Probing epileptic disorders with lightweight neural network and EEG's intrinsic geometry
The nonlinear dynamical systems can be stabilized on attractors in chaotic states, where the attractors depicted by dynamical trajectories may take on specific geometries. Electroencephalogram (EEG) signals are typically chaotic signals that have various nonlinear dynamic characteristics. Intrinsic...
Gespeichert in:
| Veröffentlicht in: | Nonlinear dynamics Jg. 111; H. 6; S. 5817 - 5832 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.03.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0924-090X, 1573-269X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The nonlinear dynamical systems can be stabilized on attractors in chaotic states, where the attractors depicted by dynamical trajectories may take on specific geometries. Electroencephalogram (EEG) signals are typically chaotic signals that have various nonlinear dynamic characteristics. Intrinsic geometry of EEG signals could contribute to tracking the recurrence of seizures and probing epileptic disorders, but it is ignored in most deep network-based seizure detection algorithms. Therefore, this paper presents an automatic detection framework called Recursive State-Space Neural Network (RSSNN) to infer the EEG geometry from single-channel signals and identify different epileptic patterns with a fast computational speed. RSSNN consists of a mathematical mapping module and a deep learning model. The former reconstructs EEG geometry in a high-dimensional state-space and maps it to a two-dimensional graph. The latter is a newly designed lightweight (0.68 MB) fully convolutional network that decodes geometry into brain states. We validated RSSNN on a public EEG dataset collected from epileptic patients with seizure and seizure-free conditions and healthy volunteers. A sliding window with a one-second length is utilized to verify the performance of RSSNN at the segment level. Moreover, the voting strategy is adopted to obtain the final prediction at the subject level. In the testing phase, RSSNN obtains an overall 99.79% accuracy at the EEG segment level and reaches 100% accuracy at the subject level. Notably, it takes less than 25 ms to predict one subject. This study proves the potential of EEG's intrinsic geometry as a seizure indicator for real-time monitoring by combining it with a lightweight neural network. It enriches the deep learning-based seizure prediction methodology in nonlinear dynamics. |
|---|---|
| AbstractList | The nonlinear dynamical systems can be stabilized on attractors in chaotic states, where the attractors depicted by dynamical trajectories may take on specific geometries. Electroencephalogram (EEG) signals are typically chaotic signals that have various nonlinear dynamic characteristics. Intrinsic geometry of EEG signals could contribute to tracking the recurrence of seizures and probing epileptic disorders, but it is ignored in most deep network-based seizure detection algorithms. Therefore, this paper presents an automatic detection framework called Recursive State-Space Neural Network (RSSNN) to infer the EEG geometry from single-channel signals and identify different epileptic patterns with a fast computational speed. RSSNN consists of a mathematical mapping module and a deep learning model. The former reconstructs EEG geometry in a high-dimensional state-space and maps it to a two-dimensional graph. The latter is a newly designed lightweight (0.68 MB) fully convolutional network that decodes geometry into brain states. We validated RSSNN on a public EEG dataset collected from epileptic patients with seizure and seizure-free conditions and healthy volunteers. A sliding window with a one-second length is utilized to verify the performance of RSSNN at the segment level. Moreover, the voting strategy is adopted to obtain the final prediction at the subject level. In the testing phase, RSSNN obtains an overall 99.79% accuracy at the EEG segment level and reaches 100% accuracy at the subject level. Notably, it takes less than 25 ms to predict one subject. This study proves the potential of EEG's intrinsic geometry as a seizure indicator for real-time monitoring by combining it with a lightweight neural network. It enriches the deep learning-based seizure prediction methodology in nonlinear dynamics. The nonlinear dynamical systems can be stabilized on attractors in chaotic states, where the attractors depicted by dynamical trajectories may take on specific geometries. Electroencephalogram (EEG) signals are typically chaotic signals that have various nonlinear dynamic characteristics. Intrinsic geometry of EEG signals could contribute to tracking the recurrence of seizures and probing epileptic disorders, but it is ignored in most deep network-based seizure detection algorithms. Therefore, this paper presents an automatic detection framework called Recursive State-Space Neural Network (RSSNN) to infer the EEG geometry from single-channel signals and identify different epileptic patterns with a fast computational speed. RSSNN consists of a mathematical mapping module and a deep learning model. The former reconstructs EEG geometry in a high-dimensional state-space and maps it to a two-dimensional graph. The latter is a newly designed lightweight (0.68 MB) fully convolutional network that decodes geometry into brain states. We validated RSSNN on a public EEG dataset collected from epileptic patients with seizure and seizure-free conditions and healthy volunteers. A sliding window with a one-second length is utilized to verify the performance of RSSNN at the segment level. Moreover, the voting strategy is adopted to obtain the final prediction at the subject level. In the testing phase, RSSNN obtains an overall 99.79% accuracy at the EEG segment level and reaches 100% accuracy at the subject level. Notably, it takes less than 25 ms to predict one subject. This study proves the potential of EEG's intrinsic geometry as a seizure indicator for real-time monitoring by combining it with a lightweight neural network. It enriches the deep learning-based seizure prediction methodology in nonlinear dynamics. |
| Author | Song, Zhenxi Zhu, Yulin Deng, Bin Wang, Jiang Yi, Guosheng Cai, Lihui |
| Author_xml | – sequence: 1 givenname: Zhenxi surname: Song fullname: Song, Zhenxi organization: School of Electrical and Information Engineering, Tianjin University – sequence: 2 givenname: Bin surname: Deng fullname: Deng, Bin organization: School of Electrical and Information Engineering, Tianjin University – sequence: 3 givenname: Yulin surname: Zhu fullname: Zhu, Yulin organization: School of Electrical and Information Engineering, Tianjin University – sequence: 4 givenname: Lihui surname: Cai fullname: Cai, Lihui organization: School of Electrical and Information Engineering, Tianjin University – sequence: 5 givenname: Jiang surname: Wang fullname: Wang, Jiang organization: School of Electrical and Information Engineering, Tianjin University – sequence: 6 givenname: Guosheng orcidid: 0000-0002-9362-6605 surname: Yi fullname: Yi, Guosheng email: guoshengyi@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University |
| BookMark | eNp9kM1KAzEURoNUsFZfwNWAC1fR_MxMkqWUWoWCLhS6C5lMZpo6TWqSUvr2Th1BcNHN_TbfufdyLsHIeWcAuMHoHiPEHiLGiGGICIGIY8whOwNjXDAKSSmWIzBGguQQCbS8AJcxrhFClCA-Bsu34Cvr2sxsbWe2yeqsttGH2oSY7W1aZZ1tV2lvjjNzZhdU10fa-_CZKVdns9n8LmbWpWBd7OnW-I1J4XAFzhvVRXP9mxPw8TR7nz7Dxev8Zfq4gJpikSCmpNG6LIuciYZwbiqjKVGU5rSsam0KjnheKKxJrYSgtWGUFrkWglQc5WVNJ-B22LsN_mtnYpJrvwuuPykJY1QITknet_jQ0sHHGEwjtU0qWd__rWwnMZJHj3LwKHuP8sejZD1K_qHbYDcqHE5DdIBiX3atCX9fnaC-AYsXh_A |
| CitedBy_id | crossref_primary_10_1088_1402_4896_ae04b0 crossref_primary_10_1007_s11071_024_09384_3 crossref_primary_10_1155_2022_8265275 |
| Cites_doi | 10.1103/PhysRevE.64.061907 10.1109/TNSRE.2019.2943707 10.1016/j.knosys.2015.08.004 10.1515/bmt-2018-0246 10.1016/j.eswa.2018.04.021 10.1016/j.eswa.2020.113788 10.1109/TBME.2017.2650259 10.1016/j.future.2018.08.044 10.1016/j.eswa.2011.04.149 10.1016/j.bbe.2018.01.002 10.1088/1741-2560/8/3/036015 10.1016/j.patrec.2017.05.007 10.1016/j.knosys.2019.105333 10.1016/j.bspc.2019.101569 10.1016/j.bspc.2017.05.007 10.1111/epi.14049 10.1088/1741-2552/ab5247 10.1109/TNNLS.2021.3072885 10.1088/1741-2552/abc1b7 10.1088/1741-2552/abf473 10.1016/j.patrec.2017.03.023 10.1016/j.physleta.2008.09.027 10.1007/s00521-018-3889-z 10.3390/e21090869 10.3389/fbioe.2020.01006 10.1016/S0167-2789(97)00118-8 10.1016/0375-9601(91)90651-N 10.1016/j.compbiomed.2019.04.031 10.1016/j.bspc.2021.103138 10.1088/1741-2552/ab094a 10.1088/1741-2552/ab0ab5 10.1016/j.bspc.2020.101921 10.1111/epi.16492 10.1088/1741-2560/11/2/024001 10.1109/JBHI.2019.2906400 10.1007/s00521-017-3003-y 10.1088/1741-2552/ab909d 10.1109/TBME.2014.2360101 10.1016/j.bspc.2021.103248 10.1088/1741-2552/abef8a 10.1016/j.compbiomed.2017.09.017 10.1016/S1388-2457(99)00125-X 10.1109/TNSRE.2015.2441835 10.1109/TCYB.2021.3071860 10.1093/brain/awu133 10.1088/1741-2552/aab2f2 10.1016/j.bspc.2021.102469 10.1088/1741-2552/abf28e 10.1016/j.amjmed.2021.01.038 10.1007/s00500-018-3487-0 10.1016/j.bspc.2017.07.022 10.1007/s00521-013-1368-0 10.1142/S0218127407019226 10.1016/j.compbiomed.2018.05.019 10.1111/epi.12507 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11071-022-08118-7 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1573-269X |
| EndPage | 5832 |
| ExternalDocumentID | 10_1007_s11071_022_08118_7 |
| GrantInformation_xml | – fundername: Natural Science Foundation of Tianjin City grantid: 19JCQNJC01200; 19JCZDJC36500 funderid: http://dx.doi.org/10.13039/501100006606 – fundername: National Natural Science Foundation of China grantid: 62071324 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-132fcc665479f288ebec32a33436bdce580845a1c2da993de73354c992b8046d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000893245000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-090X |
| IngestDate | Wed Nov 05 04:18:28 EST 2025 Sat Nov 29 03:06:35 EST 2025 Tue Nov 18 22:24:59 EST 2025 Fri Feb 21 02:45:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | EEG geometry Epileptic disorders Electroencephalogram (EEG) Seizure detection Chaotic system Fully convolutional neural network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-132fcc665479f288ebec32a33436bdce580845a1c2da993de73354c992b8046d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9362-6605 |
| PQID | 2773998324 |
| PQPubID | 2043746 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2773998324 crossref_citationtrail_10_1007_s11071_022_08118_7 crossref_primary_10_1007_s11071_022_08118_7 springer_journals_10_1007_s11071_022_08118_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20230300 2023-03-00 20230301 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
| PublicationTitle | Nonlinear dynamics |
| PublicationTitleAbbrev | Nonlinear Dyn |
| PublicationYear | 2023 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Acharya, Fujita, Sudarshan, Bhat, Koh (CR12) 2015; 88 Yildirim, Baloglu, Acharya (CR31) 2020; 32 CR37 San-Segundo, Gil-Martin, D'Haro-Enriquez, Pardo (CR30) 2019; 109 CR33 Wulsin, Gupta, Mani, Blanco, Litt (CR28) 2011; 8 Gupta, Pachori (CR48) 2019; 53 Khademi, Hendriks, Kleijn (CR57) 2017; 25 Dumpelmann (CR9) 2019; 16 Hassan, Subasi, Zhang (CR52) 2020; 191 Beniczky, Ryvlin (CR4) 2018; 59 Lotte (CR7) 2018; 15 Craik, He, Contreras-Vidal (CR5) 2019; 16 Shoeibi (CR38) 2021; 163 Sharma, Pachori, Acharya (CR26) 2017; 94 Lashkari, Sheikhani, Hashemi Golpayegan, Moghimi, Kobravi (CR39) 2018; 26 Binnie, Stefan (CR43) 1999; 110 Yavuz, Kasapbasi, Eyupoglu, Yazici (CR50) 2018; 38 Theiler (CR60) 1991; 155 Namazi, Kulish (CR13) 2015; 2015 Samiee, Kovacs, Gabbouj (CR14) 2015; 62 Arunkumar (CR16) 2017; 94 Lian, Qi, Pan, Wang (CR36) 2020; 17 Ugawa (CR44) 2018 Oliva, Rosa (CR49) 2021; 66 Beniczky, Arbune, Jeppesen, Ryvlin (CR2) 2020; 61 Orhan, Hekim, Ozer (CR10) 2011; 38 Zbilut, Marwan (CR55) 2008; 372 Bhattacharyya, Pachori (CR17) 2017; 64 Widge, Moritz (CR6) 2014; 11 Andrzejak (CR42) 2001 Toth (CR22) 2020; 17 Milligan (CR1) 2021; 134 Le Trung (CR23) 2020; 17 Ullah, Hussain, Aboalsamh (CR29) 2018; 107 Acharya (CR20) 2019; 91 Webber, Zbilut (CR62) 2007; 17 Krakovská, Mezeiová, Budáčová (CR58) 2015; 2015 Al Ghayab, Li, Siuly, Abdulla (CR21) 2019; 23 CR53 Zabihi, Kiranyaz, Jantti, Lipping, Gabbouj (CR24) 2020; 24 Tsiouris (CR34) 2018; 99 Nabil, Benali, Reguig (CR47) 2020; 65 Nasseri (CR3) 2021; 18 Sharma, Pachori, Sircar (CR25) 2020; 59 Anuragi, Singh Sisodia, Pachori (CR51) 2022; 71 Ozcan, Erturk (CR35) 2019; 27 Vergara, Estevez (CR56) 2014; 24 Jing, Pang, Pan, Fan, Meng (CR46) 2022; 71 Zou, Donner, Marwan, Donges, Kurths (CR61) 2019; 787 Li, Gao, Huang, Wu, Xu (CR27) 2020; 8 Geng (CR32) 2021; 18 Alickovic, Kevric, Subasi (CR18) 2018; 39 Baudot, Tapia, Bennequin, Goaillard (CR54) 2019; 21 Liu, Richardson (CR8) 2021; 18 Sayed, Kamel, Alhaddad, Malibary, Kadah (CR40) 2017; 38 Riaz, Hassan, Rehman, Niazi, Dremstrup (CR15) 2016; 24 Cao (CR59) 1997; 110 Gnatkovsky (CR11) 2014; 55 Subasi, Kevric, Canbaz (CR19) 2019; 31 Jirsa, Stacey, Quilichini, Ivanov, Bernard (CR41) 2014; 137 Acharya, Oh, Hagiwara, Tan, Adeli (CR45) 2018; 100 8118_CR33 Q Lian (8118_CR36) 2020; 17 KM Tsiouris (8118_CR34) 2018; 99 UR Acharya (8118_CR12) 2015; 88 F Riaz (8118_CR15) 2016; 24 TA Milligan (8118_CR1) 2021; 134 AR Ozcan (8118_CR35) 2019; 27 J Theiler (8118_CR60) 1991; 155 JP Zbilut (8118_CR55) 2008; 372 S Beniczky (8118_CR2) 2020; 61 CL Webber (8118_CR62) 2007; 17 AS Widge (8118_CR6) 2014; 11 S Lashkari (8118_CR39) 2018; 26 8118_CR37 O Yildirim (8118_CR31) 2020; 32 A Anuragi (8118_CR51) 2022; 71 U Orhan (8118_CR10) 2011; 38 A Subasi (8118_CR19) 2019; 31 E Toth (8118_CR22) 2020; 17 K Samiee (8118_CR14) 2015; 62 D Nabil (8118_CR47) 2020; 65 CD Binnie (8118_CR43) 1999; 110 HR Al Ghayab (8118_CR21) 2019; 23 D Geng (8118_CR32) 2021; 18 R Sharma (8118_CR25) 2020; 59 H Namazi (8118_CR13) 2015; 2015 VK Jirsa (8118_CR41) 2014; 137 8118_CR53 S Beniczky (8118_CR4) 2018; 59 K Sayed (8118_CR40) 2017; 38 A Shoeibi (8118_CR38) 2021; 163 Y Zou (8118_CR61) 2019; 787 N Arunkumar (8118_CR16) 2017; 94 M Zabihi (8118_CR24) 2020; 24 I Ullah (8118_CR29) 2018; 107 UR Acharya (8118_CR45) 2018; 100 V Gupta (8118_CR48) 2019; 53 Y Ugawa (8118_CR44) 2018 A Bhattacharyya (8118_CR17) 2017; 64 M Nasseri (8118_CR3) 2021; 18 J Jing (8118_CR46) 2022; 71 RG Andrzejak (8118_CR42) 2001 X Liu (8118_CR8) 2021; 18 AR Hassan (8118_CR52) 2020; 191 M Sharma (8118_CR26) 2017; 94 E Yavuz (8118_CR50) 2018; 38 M Dumpelmann (8118_CR9) 2019; 16 T Le Trung (8118_CR23) 2020; 17 F Lotte (8118_CR7) 2018; 15 E Alickovic (8118_CR18) 2018; 39 UR Acharya (8118_CR20) 2019; 91 P Baudot (8118_CR54) 2019; 21 L Cao (8118_CR59) 1997; 110 A Craik (8118_CR5) 2019; 16 A Krakovská (8118_CR58) 2015; 2015 S Khademi (8118_CR57) 2017; 25 JR Vergara (8118_CR56) 2014; 24 Q Li (8118_CR27) 2020; 8 V Gnatkovsky (8118_CR11) 2014; 55 DF Wulsin (8118_CR28) 2011; 8 R San-Segundo (8118_CR30) 2019; 109 JT Oliva (8118_CR49) 2021; 66 |
| References_xml | – volume: 38 start-page: 201 year: 2018 end-page: 216 ident: CR50 article-title: An epileptic seizure detection system based on cepstral analysis and generalized regression neural network publication-title: Biocybern Biomed Eng – volume: 88 start-page: 85 year: 2015 end-page: 96 ident: CR12 article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review publication-title: Knowledge-Based Syst. – volume: 17 start-page: 066004 year: 2020 ident: CR22 article-title: Machine learning approach to detect focal-onset seizures in the human anterior nucleus of the thalamus publication-title: J. Neural Eng. – volume: 191 start-page: 105333 year: 2020 ident: CR52 article-title: Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise publication-title: Knowledge-Based Syst. – volume: 137 start-page: 2210 year: 2014 end-page: 2230 ident: CR41 article-title: On the nature of seizure dynamics publication-title: Brain – volume: 94 start-page: 172 year: 2017 end-page: 179 ident: CR26 article-title: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension publication-title: Pattern Recog. Lett. – volume: 109 start-page: 148 year: 2019 end-page: 158 ident: CR30 article-title: Classification of epileptic EEG recordings using signal transforms and convolutional neural networks publication-title: Comput. Biol. Med. – volume: 26 start-page: 1329 year: 2018 end-page: 1342 ident: CR39 article-title: Topological feature extraction of nonlinear signals and trajectories and its application in EEG signals classification publication-title: Turk. J. Electr. Eng. Comput. Sci. – volume: 71 start-page: 103248 year: 2022 ident: CR46 article-title: Classification and identification of epileptic EEG signals based on signal enhancement publication-title: Biomed. Signal Process. Control – volume: 8 start-page: 036015 year: 2011 ident: CR28 article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement publication-title: J. Neural Eng. – volume: 15 start-page: 031005 year: 2018 ident: CR7 article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update publication-title: J. Neural Eng. – volume: 107 start-page: 61 year: 2018 end-page: 71 ident: CR29 article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach publication-title: Expert Syst. Appl. – volume: 17 start-page: 016023 year: 2020 ident: CR23 article-title: Multi-channel EEG epileptic spike detection by a new method of tensor decomposition publication-title: J. Neural Eng. – volume: 17 start-page: 3467 year: 2007 end-page: 3475 ident: CR62 article-title: Recurrence quantifications: feature extractions from recurrence plots publication-title: Int. J. Bifurc. Chaos – volume: 16 start-page: 031001 year: 2019 ident: CR5 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J. Neural Eng. – volume: 24 start-page: 543 year: 2020 end-page: 555 ident: CR24 article-title: Patient-specific seizure detection using nonlinear dynamics and nullclines publication-title: IEEE J. Biomed. Health Inform. – volume: 27 start-page: 2284 year: 2019 end-page: 2293 ident: CR35 article-title: Seizure prediction in scalp EEG using 3D convolutional neural networks with an image-based approach publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 18 start-page: 056017 year: 2021 ident: CR3 article-title: Non-invasive wearable seizure detection using long-short-term memory networks with transfer learning publication-title: J. Neural Eng. – volume: 62 start-page: 541 year: 2015 end-page: 552 ident: CR14 article-title: Epileptic seizure classification of EEG time-series using rational discrete short-time fourier transform publication-title: IEEE Trans. Biomed. Eng. – volume: 787 start-page: 1 year: 2019 end-page: 97 ident: CR61 article-title: Complex network approaches to nonlinear time series analysis publication-title: Phys. Rep. Rev. Sect. Phys. Lett. – volume: 39 start-page: 94 year: 2018 end-page: 102 ident: CR18 article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction publication-title: Biomed. Signal Process. Control – volume: 38 start-page: 55 year: 2017 end-page: 66 ident: CR40 article-title: Characterization of phase space trajectories for Brain-Computer Interface publication-title: Biomed. Signal Process. Control – year: 2001 ident: CR42 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.061907 – volume: 31 start-page: 317 year: 2019 end-page: 325 ident: CR19 article-title: Epileptic seizure detection using hybrid machine learning methods publication-title: Neural Comput. Appl. – volume: 110 start-page: 1671 year: 1999 end-page: 1697 ident: CR43 article-title: Modern electroencephalography: its role in epilepsy management publication-title: Clin. Neurophysiol. – year: 2018 ident: CR44 publication-title: Clinical Practice Guidelines for Epilepsy 2018 – volume: 100 start-page: 270 year: 2018 end-page: 278 ident: CR45 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. – volume: 24 start-page: 175 year: 2014 end-page: 186 ident: CR56 article-title: A review of feature selection methods based on mutual information publication-title: Neural Comput. Appl. – volume: 372 start-page: 6622 year: 2008 end-page: 6626 ident: CR55 article-title: The Wiener-Khinchin theorem and recurrence quantification publication-title: Phys. Lett. A – volume: 25 start-page: 1694 year: 2017 end-page: 1708 ident: CR57 article-title: Intelligibility enhancement based on mutual information publication-title: Ieee-Acm T Audio Spe – volume: 71 start-page: 103138 year: 2022 ident: CR51 article-title: Epileptic-seizure classification using phase-space representation of FBSE-EWT based EEG sub-band signals and ensemble learners publication-title: Biomed. Signal Process. Control – volume: 155 start-page: 480 year: 1991 end-page: 493 ident: CR60 article-title: Some comments on the correlation dimension of 1/fα noise publication-title: Phys. Lett. A – volume: 53 start-page: 101569 year: 2019 ident: CR48 article-title: Epileptic seizure identification using entropy of FBSE based EEG rhythms publication-title: Biomed. Signal Process. Control – volume: 17 start-page: 035004 year: 2020 ident: CR36 article-title: Learning graph in graph convolutional neural networks for robust seizure prediction publication-title: J. Neural Eng. – volume: 11 start-page: 024001 year: 2014 ident: CR6 article-title: Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface publication-title: J. Neural Eng. – volume: 32 start-page: 15857 year: 2020 end-page: 15868 ident: CR31 article-title: A deep convolutional neural network model for automated identification of abnormal EEG signals publication-title: Neural Comput. Appl. – ident: CR37 – ident: CR53 – volume: 94 start-page: 112 year: 2017 end-page: 117 ident: CR16 article-title: Classification of focal and non focal EEG using entropies publication-title: Pattern Recog. Lett. – volume: 23 start-page: 227 year: 2019 end-page: 239 ident: CR21 article-title: Epileptic seizures detection in EEGs blending frequency domain with information gain technique publication-title: Soft. Comput. – volume: 16 start-page: 041001 year: 2019 ident: CR9 article-title: Early seizure detection for closed loop direct neurostimulation devices in epilepsy publication-title: J. Neural Eng. – ident: CR33 – volume: 134 start-page: 840 year: 2021 end-page: 847 ident: CR1 article-title: Epilepsy: a clinical overview publication-title: Am. J. Med. – volume: 38 start-page: 13475 year: 2011 end-page: 13481 ident: CR10 article-title: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model publication-title: Expert Syst. Appl. – volume: 55 start-page: 296 year: 2014 end-page: 305 ident: CR11 article-title: Biomarkers of epileptogenic zone defined by quantified stereo-EEG analysis publication-title: Epilepsia – volume: 59 start-page: 101921 year: 2020 ident: CR25 article-title: Seizures classification based on higher order statistics and deep neural network publication-title: Biomed. Signal Process. Control – volume: 66 start-page: 102469 year: 2021 ident: CR49 article-title: Binary and multiclass classifiers based on multitaper spectral features for epilepsy detection publication-title: Biomed. Signal Process. Control – volume: 18 start-page: 046034 year: 2021 ident: CR8 article-title: Edge deep learning for neural implants: a case study of seizure detection and prediction publication-title: J. Neural Eng. – volume: 24 start-page: 28 year: 2016 end-page: 35 ident: CR15 article-title: EMD-based temporal and spectral features for the classification of EEG signals using supervised learning publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 110 start-page: 43 year: 1997 end-page: 50 ident: CR59 article-title: Practical method for determining the minimum embedding dimension of a scalar time series publication-title: Physica D – volume: 59 start-page: 9 year: 2018 end-page: 13 ident: CR4 article-title: Standards for testing and clinical validation of seizure detection devices publication-title: Epilepsia – volume: 163 start-page: 113788 year: 2021 ident: CR38 article-title: A comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic seizures detection in EEG signals publication-title: Expert Syst. Appl. – volume: 91 start-page: 290 year: 2019 end-page: 299 ident: CR20 article-title: Characterization of focal EEG signals: a review publication-title: Future Gener. Comput. Syst. Int. J. Esci. – volume: 99 start-page: 24 year: 2018 end-page: 37 ident: CR34 article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals publication-title: Comput. Biol. Med. – volume: 65 start-page: 133 year: 2020 end-page: 148 ident: CR47 article-title: Epileptic seizure recognition using EEG wavelet decomposition based on nonlinear and statistical features with support vector machine classification publication-title: Biomed. Eng. Biomed. Tech. – volume: 21 start-page: 869 year: 2019 ident: CR54 article-title: Topological information data analysis publication-title: Entropy – volume: 2015 start-page: 1 year: 2015 ident: CR13 article-title: Fractional diffusion based modelling and prediction of human brain response to external stimuli publication-title: Comput. Math. Methods Med. – volume: 64 start-page: 2003 year: 2017 end-page: 2015 ident: CR17 article-title: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform publication-title: IEEE Trans. Biomed. Eng. – volume: 8 start-page: 1006 year: 2020 ident: CR27 article-title: Distinguishing epileptiform discharges from normal electroencephalograms using scale-dependent Lyapunov exponent publication-title: Front. Bioeng. Biotechnol. – volume: 18 start-page: 056015 year: 2021 ident: CR32 article-title: Deep learning for robust detection of interictal epileptiform discharges publication-title: J. Neural Eng. – volume: 2015 start-page: 932750 year: 2015 ident: CR58 article-title: Use of false nearest neighbours for selecting variables and embedding parameters for state space reconstruction publication-title: J. Complex Syst – volume: 61 start-page: 61 year: 2020 end-page: 66 ident: CR2 article-title: Biomarkers of seizure severity derived from wearable devices publication-title: Epilepsia – volume: 27 start-page: 2284 year: 2019 ident: 8118_CR35 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2943707 – volume: 88 start-page: 85 year: 2015 ident: 8118_CR12 publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2015.08.004 – volume-title: Clinical Practice Guidelines for Epilepsy 2018 year: 2018 ident: 8118_CR44 – volume: 65 start-page: 133 year: 2020 ident: 8118_CR47 publication-title: Biomed. Eng. Biomed. Tech. doi: 10.1515/bmt-2018-0246 – volume: 107 start-page: 61 year: 2018 ident: 8118_CR29 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.021 – volume: 163 start-page: 113788 year: 2021 ident: 8118_CR38 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113788 – volume: 64 start-page: 2003 year: 2017 ident: 8118_CR17 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2650259 – volume: 91 start-page: 290 year: 2019 ident: 8118_CR20 publication-title: Future Gener. Comput. Syst. Int. J. Esci. doi: 10.1016/j.future.2018.08.044 – volume: 38 start-page: 13475 year: 2011 ident: 8118_CR10 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.149 – volume: 38 start-page: 201 year: 2018 ident: 8118_CR50 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2018.01.002 – volume: 8 start-page: 036015 year: 2011 ident: 8118_CR28 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036015 – volume: 94 start-page: 112 year: 2017 ident: 8118_CR16 publication-title: Pattern Recog. Lett. doi: 10.1016/j.patrec.2017.05.007 – volume: 191 start-page: 105333 year: 2020 ident: 8118_CR52 publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2019.105333 – volume: 53 start-page: 101569 year: 2019 ident: 8118_CR48 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101569 – volume: 38 start-page: 55 year: 2017 ident: 8118_CR40 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.05.007 – volume: 59 start-page: 9 year: 2018 ident: 8118_CR4 publication-title: Epilepsia doi: 10.1111/epi.14049 – volume: 25 start-page: 1694 year: 2017 ident: 8118_CR57 publication-title: Ieee-Acm T Audio Spe – year: 2001 ident: 8118_CR42 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.061907 – volume: 17 start-page: 016023 year: 2020 ident: 8118_CR23 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab5247 – ident: 8118_CR33 doi: 10.1109/TNNLS.2021.3072885 – volume: 17 start-page: 066004 year: 2020 ident: 8118_CR22 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abc1b7 – volume: 18 start-page: 046034 year: 2021 ident: 8118_CR8 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abf473 – volume: 94 start-page: 172 year: 2017 ident: 8118_CR26 publication-title: Pattern Recog. Lett. doi: 10.1016/j.patrec.2017.03.023 – volume: 372 start-page: 6622 year: 2008 ident: 8118_CR55 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2008.09.027 – volume: 32 start-page: 15857 year: 2020 ident: 8118_CR31 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3889-z – volume: 21 start-page: 869 year: 2019 ident: 8118_CR54 publication-title: Entropy doi: 10.3390/e21090869 – volume: 8 start-page: 1006 year: 2020 ident: 8118_CR27 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.01006 – volume: 110 start-page: 43 year: 1997 ident: 8118_CR59 publication-title: Physica D doi: 10.1016/S0167-2789(97)00118-8 – volume: 2015 start-page: 932750 year: 2015 ident: 8118_CR58 publication-title: J. Complex Syst – volume: 155 start-page: 480 year: 1991 ident: 8118_CR60 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(91)90651-N – volume: 109 start-page: 148 year: 2019 ident: 8118_CR30 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.04.031 – volume: 71 start-page: 103138 year: 2022 ident: 8118_CR51 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103138 – volume: 16 start-page: 041001 year: 2019 ident: 8118_CR9 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab094a – volume: 16 start-page: 031001 year: 2019 ident: 8118_CR5 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0ab5 – volume: 59 start-page: 101921 year: 2020 ident: 8118_CR25 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101921 – volume: 61 start-page: 61 year: 2020 ident: 8118_CR2 publication-title: Epilepsia doi: 10.1111/epi.16492 – ident: 8118_CR53 – volume: 787 start-page: 1 year: 2019 ident: 8118_CR61 publication-title: Phys. Rep. Rev. Sect. Phys. Lett. – volume: 11 start-page: 024001 year: 2014 ident: 8118_CR6 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/2/024001 – volume: 24 start-page: 543 year: 2020 ident: 8118_CR24 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2906400 – volume: 31 start-page: 317 year: 2019 ident: 8118_CR19 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3003-y – volume: 17 start-page: 035004 year: 2020 ident: 8118_CR36 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab909d – volume: 62 start-page: 541 year: 2015 ident: 8118_CR14 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2360101 – volume: 71 start-page: 103248 year: 2022 ident: 8118_CR46 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103248 – volume: 18 start-page: 056017 year: 2021 ident: 8118_CR3 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abef8a – volume: 100 start-page: 270 year: 2018 ident: 8118_CR45 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 – volume: 110 start-page: 1671 year: 1999 ident: 8118_CR43 publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00125-X – volume: 24 start-page: 28 year: 2016 ident: 8118_CR15 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2441835 – ident: 8118_CR37 doi: 10.1109/TCYB.2021.3071860 – volume: 137 start-page: 2210 year: 2014 ident: 8118_CR41 publication-title: Brain doi: 10.1093/brain/awu133 – volume: 15 start-page: 031005 year: 2018 ident: 8118_CR7 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab2f2 – volume: 66 start-page: 102469 year: 2021 ident: 8118_CR49 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102469 – volume: 18 start-page: 056015 year: 2021 ident: 8118_CR32 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abf28e – volume: 134 start-page: 840 year: 2021 ident: 8118_CR1 publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2021.01.038 – volume: 23 start-page: 227 year: 2019 ident: 8118_CR21 publication-title: Soft. Comput. doi: 10.1007/s00500-018-3487-0 – volume: 39 start-page: 94 year: 2018 ident: 8118_CR18 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.07.022 – volume: 2015 start-page: 1 year: 2015 ident: 8118_CR13 publication-title: Comput. Math. Methods Med. – volume: 24 start-page: 175 year: 2014 ident: 8118_CR56 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1368-0 – volume: 26 start-page: 1329 year: 2018 ident: 8118_CR39 publication-title: Turk. J. Electr. Eng. Comput. Sci. – volume: 17 start-page: 3467 year: 2007 ident: 8118_CR62 publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127407019226 – volume: 99 start-page: 24 year: 2018 ident: 8118_CR34 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.05.019 – volume: 55 start-page: 296 year: 2014 ident: 8118_CR11 publication-title: Epilepsia doi: 10.1111/epi.12507 |
| SSID | ssj0003208 |
| Score | 2.3846803 |
| Snippet | The nonlinear dynamical systems can be stabilized on attractors in chaotic states, where the attractors depicted by dynamical trajectories may take on specific... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5817 |
| SubjectTerms | Accuracy Algorithms Attractors (mathematics) Automotive Engineering Classical Mechanics Control Convulsions & seizures Deep learning Disorders Dynamic characteristics Dynamical Systems Electroencephalography Engineering Epilepsy Geometry Machine learning Mechanical Engineering Neural networks Nonlinear dynamics Nonlinear systems Original Paper Segments Seizures Vibration |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5R8KAHUdSIounBxIMuQrvRcjJqQE-EGE24LV3bERIcyKbG_97XrYCayMXzum7J1_fje23fB3DGRaRkFCBT9Y3wfC1baHOx9II4oq1IYpBoyFxsgvd6YjBo913BLXXHKuc-MXfUeqJsjfyKco6xFNeffz199axqlN1ddRIa61C2ncr8EpRvO73-48IXM5pr0jWQZdiKxMBdmykuzyHzQSqNZAzDYlN4_GdoWuabv7ZI88jTrfz3n3dg2-Wc5KZYJLuwZpIqVFz-SZx1p1XY-taccA8GfduiKRkSM0XPgZ5FEe1adabElm_J2BL7j7y2SmxfTPxGUpwqJzLRpNO5P0_JKMlwPlwLZGgmLyabfe7Dc7fzdPfgOR0GT6GBWrV6GiuVyxS3YyqExZ1RyZjPWpFWJhAN4QeyqaiWmO5owxkLfNVu00gg_dbsAErJJDGHQDTnDcMCKe12puGRwGGRoLH2cSyS_Bo05xCEyjUpt1oZ43DZXtnCFiJsYQ5byGtwsXhnWrToWDm6PscqdOaahkuganA5R3v5-O_ZjlbPdgybVp6-OLNWh1I2ezMnsKHes1E6O3WL9QuBSu-X priority: 102 providerName: ProQuest |
| Title | Probing epileptic disorders with lightweight neural network and EEG's intrinsic geometry |
| URI | https://link.springer.com/article/10.1007/s11071-022-08118-7 https://www.proquest.com/docview/2773998324 |
| Volume | 111 |
| WOSCitedRecordID | wos000893245000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-269X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-269X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEL8o-KAPoqgRRdIHEx90CbQbLY9qQJ8IATW8LV3bERMchKHG_97r6ECNmujzbt1y1_v49a53AKdcREpGASJV3wjP17KJOhdLL4gj2owkOom6zIZN8G5XDIetnrsUlubV7nlKMrPUq8tuiFQQ-iJ4QjfWEB5fhyK6O2HVsT94WNpfRrM5dHVEFvYUYuiuyny_xmd3tIoxv6RFM2_TKf3vP3dg20WX5HKxHXZhzSRlKLlIkzg9Tsuw9aEN4R4Me7YZUzIiZoo2Am2IIto15UyJPaglYwvhX7NTVGI7YOI3kkX9OJGJJu32zVlKHpM5rodSJyMzeTLz2ds-3Hfad9e3npu44ClURTuXnsZKZQOJWzEVwkqYUcmYz5qRViYQdeEHsqGolhjYaMMZC3zVatFIINDW7AAKySQxh0A053XDAilt4tLwSCBZJGisfaRFOF-BRs74ULl25HYqxjhcNVK2jAyRkWHGyJBX4Hz5znTRjONX6mouz9ApZhpSzjEkQzPmV-Ail9_q8c-rHf2N_Bg27WD6RbVaFQrz2bM5gQ31Mn9MZzUoXrW7vX7NVpoOatn2fQd1jeai |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xkhYOvBZEea0PoD1ARGsntXtACEFZEGyFBCv1FvxKhQRpaQqIP8VvZOwkdEGCGwfOcSZy_HleHs8HsMGF0lJFGKmGVgShkXXcc4kMokTRupJoJKrSk03wVku0243zEXgu78K4sspSJ3pFbbra5ch3KOdoSxF_4V7vLnCsUe50taTQyGFxap8eMWTLdk8OcX03KT1qXh4cBwWrQKARbo57nSZae9LdRkKFcLNgVDIWsroy2kaiKsJI1jQ1Eo23sZyxKNSNBlUCg0nDUO4ojIdO-_tSwYtXzc-oZ8CrYkzj8h_t4pJOflUP4ywM3DH0QyNcEwF_awiH3u27A1lv545mvtsfmoXpwqMm-_kWmIMRm87DTOFdk0J3ZfMw9V_rxZ_QPncNqNIOsT3Ui6g3NTFFI9KMuOQ0uXFpi0efOSau6yd-I81r5olMDWk2__zOyHU6QHmIdNKx3Vs76D8twL8vme0ijKXd1C4BMZxXLYukdIe1liuBw5SgiQlxrFW0ArVyyWNdtGB3TCA38bB5tINJjDCJPUxiXoGt13d6eQOST0evltiIC2WUxUNgVGC7RNfw8cfSlj-X9gt-HF_-PYvPTlqnKzBJ0f3Lq_NWYWzQv7drMKEfBtdZf91vEwJXX426F84aSgA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-K85kHwQcu2pF3SR9FNRRkDL-ytpEkqwuzGWhX_vSe9bCoqiM89TUtOzuVLcs4HcMBFqGToIVJ1jXBcLZtoc5F0vCikzVBikKjLjGyCdzqi1_O7H6r4s9vu5ZFkXtNguzTFaW2oo9qk8A1RC8JgBFIY0hrC4dMw41rSIIvXb-7HvpjRjJOujijD7kj0irKZ78f4HJom-eaXI9Is8rSX_v_Py7BYZJ3kJF8mKzBl4lVYKjJQUth3sgoLH9oTrkGva5s0xQ_EDNF3oG9RRBfNOhNiN3BJ30L712x3ldjOmPiNOL9XTmSsSat1fpiQxzjF8XA1kAczeDLp6G0d7tqt29MLp2BicBSaqOWrp5FSGVGxH1EhrOYZlYy5rBlqZTxRF64nG4pqiQmPNpwxz1W-T0OBAFyzDajEg9hsAtGc1w3zpLQHmoaHAsVCQSPtoizC_Co0SiUEqmhTbtky-sGkwbKdyAAnMsgmMuBVOBq_M8ybdPwqvVPqNigMNgko55iqoXtzq3Bc6nLy-OfRtv4mvg9z3bN2cH3ZudqGectdn19o24FKOno2uzCrXtLHZLSXreN33DPv2A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+epileptic+disorders+with+lightweight+neural+network+and+EEG%27s+intrinsic+geometry&rft.jtitle=Nonlinear+dynamics&rft.au=Song%2C+Zhenxi&rft.au=Deng%2C+Bin&rft.au=Zhu%2C+Yulin&rft.au=Cai%2C+Lihui&rft.date=2023-03-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=111&rft.issue=6&rft.spage=5817&rft.epage=5832&rft_id=info:doi/10.1007%2Fs11071-022-08118-7&rft.externalDocID=10_1007_s11071_022_08118_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |