A Constant–Factor Approximation Algorithm for Red–Blue Set Cover with Unit Disks
The main contribution of this paper is the first constant factor approximation algorithm for red-blue set cover problem with unit disks. To achieve this, we first give a polynomial time algorithm for line-separable red-blue set cover problem with unit disks. We next obtain a factor 2 approximation a...
Gespeichert in:
| Veröffentlicht in: | Algorithmica Jg. 85; H. 1; S. 100 - 132 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.01.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0178-4617, 1432-0541 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The main contribution of this paper is the first constant factor approximation algorithm for red-blue set cover problem with unit disks. To achieve this, we first give a polynomial time algorithm for line-separable red-blue set cover problem with unit disks. We next obtain a factor 2 approximation algorithm for strip-separable red-blue set cover problem with unit disks. Finally, we obtain a constant factor approximation algorithm for red-blue set cover problem with unit disks by combining our algorithm for the strip-separable problem with the results of Ambühl et al. [
1
]. Our methods involve a novel decomposition of the optimal solution to line-separable problem into blocks with special structure and extensions of the sweep-line technique of Erlebach and van Leeuwen [
9
]. |
|---|---|
| AbstractList | The main contribution of this paper is the first constant factor approximation algorithm for red-blue set cover problem with unit disks. To achieve this, we first give a polynomial time algorithm for line-separable red-blue set cover problem with unit disks. We next obtain a factor 2 approximation algorithm for strip-separable red-blue set cover problem with unit disks. Finally, we obtain a constant factor approximation algorithm for red-blue set cover problem with unit disks by combining our algorithm for the strip-separable problem with the results of Ambühl et al. [1]. Our methods involve a novel decomposition of the optimal solution to line-separable problem into blocks with special structure and extensions of the sweep-line technique of Erlebach and van Leeuwen [9]. The main contribution of this paper is the first constant factor approximation algorithm for red-blue set cover problem with unit disks. To achieve this, we first give a polynomial time algorithm for line-separable red-blue set cover problem with unit disks. We next obtain a factor 2 approximation algorithm for strip-separable red-blue set cover problem with unit disks. Finally, we obtain a constant factor approximation algorithm for red-blue set cover problem with unit disks by combining our algorithm for the strip-separable problem with the results of Ambühl et al. [ 1 ]. Our methods involve a novel decomposition of the optimal solution to line-separable problem into blocks with special structure and extensions of the sweep-line technique of Erlebach and van Leeuwen [ 9 ]. |
| Author | Madireddy, Raghunath Reddy Mudgal, Apurva |
| Author_xml | – sequence: 1 givenname: Raghunath Reddy orcidid: 0000-0001-5355-6705 surname: Madireddy fullname: Madireddy, Raghunath Reddy email: raghunath@hyderabad.bits-pilani.ac.in organization: Department of Computer Science and Information Systems, Birla Institute of Technology and Science, Pilani-Hyderabad Campus – sequence: 2 givenname: Apurva surname: Mudgal fullname: Mudgal, Apurva organization: Department of Computer Science and Engineering, Indian Institute of Technology Ropar |
| BookMark | eNp9kE1OwzAQhS1UJErhAqwssQ74L3ayDIUCUiUkaNdWmjolJbWL7fLTFXfghpyEoUVCYtHVaDTvm3nzDlHHOmsQOqHkjBKizgMhIuUJYSwhlFCWrPdQlwoObSpoB3UJVVkiJFUH6DCEOQGNymUXjQrcdzbE0savj89BWUXncbFcevfWLMrYOIuLduZ8Ex8XuIbZvZmC8KJdGfxgIsAvxuNXGOOxbSK-bMJTOEL7ddkGc_xbe2g8uBr1b5Lh3fVtvxgmFad5TCgzqkwryo2Scsq5TLO0FnwCH8maGcNpbYgQSoLVlE7yTJhc5MrUUmUTBUAPnW73gt3nlQlRz93KWzipGaxUqSQsB1W2VVXeheBNrasmbl6LvmxaTYn-yVBvM9SQod5kqNeAsn_o0kMs_n03xLdQALGdGf_nagf1DViFhvo |
| CitedBy_id | crossref_primary_10_1016_j_tcs_2025_115089 |
| Cites_doi | 10.1023/B:MONE.0000013622.63511.57 10.1007/s00454-010-9285-9 10.1016/0020-0190(81)90111-3 10.1016/j.jda.2015.05.002 10.1016/j.tcs.2017.01.030 10.1016/j.comgeo.2014.12.005 10.1007/11830924_3 10.1007/978-3-030-80879-2_14 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s00453-022-01012-z |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 132 |
| ExternalDocumentID | 10_1007_s00453_022_01012_z |
| GrantInformation_xml | – fundername: Department of Science and Technology, Ministry of Science and Technology grantid: SB/FTP/ETA-434/2012 funderid: http://dx.doi.org/10.13039/501100001409 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c319t-12e7a5c13e766d336585f43b1006f2ee31fe0447627951b984e9497ef678b7d33 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000836907400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-4617 |
| IngestDate | Sun Nov 09 08:53:00 EST 2025 Sat Nov 29 02:20:33 EST 2025 Tue Nov 18 20:27:48 EST 2025 Fri Feb 21 02:45:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Sweep-line method Unit disks Strip-separable Line-separable Red–blue set cover |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-12e7a5c13e766d336585f43b1006f2ee31fe0447627951b984e9497ef678b7d33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5355-6705 |
| PQID | 2766756029 |
| PQPubID | 2043795 |
| PageCount | 33 |
| ParticipantIDs | proquest_journals_2766756029 crossref_citationtrail_10_1007_s00453_022_01012_z crossref_primary_10_1007_s00453_022_01012_z springer_journals_10_1007_s00453_022_01012_z |
| PublicationCentury | 2000 |
| PublicationDate | 20230100 2023-01-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | ChanTMHuNGeometric Red Blue Set Cover for Unit Squares and Related ProblemsComput. Geom.201548538038510.1016/j.comgeo.2014.12.0051314.65029 FowlerRJPatersonMSTanimotoSLOptimal Packing and Covering in the Plane are NP-CompleteInf. Process. Lett.198112313313710.1016/0020-0190(81)90111-30469.68053 BasappaMAcharyyaRDasGKUnit Disk Cover Problem in 2DJ. Discrete Algorithms20153319320110.1016/j.jda.2015.05.0021337.68264 ErlebachTvan LeeuwenEJPTAS for Weighted Set Cover on Unit Squares. APPROX/RANDOM’102010BerlinSpringer1661771304.68214 ClaudeFDorrigivRDurocherSFraserRLópez-OrtizASalingerAPractical Discrete Unit Disk Cover Using an Exact Line-Separable Algorithm2009BerlinSpringer45541272.68150 LiJJinYA PTAS for the Weighted Unit Disk Cover Problem2015BerlinSpringer8989091440.68335 MustafaNHRaySImproved Results on Geometric Hitting Set ProblemsDiscrete Comput. Geom.201044488389510.1007/s00454-010-9285-91207.68420 DasGKFraserRLòpez-OrtizANickersonBGOn the Discrete Unit Disk Cover Problem2011BerlinSpringer1461571317.68273 Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.: On the Red-blue Set Cover Problem. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, pp. 345–353. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2000) FraserRLòpez-OrtizAThe Within-Strip Discrete Unit Disk Cover ProblemTheor. Comput. Sci.20176749911510.1016/j.tcs.2017.01.0301370.68297 Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Graphs. In: 9th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX, pp. 3–14 (2006) CălinescuGMăndoiuIIWanPJZelikovskyAZSelecting forwarding neighbors in wireless ad hoc networksMobile Netw. Appl.20049210111110.1023/B:MONE.0000013622.63511.57 CarmiPKatzMJLev-TovNCovering Points by Unit Disks of Fixed Location2007BerlinSpringer6446551193.68268 Madireddy, R.R., Mudgal, A.: A constant-factor approximation algorithm for red-blue set cover with unit disks. In: 18th International Workshop on Approximation and Online Algorithms WAOA 2020, Lecture Notes in Computer Science, vol. 12806, pp. 204–219. Springer (2020) P Carmi (1012_CR4) 2007 F Claude (1012_CR7) 2009 GK Das (1012_CR8) 2011 1012_CR5 1012_CR1 M Basappa (1012_CR2) 2015; 33 J Li (1012_CR12) 2015 G Călinescu (1012_CR3) 2004; 9 RJ Fowler (1012_CR10) 1981; 12 TM Chan (1012_CR6) 2015; 48 R Fraser (1012_CR11) 2017; 674 T Erlebach (1012_CR9) 2010 NH Mustafa (1012_CR14) 2010; 44 1012_CR13 |
| References_xml | – reference: ChanTMHuNGeometric Red Blue Set Cover for Unit Squares and Related ProblemsComput. Geom.201548538038510.1016/j.comgeo.2014.12.0051314.65029 – reference: BasappaMAcharyyaRDasGKUnit Disk Cover Problem in 2DJ. Discrete Algorithms20153319320110.1016/j.jda.2015.05.0021337.68264 – reference: Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Graphs. In: 9th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX, pp. 3–14 (2006) – reference: CălinescuGMăndoiuIIWanPJZelikovskyAZSelecting forwarding neighbors in wireless ad hoc networksMobile Netw. Appl.20049210111110.1023/B:MONE.0000013622.63511.57 – reference: FowlerRJPatersonMSTanimotoSLOptimal Packing and Covering in the Plane are NP-CompleteInf. Process. Lett.198112313313710.1016/0020-0190(81)90111-30469.68053 – reference: Madireddy, R.R., Mudgal, A.: A constant-factor approximation algorithm for red-blue set cover with unit disks. In: 18th International Workshop on Approximation and Online Algorithms WAOA 2020, Lecture Notes in Computer Science, vol. 12806, pp. 204–219. Springer (2020) – reference: CarmiPKatzMJLev-TovNCovering Points by Unit Disks of Fixed Location2007BerlinSpringer6446551193.68268 – reference: DasGKFraserRLòpez-OrtizANickersonBGOn the Discrete Unit Disk Cover Problem2011BerlinSpringer1461571317.68273 – reference: ClaudeFDorrigivRDurocherSFraserRLópez-OrtizASalingerAPractical Discrete Unit Disk Cover Using an Exact Line-Separable Algorithm2009BerlinSpringer45541272.68150 – reference: ErlebachTvan LeeuwenEJPTAS for Weighted Set Cover on Unit Squares. APPROX/RANDOM’102010BerlinSpringer1661771304.68214 – reference: MustafaNHRaySImproved Results on Geometric Hitting Set ProblemsDiscrete Comput. Geom.201044488389510.1007/s00454-010-9285-91207.68420 – reference: FraserRLòpez-OrtizAThe Within-Strip Discrete Unit Disk Cover ProblemTheor. Comput. Sci.20176749911510.1016/j.tcs.2017.01.0301370.68297 – reference: LiJJinYA PTAS for the Weighted Unit Disk Cover Problem2015BerlinSpringer8989091440.68335 – reference: Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.: On the Red-blue Set Cover Problem. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, pp. 345–353. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2000) – volume: 9 start-page: 101 issue: 2 year: 2004 ident: 1012_CR3 publication-title: Mobile Netw. Appl. doi: 10.1023/B:MONE.0000013622.63511.57 – start-page: 898 volume-title: A PTAS for the Weighted Unit Disk Cover Problem year: 2015 ident: 1012_CR12 – start-page: 166 volume-title: PTAS for Weighted Set Cover on Unit Squares. APPROX/RANDOM’10 year: 2010 ident: 1012_CR9 – volume: 44 start-page: 883 issue: 4 year: 2010 ident: 1012_CR14 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-010-9285-9 – volume: 12 start-page: 133 issue: 3 year: 1981 ident: 1012_CR10 publication-title: Inf. Process. Lett. doi: 10.1016/0020-0190(81)90111-3 – volume: 33 start-page: 193 year: 2015 ident: 1012_CR2 publication-title: J. Discrete Algorithms doi: 10.1016/j.jda.2015.05.002 – volume: 674 start-page: 99 year: 2017 ident: 1012_CR11 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2017.01.030 – ident: 1012_CR5 – volume: 48 start-page: 380 issue: 5 year: 2015 ident: 1012_CR6 publication-title: Comput. Geom. doi: 10.1016/j.comgeo.2014.12.005 – ident: 1012_CR1 doi: 10.1007/11830924_3 – start-page: 146 volume-title: On the Discrete Unit Disk Cover Problem year: 2011 ident: 1012_CR8 – ident: 1012_CR13 doi: 10.1007/978-3-030-80879-2_14 – start-page: 45 volume-title: Practical Discrete Unit Disk Cover Using an Exact Line-Separable Algorithm year: 2009 ident: 1012_CR7 – start-page: 644 volume-title: Covering Points by Unit Disks of Fixed Location year: 2007 ident: 1012_CR4 |
| SSID | ssj0012796 |
| Score | 2.3614068 |
| Snippet | The main contribution of this paper is the first constant factor approximation algorithm for red-blue set cover problem with unit disks. To achieve this, we... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 100 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Approximation Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Disks Mathematical analysis Mathematics of Computing Polynomials Strip Theory of Computation |
| Title | A Constant–Factor Approximation Algorithm for Red–Blue Set Cover with Unit Disks |
| URI | https://link.springer.com/article/10.1007/s00453-022-01012-z https://www.proquest.com/docview/2766756029 |
| Volume | 85 |
| WOSCitedRecordID | wos000836907400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2iNTETuyOoVAxoAq1BXWLEucCEaVFTYpQJ_4D_5BfwjmPViBAgjl-nn2-Lz7ffYQcA7eDBvjM8JVUBncaYEg7kAZa5kAKK4wgyFhLrkSnIweD5nURFJaUr91Ll2R2Us-D3TT60D5H_ZQAj1VjtkxW0NxJTdjQ7d3OfQeWyFi5NO88dm6KIlTm-zY-m6MFxvziFs2sTbv6v3FukPUCXVI33w6bZAlGW6RaMjfQQpG3Sd-lrRwYpu-vb-2Mc4e6Or34S5zHMlJ3eDeexOn9I0VYS7sQYsGz4RRoD1KsjBpA9R0u1aCVnsfJQ7JDbtoX_dalUfArGAoVLzVMC4RvK5OBcJyQMQQjdsRZgNNwIguAmRE0OMfjUiAOC5qSQ5M3BURo4AKBFXZJZTQewR6hYAMCDYeB71icKRlEvpSgGoyHSuAvZI2YpZg9VSQf1xwYQ2-eNjkTm4di8zKxebMaOZnXecpTb_xaul6unleoYeJZODGBmM7CAZyWq7X4_HNr-38rfkDWNA19fjVTJ5V0MoVDsqqe0ziZHGXb8wMBht9b |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4UTfQiPiOK2oM33YTddrfliCjBiMQAGm-b3TKrRATDLsZw8j_4D_0lTvcB0aiJnrfPaafzbaczHyGHwG2_BB4zPCWVwZ0SGNL2pYGW2ZfC6gbgx6wlDdFsytvb8lUaFBZmr90zl2R8Uk-D3TT60D5H_ZQAj1VjMk8WOFosnTG_1b6Z-g4sEbNyad557NwUaajM9218NkczjPnFLRpbm1r-f-NcJSspuqSVZDuskTkYrJN8xtxAU0XeIJ0KrSbAMHp_favFnDu0otOLv_SSWEZa6d8NR73o_pEirKUt6GLBk_4YaBsirIwaQPUdLtWglZ72wodwk1zXzjrVupHyKxgKFS8yTAuEZyuTgXCcLmMIRuyAMx-n4QQWADMDKHGOx6VAHOaXJYcyLwsI0MD5AitskdxgOIBtQsEGBBoOA8-xOFPSDzwpQZUY7yqBv5AFYmZidlWafFxzYPTdadrkWGwuis2NxeZOCuRoWucpSb3xa-litnpuqoaha-HEBGI6CwdwnK3W7PPPre38rfgBWap3Lhtu47x5sUuWNSV9ck1TJLloNIY9sqieo1442o-36geCr-I_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG58xXgRnxGfPXjTDey2uy1HBIlGQoig4bbZ7c4qEYHAaown_4P_0F_idB-gRk2M5z7STjudr53OfIQcArf9InjM8JRUBneKYEjblwZaZl8KKwjBj1lL6qLRkJ1Oqfkhij_-7Z65JJOYBp2lqR8VhkFYmAS-aSSi_Y_6WwEescbzLJnn-iO9vq-3rid-BEvEDF2agx4HYoo0bOb7Pj6bpine_OIijS1PLff_Ma-Q5RR10nKyTVbJDPTXSC5jdKCpgq-TdplWEsAYvb281mIuHlrWacefukmMIy33bgajbnR7TxHu0ksIsOJJ7wFoCyJsjJpB9dsu1WCWVrvju_EGuaqdtitnRsq7YChUyMgwLRCerUwGwnECxhCk2CFnPk7DCS0AZoZQ5ByPUYH4zC9JDiVeEhCi4fMFNtgkc_1BH7YIBRsQgDgMPMfiTEk_9KQEVWQ8UAKvlnliZiJ3VZqUXHNj9NxJOuVYbC6KzY3F5j7nydGkzTBJyfFr7d1sJd1UPceuhRMTiPUsHMBxtnLT4p972_5b9QOy2KzW3Pp542KHLGmm-uT1ZpfMRaMH2CML6jHqjkf78a59Bx3n6yM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Constant%E2%80%93Factor+Approximation+Algorithm+for+Red%E2%80%93Blue+Set+Cover+with+Unit+Disks&rft.jtitle=Algorithmica&rft.au=Madireddy%2C+Raghunath+Reddy&rft.au=Mudgal%2C+Apurva&rft.date=2023-01-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=85&rft.issue=1&rft.spage=100&rft.epage=132&rft_id=info:doi/10.1007%2Fs00453-022-01012-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_022_01012_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |