AR Hassan (8118_CR52) 2020; 191
M Sharma (8118_CR26) 2017; 94
E Yavuz (8118_CR50) 2018; 38
M Dumpelmann (8118_CR9) 2019; 16
T Le Trung (8118_CR23) 2020; 17
F Lotte (8118_CR7) 2018; 15
E Alickovic (8118_CR18) 2018; 39
UR Acharya (8118_CR20) 2019; 91
P Baudot (8118_CR54) 2019; 21
L Cao (8118_CR59) 1997; 110
A Craik (8118_CR5) 2019; 16
A Krakovská (8118_CR58) 2015; 2015
S Khademi (8118_CR57) 2017; 25
JR Vergara (8118_CR56) 2014; 24
Q Li (8118_CR27) 2020; 8
V Gnatkovsky (8118_CR11) 2014; 55
DF Wulsin (8118_CR28) 2011; 8
R San-Segundo (8118_CR30) 2019; 109
JT Oliva (8118_CR49) 2021; 66
References_xml – volume: 38
  start-page: 201
  year: 2018
  end-page: 216
  ident: CR50
  article-title: An epileptic seizure detection system based on cepstral analysis and generalized regression neural network
  publication-title: Biocybern Biomed Eng
– volume: 88
  start-page: 85
  year: 2015
  end-page: 96
  ident: CR12
  article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review
  publication-title: Knowledge-Based Syst.
– volume: 17
  start-page: 066004
  year: 2020
  ident: CR22
  article-title: Machine learning approach to detect focal-onset seizures in the human anterior nucleus of the thalamus
  publication-title: J. Neural Eng.
– volume: 191
  start-page: 105333
  year: 2020
  ident: CR52
  article-title: Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise
  publication-title: Knowledge-Based Syst.
– volume: 137
  start-page: 2210
  year: 2014
  end-page: 2230
  ident: CR41
  article-title: On the nature of seizure dynamics
  publication-title: Brain
– volume: 94
  start-page: 172
  year: 2017
  end-page: 179
  ident: CR26
  article-title: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension
  publication-title: Pattern Recog. Lett.
– volume: 109
  start-page: 148
  year: 2019
  end-page: 158
  ident: CR30
  article-title: Classification of epileptic EEG recordings using signal transforms and convolutional neural networks
  publication-title: Comput. Biol. Med.
– volume: 26
  start-page: 1329
  year: 2018
  end-page: 1342
  ident: CR39
  article-title: Topological feature extraction of nonlinear signals and trajectories and its application in EEG signals classification
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– volume: 71
  start-page: 103248
  year: 2022
  ident: CR46
  article-title: Classification and identification of epileptic EEG signals based on signal enhancement
  publication-title: Biomed. Signal Process. Control
– volume: 8
  start-page: 036015
  year: 2011
  ident: CR28
  article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement
  publication-title: J. Neural Eng.
– volume: 15
  start-page: 031005
  year: 2018
  ident: CR7
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update
  publication-title: J. Neural Eng.
– volume: 107
  start-page: 61
  year: 2018
  end-page: 71
  ident: CR29
  article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach
  publication-title: Expert Syst. Appl.
– volume: 17
  start-page: 016023
  year: 2020
  ident: CR23
  article-title: Multi-channel EEG epileptic spike detection by a new method of tensor decomposition
  publication-title: J. Neural Eng.
– volume: 17
  start-page: 3467
  year: 2007
  end-page: 3475
  ident: CR62
  article-title: Recurrence quantifications: feature extractions from recurrence plots
  publication-title: Int. J. Bifurc. Chaos
– volume: 16
  start-page: 031001
  year: 2019
  ident: CR5
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J. Neural Eng.
– volume: 24
  start-page: 543
  year: 2020
  end-page: 555
  ident: CR24
  article-title: Patient-specific seizure detection using nonlinear dynamics and nullclines
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 27
  start-page: 2284
  year: 2019
  end-page: 2293
  ident: CR35
  article-title: Seizure prediction in scalp EEG using 3D convolutional neural networks with an image-based approach
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 18
  start-page: 056017
  year: 2021
  ident: CR3
  article-title: Non-invasive wearable seizure detection using long-short-term memory networks with transfer learning
  publication-title: J. Neural Eng.
– volume: 62
  start-page: 541
  year: 2015
  end-page: 552
  ident: CR14
  article-title: Epileptic seizure classification of EEG time-series using rational discrete short-time fourier transform
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 787
  start-page: 1
  year: 2019
  end-page: 97
  ident: CR61
  article-title: Complex network approaches to nonlinear time series analysis
  publication-title: Phys. Rep. Rev. Sect. Phys. Lett.
– volume: 39
  start-page: 94
  year: 2018
  end-page: 102
  ident: CR18
  article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction
  publication-title: Biomed. Signal Process. Control
– volume: 38
  start-page: 55
  year: 2017
  end-page: 66
  ident: CR40
  article-title: Characterization of phase space trajectories for Brain-Computer Interface
  publication-title: Biomed. Signal Process. Control
– year: 2001
  ident: CR42
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.061907
– volume: 31
  start-page: 317
  year: 2019
  end-page: 325
  ident: CR19
  article-title: Epileptic seizure detection using hybrid machine learning methods
  publication-title: Neural Comput. Appl.
– volume: 110
  start-page: 1671
  year: 1999
  end-page: 1697
  ident: CR43
  article-title: Modern electroencephalography: its role in epilepsy management
  publication-title: Clin. Neurophysiol.
– year: 2018
  ident: CR44
  publication-title: Clinical Practice Guidelines for Epilepsy 2018
– volume: 100
  start-page: 270
  year: 2018
  end-page: 278
  ident: CR45
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput. Biol. Med.
– volume: 24
  start-page: 175
  year: 2014
  end-page: 186
  ident: CR56
  article-title: A review of feature selection methods based on mutual information
  publication-title: Neural Comput. Appl.
– volume: 372
  start-page: 6622
  year: 2008
  end-page: 6626
  ident: CR55
  article-title: The Wiener-Khinchin theorem and recurrence quantification
  publication-title: Phys. Lett. A
– volume: 25
  start-page: 1694
  year: 2017
  end-page: 1708
  ident: CR57
  article-title: Intelligibility enhancement based on mutual information
  publication-title: Ieee-Acm T Audio Spe
– volume: 71
  start-page: 103138
  year: 2022
  ident: CR51
  article-title: Epileptic-seizure classification using phase-space representation of FBSE-EWT based EEG sub-band signals and ensemble learners
  publication-title: Biomed. Signal Process. Control
– volume: 155
  start-page: 480
  year: 1991
  end-page: 493
  ident: CR60
  article-title: Some comments on the correlation dimension of 1/fα noise
  publication-title: Phys. Lett. A
– volume: 53
  start-page: 101569
  year: 2019
  ident: CR48
  article-title: Epileptic seizure identification using entropy of FBSE based EEG rhythms
  publication-title: Biomed. Signal Process. Control
– volume: 17
  start-page: 035004
  year: 2020
  ident: CR36
  article-title: Learning graph in graph convolutional neural networks for robust seizure prediction
  publication-title: J. Neural Eng.
– volume: 11
  start-page: 024001
  year: 2014
  ident: CR6
  article-title: Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface
  publication-title: J. Neural Eng.
– volume: 32
  start-page: 15857
  year: 2020
  end-page: 15868
  ident: CR31
  article-title: A deep convolutional neural network model for automated identification of abnormal EEG signals
  publication-title: Neural Comput. Appl.
– ident: CR37
– ident: CR53
– volume: 94
  start-page: 112
  year: 2017
  end-page: 117
  ident: CR16
  article-title: Classification of focal and non focal EEG using entropies
  publication-title: Pattern Recog. Lett.
– volume: 23
  start-page: 227
  year: 2019
  end-page: 239
  ident: CR21
  article-title: Epileptic seizures detection in EEGs blending frequency domain with information gain technique
  publication-title: Soft. Comput.
– volume: 16
  start-page: 041001
  year: 2019
  ident: CR9
  article-title: Early seizure detection for closed loop direct neurostimulation devices in epilepsy
  publication-title: J. Neural Eng.
– ident: CR33
– volume: 134
  start-page: 840
  year: 2021
  end-page: 847
  ident: CR1
  article-title: Epilepsy: a clinical overview
  publication-title: Am. J. Med.
– volume: 38
  start-page: 13475
  year: 2011
  end-page: 13481
  ident: CR10
  article-title: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model
  publication-title: Expert Syst. Appl.
– volume: 55
  start-page: 296
  year: 2014
  end-page: 305
  ident: CR11
  article-title: Biomarkers of epileptogenic zone defined by quantified stereo-EEG analysis
  publication-title: Epilepsia
– volume: 59
  start-page: 101921
  year: 2020
  ident: CR25
  article-title: Seizures classification based on higher order statistics and deep neural network
  publication-title: Biomed. Signal Process. Control
– volume: 66
  start-page: 102469
  year: 2021
  ident: CR49
  article-title: Binary and multiclass classifiers based on multitaper spectral features for epilepsy detection
  publication-title: Biomed. Signal Process. Control
– volume: 18
  start-page: 046034
  year: 2021
  ident: CR8
  article-title: Edge deep learning for neural implants: a case study of seizure detection and prediction
  publication-title: J. Neural Eng.
– volume: 24
  start-page: 28
  year: 2016
  end-page: 35
  ident: CR15
  article-title: EMD-based temporal and spectral features for the classification of EEG signals using supervised learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 110
  start-page: 43
  year: 1997
  end-page: 50
  ident: CR59
  article-title: Practical method for determining the minimum embedding dimension of a scalar time series
  publication-title: Physica D
– volume: 59
  start-page: 9
  year: 2018
  end-page: 13
  ident: CR4
  article-title: Standards for testing and clinical validation of seizure detection devices
  publication-title: Epilepsia
– volume: 163
  start-page: 113788
  year: 2021
  ident: CR38
  article-title: A comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic seizures detection in EEG signals
  publication-title: Expert Syst. Appl.
– volume: 91
  start-page: 290
  year: 2019
  end-page: 299
  ident: CR20
  article-title: Characterization of focal EEG signals: a review
  publication-title: Future Gener. Comput. Syst. Int. J. Esci.
– volume: 99
  start-page: 24
  year: 2018
  end-page: 37
  ident: CR34
  article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals
  publication-title: Comput. Biol. Med.
– volume: 65
  start-page: 133
  year: 2020
  end-page: 148
  ident: CR47
  article-title: Epileptic seizure recognition using EEG wavelet decomposition based on nonlinear and statistical features with support vector machine classification
  publication-title: Biomed. Eng. Biomed. Tech.
– volume: 21
  start-page: 869
  year: 2019
  ident: CR54
  article-title: Topological information data analysis
  publication-title: Entropy
– volume: 2015
  start-page: 1
  year: 2015
  ident: CR13
  article-title: Fractional diffusion based modelling and prediction of human brain response to external stimuli
  publication-title: Comput. Math. Methods Med.
– volume: 64
  start-page: 2003
  year: 2017
  end-page: 2015
  ident: CR17
  article-title: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 1006
  year: 2020
  ident: CR27
  article-title: Distinguishing epileptiform discharges from normal electroencephalograms using scale-dependent Lyapunov exponent
  publication-title: Front. Bioeng. Biotechnol.
– volume: 18
  start-page: 056015
  year: 2021
  ident: CR32
  article-title: Deep learning for robust detection of interictal epileptiform discharges
  publication-title: J. Neural Eng.
– volume: 2015
  start-page: 932750
  year: 2015
  ident: CR58
  article-title: Use of false nearest neighbours for selecting variables and embedding parameters for state space reconstruction
  publication-title: J. Complex Syst
– volume: 61
  start-page: 61
  year: 2020
  end-page: 66
  ident: CR2
  article-title: Biomarkers of seizure severity derived from wearable devices
  publication-title: Epilepsia
– volume: 27
  start-page: 2284
  year: 2019
  ident: 8118_CR35
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2943707
– volume: 88
  start-page: 85
  year: 2015
  ident: 8118_CR12
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2015.08.004
– volume-title: Clinical Practice Guidelines for Epilepsy 2018
  year: 2018
  ident: 8118_CR44
– volume: 65
  start-page: 133
  year: 2020
  ident: 8118_CR47
  publication-title: Biomed. Eng. Biomed. Tech.
  doi: 10.1515/bmt-2018-0246
– volume: 107
  start-page: 61
  year: 2018
  ident: 8118_CR29
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.021
– volume: 163
  start-page: 113788
  year: 2021
  ident: 8118_CR38
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113788
– volume: 64
  start-page: 2003
  year: 2017
  ident: 8118_CR17
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2650259
– volume: 91
  start-page: 290
  year: 2019
  ident: 8118_CR20
  publication-title: Future Gener. Comput. Syst. Int. J. Esci.
  doi: 10.1016/j.future.2018.08.044
– volume: 38
  start-page: 13475
  year: 2011
  ident: 8118_CR10
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.149
– volume: 38
  start-page: 201
  year: 2018
  ident: 8118_CR50
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2018.01.002
– volume: 8
  start-page: 036015
  year: 2011
  ident: 8118_CR28
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036015
– volume: 94
  start-page: 112
  year: 2017
  ident: 8118_CR16
  publication-title: Pattern Recog. Lett.
  doi: 10.1016/j.patrec.2017.05.007
– volume: 191
  start-page: 105333
  year: 2020
  ident: 8118_CR52
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2019.105333
– volume: 53
  start-page: 101569
  year: 2019
  ident: 8118_CR48
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101569
– volume: 38
  start-page: 55
  year: 2017
  ident: 8118_CR40
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.05.007
– volume: 59
  start-page: 9
  year: 2018
  ident: 8118_CR4
  publication-title: Epilepsia
  doi: 10.1111/epi.14049
– volume: 25
  start-page: 1694
  year: 2017
  ident: 8118_CR57
  publication-title: Ieee-Acm T Audio Spe
– year: 2001
  ident: 8118_CR42
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.061907
– volume: 17
  start-page: 016023
  year: 2020
  ident: 8118_CR23
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab5247
– ident: 8118_CR33
  doi: 10.1109/TNNLS.2021.3072885
– volume: 17
  start-page: 066004
  year: 2020
  ident: 8118_CR22
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abc1b7
– volume: 18
  start-page: 046034
  year: 2021
  ident: 8118_CR8
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abf473
– volume: 94
  start-page: 172
  year: 2017
  ident: 8118_CR26
  publication-title: Pattern Recog. Lett.
  doi: 10.1016/j.patrec.2017.03.023
– volume: 372
  start-page: 6622
  year: 2008
  ident: 8118_CR55
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2008.09.027
– volume: 32
  start-page: 15857
  year: 2020
  ident: 8118_CR31
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3889-z
– volume: 21
  start-page: 869
  year: 2019
  ident: 8118_CR54
  publication-title: Entropy
  doi: 10.3390/e21090869
– volume: 8
  start-page: 1006
  year: 2020
  ident: 8118_CR27
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.01006
– volume: 110
  start-page: 43
  year: 1997
  ident: 8118_CR59
  publication-title: Physica D
  doi: 10.1016/S0167-2789(97)00118-8
– volume: 2015
  start-page: 932750
  year: 2015
  ident: 8118_CR58
  publication-title: J. Complex Syst
– volume: 155
  start-page: 480
  year: 1991
  ident: 8118_CR60
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(91)90651-N
– volume: 109
  start-page: 148
  year: 2019
  ident: 8118_CR30
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.04.031
– volume: 71
  start-page: 103138
  year: 2022
  ident: 8118_CR51
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103138
– volume: 16
  start-page: 041001
  year: 2019
  ident: 8118_CR9
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab094a
– volume: 16
  start-page: 031001
  year: 2019
  ident: 8118_CR5
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0ab5
– volume: 59
  start-page: 101921
  year: 2020
  ident: 8118_CR25
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101921
– volume: 61
  start-page: 61
  year: 2020
  ident: 8118_CR2
  publication-title: Epilepsia
  doi: 10.1111/epi.16492
– ident: 8118_CR53
– volume: 787
  start-page: 1
  year: 2019
  ident: 8118_CR61
  publication-title: Phys. Rep. Rev. Sect. Phys. Lett.
– volume: 11
  start-page: 024001
  year: 2014
  ident: 8118_CR6
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/2/024001
– volume: 24
  start-page: 543
  year: 2020
  ident: 8118_CR24
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2906400
– volume: 31
  start-page: 317
  year: 2019
  ident: 8118_CR19
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3003-y
– volume: 17
  start-page: 035004
  year: 2020
  ident: 8118_CR36
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab909d
– volume: 62
  start-page: 541
  year: 2015
  ident: 8118_CR14
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2360101
– volume: 71
  start-page: 103248
  year: 2022
  ident: 8118_CR46
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103248
– volume: 18
  start-page: 056017
  year: 2021
  ident: 8118_CR3
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abef8a
– volume: 100
  start-page: 270
  year: 2018
  ident: 8118_CR45
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.017
– volume: 110
  start-page: 1671
  year: 1999
  ident: 8118_CR43
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00125-X
– volume: 24
  start-page: 28
  year: 2016
  ident: 8118_CR15
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2441835
– ident: 8118_CR37
  doi: 10.1109/TCYB.2021.3071860
– volume: 137
  start-page: 2210
  year: 2014
  ident: 8118_CR41
  publication-title: Brain
  doi: 10.1093/brain/awu133
– volume: 15
  start-page: 031005
  year: 2018
  ident: 8118_CR7
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2
– volume: 66
  start-page: 102469
  year: 2021
  ident: 8118_CR49
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102469
– volume: 18
  start-page: 056015
  year: 2021
  ident: 8118_CR32
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abf28e
– volume: 134
  start-page: 840
  year: 2021
  ident: 8118_CR1
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2021.01.038
– volume: 23
  start-page: 227
  year: 2019
  ident: 8118_CR21
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-018-3487-0
– volume: 39
  start-page: 94
  year: 2018
  ident: 8118_CR18
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.07.022
– volume: 2015
  start-page: 1
  year: 2015
  ident: 8118_CR13
  publication-title: Comput. Math. Methods Med.
– volume: 24
  start-page: 175
  year: 2014
  ident: 8118_CR56
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1368-0
– volume: 26
  start-page: 1329
  year: 2018
  ident: 8118_CR39
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– volume: 17
  start-page: 3467
  year: 2007
  ident: 8118_CR62
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127407019226
– volume: 99
  start-page: 24
  year: 2018
  ident: 8118_CR34
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.05.019
– volume: 55
  start-page: 296
  year: 2014
  ident: 8118_CR11
  publication-title: Epilepsia
  doi: 10.1111/epi.12507
SSID ssj0003208
Score 2.3846803
Snippet The nonlinear dynamical systems can be stabilized on attractors in chaotic states, where the attractors depicted by dynamical trajectories may take on specific...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5817
SubjectTerms Accuracy
Algorithms
Attractors (mathematics)
Automotive Engineering
Classical Mechanics
Control
Convulsions & seizures
Deep learning
Disorders
Dynamic characteristics
Dynamical Systems
Electroencephalography
Engineering
Epilepsy
Geometry
Machine learning
Mechanical Engineering
Neural networks
Nonlinear dynamics
Nonlinear systems
Original Paper
Segments
Seizures
Vibration
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5R8KAHUdSIounBxIMuQrvRcjJqQE-EGE24LV3bERIcyKbG_97XrYCayMXzum7J1_fje23fB3DGRaRkFCBT9Y3wfC1baHOx9II4oq1IYpBoyFxsgvd6YjBo913BLXXHKuc-MXfUeqJsjfyKco6xFNeffz199axqlN1ddRIa61C2ncr8EpRvO73-48IXM5pr0jWQZdiKxMBdmykuzyHzQSqNZAzDYlN4_GdoWuabv7ZI88jTrfz3n3dg2-Wc5KZYJLuwZpIqVFz-SZx1p1XY-taccA8GfduiKRkSM0XPgZ5FEe1adabElm_J2BL7j7y2SmxfTPxGUpwqJzLRpNO5P0_JKMlwPlwLZGgmLyabfe7Dc7fzdPfgOR0GT6GBWrV6GiuVyxS3YyqExZ1RyZjPWpFWJhAN4QeyqaiWmO5owxkLfNVu00gg_dbsAErJJDGHQDTnDcMCKe12puGRwGGRoLH2cSyS_Bo05xCEyjUpt1oZ43DZXtnCFiJsYQ5byGtwsXhnWrToWDm6PscqdOaahkuganA5R3v5-O_ZjlbPdgybVp6-OLNWh1I2ezMnsKHes1E6O3WL9QuBSu-X
  priority: 102
  providerName: ProQuest
Title Probing epileptic disorders with lightweight neural network and EEG's intrinsic geometry
URI https://link.springer.com/article/10.1007/s11071-022-08118-7
https://www.proquest.com/docview/2773998324
Volume 111
WOSCitedRecordID wos000893245000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEL8o-KAPoqgRRdIHEx90CbQbLY9qQJ8IATW8LV3bERMchKHG_97r6ECNmujzbt1y1_v49a53AKdcREpGASJV3wjP17KJOhdLL4gj2owkOom6zIZN8G5XDIetnrsUlubV7nlKMrPUq8tuiFQQ-iJ4QjfWEB5fhyK6O2HVsT94WNpfRrM5dHVEFvYUYuiuyny_xmd3tIoxv6RFM2_TKf3vP3dg20WX5HKxHXZhzSRlKLlIkzg9Tsuw9aEN4R4Me7YZUzIiZoo2Am2IIto15UyJPaglYwvhX7NTVGI7YOI3kkX9OJGJJu32zVlKHpM5rodSJyMzeTLz2ds-3Hfad9e3npu44ClURTuXnsZKZQOJWzEVwkqYUcmYz5qRViYQdeEHsqGolhjYaMMZC3zVatFIINDW7AAKySQxh0A053XDAilt4tLwSCBZJGisfaRFOF-BRs74ULl25HYqxjhcNVK2jAyRkWHGyJBX4Hz5znTRjONX6mouz9ApZhpSzjEkQzPmV-Ail9_q8c-rHf2N_Bg27WD6RbVaFQrz2bM5gQ31Mn9MZzUoXrW7vX7NVpoOatn2fQd1jeai
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xkhYOvBZEea0PoD1ARGsntXtACEFZEGyFBCv1FvxKhQRpaQqIP8VvZOwkdEGCGwfOcSZy_HleHs8HsMGF0lJFGKmGVgShkXXcc4kMokTRupJoJKrSk03wVku0243zEXgu78K4sspSJ3pFbbra5ch3KOdoSxF_4V7vLnCsUe50taTQyGFxap8eMWTLdk8OcX03KT1qXh4cBwWrQKARbo57nSZae9LdRkKFcLNgVDIWsroy2kaiKsJI1jQ1Eo23sZyxKNSNBlUCg0nDUO4ojIdO-_tSwYtXzc-oZ8CrYkzj8h_t4pJOflUP4ywM3DH0QyNcEwF_awiH3u27A1lv545mvtsfmoXpwqMm-_kWmIMRm87DTOFdk0J3ZfMw9V_rxZ_QPncNqNIOsT3Ui6g3NTFFI9KMuOQ0uXFpi0efOSau6yd-I81r5olMDWk2__zOyHU6QHmIdNKx3Vs76D8twL8vme0ijKXd1C4BMZxXLYukdIe1liuBw5SgiQlxrFW0ArVyyWNdtGB3TCA38bB5tINJjDCJPUxiXoGt13d6eQOST0evltiIC2WUxUNgVGC7RNfw8cfSlj-X9gt-HF_-PYvPTlqnKzBJ0f3Lq_NWYWzQv7drMKEfBtdZf91vEwJXX426F84aSgA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-K85kHwQcu2pF3SR9FNRRkDL-ytpEkqwuzGWhX_vSe9bCoqiM89TUtOzuVLcs4HcMBFqGToIVJ1jXBcLZtoc5F0vCikzVBikKjLjGyCdzqi1_O7H6r4s9vu5ZFkXtNguzTFaW2oo9qk8A1RC8JgBFIY0hrC4dMw41rSIIvXb-7HvpjRjJOujijD7kj0irKZ78f4HJom-eaXI9Is8rSX_v_Py7BYZJ3kJF8mKzBl4lVYKjJQUth3sgoLH9oTrkGva5s0xQ_EDNF3oG9RRBfNOhNiN3BJ30L712x3ldjOmPiNOL9XTmSsSat1fpiQxzjF8XA1kAczeDLp6G0d7tqt29MLp2BicBSaqOWrp5FSGVGxH1EhrOYZlYy5rBlqZTxRF64nG4pqiQmPNpwxz1W-T0OBAFyzDajEg9hsAtGc1w3zpLQHmoaHAsVCQSPtoizC_Co0SiUEqmhTbtky-sGkwbKdyAAnMsgmMuBVOBq_M8ybdPwqvVPqNigMNgko55iqoXtzq3Bc6nLy-OfRtv4mvg9z3bN2cH3ZudqGectdn19o24FKOno2uzCrXtLHZLSXreN33DPv2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+epileptic+disorders+with+lightweight+neural+network+and+EEG%27s+intrinsic+geometry&rft.jtitle=Nonlinear+dynamics&rft.au=Song%2C+Zhenxi&rft.au=Deng%2C+Bin&rft.au=Zhu%2C+Yulin&rft.au=Cai%2C+Lihui&rft.date=2023-03-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=111&rft.issue=6&rft.spage=5817&rft.epage=5832&rft_id=info:doi/10.1007%2Fs11071-022-08118-7&rft.externalDocID=10_1007_s11071_022_08118_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon