A Constant–Factor Approximation Algorithm for Red–Blue Set Cover with Unit Disks

The main contribution of this paper is the first constant factor approximation algorithm for red-blue set cover problem with unit disks. To achieve this, we first give a polynomial time algorithm for line-separable red-blue set cover problem with unit disks. We next obtain a factor 2 approximation a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 85; H. 1; S. 100 - 132
Hauptverfasser: Madireddy, Raghunath Reddy, Mudgal, Apurva
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.01.2023
Springer Nature B.V
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The main contribution of this paper is the first constant factor approximation algorithm for red-blue set cover problem with unit disks. To achieve this, we first give a polynomial time algorithm for line-separable red-blue set cover problem with unit disks. We next obtain a factor 2 approximation algorithm for strip-separable red-blue set cover problem with unit disks. Finally, we obtain a constant factor approximation algorithm for red-blue set cover problem with unit disks by combining our algorithm for the strip-separable problem with the results of Ambühl et al. [ 1 ]. Our methods involve a novel decomposition of the optimal solution to line-separable problem into blocks with special structure and extensions of the sweep-line technique of Erlebach and van Leeuwen [ 9 ].
AbstractList The main contribution of this paper is the first constant factor approximation algorithm for red-blue set cover problem with unit disks. To achieve this, we first give a polynomial time algorithm for line-separable red-blue set cover problem with unit disks. We next obtain a factor 2 approximation algorithm for strip-separable red-blue set cover problem with unit disks. Finally, we obtain a constant factor approximation algorithm for red-blue set cover problem with unit disks by combining our algorithm for the strip-separable problem with the results of Ambühl et al. [1]. Our methods involve a novel decomposition of the optimal solution to line-separable problem into blocks with special structure and extensions of the sweep-line technique of Erlebach and van Leeuwen [9].
The main contribution of this paper is the first constant factor approximation algorithm for red-blue set cover problem with unit disks. To achieve this, we first give a polynomial time algorithm for line-separable red-blue set cover problem with unit disks. We next obtain a factor 2 approximation algorithm for strip-separable red-blue set cover problem with unit disks. Finally, we obtain a constant factor approximation algorithm for red-blue set cover problem with unit disks by combining our algorithm for the strip-separable problem with the results of Ambühl et al. [ 1 ]. Our methods involve a novel decomposition of the optimal solution to line-separable problem into blocks with special structure and extensions of the sweep-line technique of Erlebach and van Leeuwen [ 9 ].
Author Madireddy, Raghunath Reddy
Mudgal, Apurva
Author_xml – sequence: 1
  givenname: Raghunath Reddy
  orcidid: 0000-0001-5355-6705
  surname: Madireddy
  fullname: Madireddy, Raghunath Reddy
  email: raghunath@hyderabad.bits-pilani.ac.in
  organization: Department of Computer Science and Information Systems, Birla Institute of Technology and Science, Pilani-Hyderabad Campus
– sequence: 2
  givenname: Apurva
  surname: Mudgal
  fullname: Mudgal, Apurva
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Ropar
BookMark eNp9kE1OwzAQhS1UJErhAqwssQ74L3ayDIUCUiUkaNdWmjolJbWL7fLTFXfghpyEoUVCYtHVaDTvm3nzDlHHOmsQOqHkjBKizgMhIuUJYSwhlFCWrPdQlwoObSpoB3UJVVkiJFUH6DCEOQGNymUXjQrcdzbE0savj89BWUXncbFcevfWLMrYOIuLduZ8Ex8XuIbZvZmC8KJdGfxgIsAvxuNXGOOxbSK-bMJTOEL7ddkGc_xbe2g8uBr1b5Lh3fVtvxgmFad5TCgzqkwryo2Scsq5TLO0FnwCH8maGcNpbYgQSoLVlE7yTJhc5MrUUmUTBUAPnW73gt3nlQlRz93KWzipGaxUqSQsB1W2VVXeheBNrasmbl6LvmxaTYn-yVBvM9SQod5kqNeAsn_o0kMs_n03xLdQALGdGf_nagf1DViFhvo
CitedBy_id crossref_primary_10_1016_j_tcs_2025_115089
Cites_doi 10.1023/B:MONE.0000013622.63511.57
10.1007/s00454-010-9285-9
10.1016/0020-0190(81)90111-3
10.1016/j.jda.2015.05.002
10.1016/j.tcs.2017.01.030
10.1016/j.comgeo.2014.12.005
10.1007/11830924_3
10.1007/978-3-030-80879-2_14
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00453-022-01012-z
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 132
ExternalDocumentID 10_1007_s00453_022_01012_z
GrantInformation_xml – fundername: Department of Science and Technology, Ministry of Science and Technology
  grantid: SB/FTP/ETA-434/2012
  funderid: http://dx.doi.org/10.13039/501100001409
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-12e7a5c13e766d336585f43b1006f2ee31fe0447627951b984e9497ef678b7d33
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000836907400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Sun Nov 09 08:53:00 EST 2025
Sat Nov 29 02:20:33 EST 2025
Tue Nov 18 20:27:48 EST 2025
Fri Feb 21 02:45:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Sweep-line method
Unit disks
Strip-separable
Line-separable
Red–blue set cover
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-12e7a5c13e766d336585f43b1006f2ee31fe0447627951b984e9497ef678b7d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5355-6705
PQID 2766756029
PQPubID 2043795
PageCount 33
ParticipantIDs proquest_journals_2766756029
crossref_citationtrail_10_1007_s00453_022_01012_z
crossref_primary_10_1007_s00453_022_01012_z
springer_journals_10_1007_s00453_022_01012_z
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ChanTMHuNGeometric Red Blue Set Cover for Unit Squares and Related ProblemsComput. Geom.201548538038510.1016/j.comgeo.2014.12.0051314.65029
FowlerRJPatersonMSTanimotoSLOptimal Packing and Covering in the Plane are NP-CompleteInf. Process. Lett.198112313313710.1016/0020-0190(81)90111-30469.68053
BasappaMAcharyyaRDasGKUnit Disk Cover Problem in 2DJ. Discrete Algorithms20153319320110.1016/j.jda.2015.05.0021337.68264
ErlebachTvan LeeuwenEJPTAS for Weighted Set Cover on Unit Squares. APPROX/RANDOM’102010BerlinSpringer1661771304.68214
ClaudeFDorrigivRDurocherSFraserRLópez-OrtizASalingerAPractical Discrete Unit Disk Cover Using an Exact Line-Separable Algorithm2009BerlinSpringer45541272.68150
LiJJinYA PTAS for the Weighted Unit Disk Cover Problem2015BerlinSpringer8989091440.68335
MustafaNHRaySImproved Results on Geometric Hitting Set ProblemsDiscrete Comput. Geom.201044488389510.1007/s00454-010-9285-91207.68420
DasGKFraserRLòpez-OrtizANickersonBGOn the Discrete Unit Disk Cover Problem2011BerlinSpringer1461571317.68273
Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.: On the Red-blue Set Cover Problem. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, pp. 345–353. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2000)
FraserRLòpez-OrtizAThe Within-Strip Discrete Unit Disk Cover ProblemTheor. Comput. Sci.20176749911510.1016/j.tcs.2017.01.0301370.68297
Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Graphs. In: 9th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX, pp. 3–14 (2006)
CălinescuGMăndoiuIIWanPJZelikovskyAZSelecting forwarding neighbors in wireless ad hoc networksMobile Netw. Appl.20049210111110.1023/B:MONE.0000013622.63511.57
CarmiPKatzMJLev-TovNCovering Points by Unit Disks of Fixed Location2007BerlinSpringer6446551193.68268
Madireddy, R.R., Mudgal, A.: A constant-factor approximation algorithm for red-blue set cover with unit disks. In: 18th International Workshop on Approximation and Online Algorithms WAOA 2020, Lecture Notes in Computer Science, vol. 12806, pp. 204–219. Springer (2020)
P Carmi (1012_CR4) 2007
F Claude (1012_CR7) 2009
GK Das (1012_CR8) 2011
1012_CR5
1012_CR1
M Basappa (1012_CR2) 2015; 33
J Li (1012_CR12) 2015
G Călinescu (1012_CR3) 2004; 9
RJ Fowler (1012_CR10) 1981; 12
TM Chan (1012_CR6) 2015; 48
R Fraser (1012_CR11) 2017; 674
T Erlebach (1012_CR9) 2010
NH Mustafa (1012_CR14) 2010; 44
1012_CR13
References_xml – reference: ChanTMHuNGeometric Red Blue Set Cover for Unit Squares and Related ProblemsComput. Geom.201548538038510.1016/j.comgeo.2014.12.0051314.65029
– reference: BasappaMAcharyyaRDasGKUnit Disk Cover Problem in 2DJ. Discrete Algorithms20153319320110.1016/j.jda.2015.05.0021337.68264
– reference: Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Graphs. In: 9th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX, pp. 3–14 (2006)
– reference: CălinescuGMăndoiuIIWanPJZelikovskyAZSelecting forwarding neighbors in wireless ad hoc networksMobile Netw. Appl.20049210111110.1023/B:MONE.0000013622.63511.57
– reference: FowlerRJPatersonMSTanimotoSLOptimal Packing and Covering in the Plane are NP-CompleteInf. Process. Lett.198112313313710.1016/0020-0190(81)90111-30469.68053
– reference: Madireddy, R.R., Mudgal, A.: A constant-factor approximation algorithm for red-blue set cover with unit disks. In: 18th International Workshop on Approximation and Online Algorithms WAOA 2020, Lecture Notes in Computer Science, vol. 12806, pp. 204–219. Springer (2020)
– reference: CarmiPKatzMJLev-TovNCovering Points by Unit Disks of Fixed Location2007BerlinSpringer6446551193.68268
– reference: DasGKFraserRLòpez-OrtizANickersonBGOn the Discrete Unit Disk Cover Problem2011BerlinSpringer1461571317.68273
– reference: ClaudeFDorrigivRDurocherSFraserRLópez-OrtizASalingerAPractical Discrete Unit Disk Cover Using an Exact Line-Separable Algorithm2009BerlinSpringer45541272.68150
– reference: ErlebachTvan LeeuwenEJPTAS for Weighted Set Cover on Unit Squares. APPROX/RANDOM’102010BerlinSpringer1661771304.68214
– reference: MustafaNHRaySImproved Results on Geometric Hitting Set ProblemsDiscrete Comput. Geom.201044488389510.1007/s00454-010-9285-91207.68420
– reference: FraserRLòpez-OrtizAThe Within-Strip Discrete Unit Disk Cover ProblemTheor. Comput. Sci.20176749911510.1016/j.tcs.2017.01.0301370.68297
– reference: LiJJinYA PTAS for the Weighted Unit Disk Cover Problem2015BerlinSpringer8989091440.68335
– reference: Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.: On the Red-blue Set Cover Problem. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, pp. 345–353. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2000)
– volume: 9
  start-page: 101
  issue: 2
  year: 2004
  ident: 1012_CR3
  publication-title: Mobile Netw. Appl.
  doi: 10.1023/B:MONE.0000013622.63511.57
– start-page: 898
  volume-title: A PTAS for the Weighted Unit Disk Cover Problem
  year: 2015
  ident: 1012_CR12
– start-page: 166
  volume-title: PTAS for Weighted Set Cover on Unit Squares. APPROX/RANDOM’10
  year: 2010
  ident: 1012_CR9
– volume: 44
  start-page: 883
  issue: 4
  year: 2010
  ident: 1012_CR14
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-010-9285-9
– volume: 12
  start-page: 133
  issue: 3
  year: 1981
  ident: 1012_CR10
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(81)90111-3
– volume: 33
  start-page: 193
  year: 2015
  ident: 1012_CR2
  publication-title: J. Discrete Algorithms
  doi: 10.1016/j.jda.2015.05.002
– volume: 674
  start-page: 99
  year: 2017
  ident: 1012_CR11
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2017.01.030
– ident: 1012_CR5
– volume: 48
  start-page: 380
  issue: 5
  year: 2015
  ident: 1012_CR6
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2014.12.005
– ident: 1012_CR1
  doi: 10.1007/11830924_3
– start-page: 146
  volume-title: On the Discrete Unit Disk Cover Problem
  year: 2011
  ident: 1012_CR8
– ident: 1012_CR13
  doi: 10.1007/978-3-030-80879-2_14
– start-page: 45
  volume-title: Practical Discrete Unit Disk Cover Using an Exact Line-Separable Algorithm
  year: 2009
  ident: 1012_CR7
– start-page: 644
  volume-title: Covering Points by Unit Disks of Fixed Location
  year: 2007
  ident: 1012_CR4
SSID ssj0012796
Score 2.3614068
Snippet The main contribution of this paper is the first constant factor approximation algorithm for red-blue set cover problem with unit disks. To achieve this, we...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Approximation
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Disks
Mathematical analysis
Mathematics of Computing
Polynomials
Strip
Theory of Computation
Title A Constant–Factor Approximation Algorithm for Red–Blue Set Cover with Unit Disks
URI https://link.springer.com/article/10.1007/s00453-022-01012-z
https://www.proquest.com/docview/2766756029
Volume 85
WOSCitedRecordID wos000836907400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2iNTETuyOoVAxoAq1BXWLEucCEaVFTYpQJ_4D_5BfwjmPViBAgjl-nn2-Lz7ffYQcA7eDBvjM8JVUBncaYEg7kAZa5kAKK4wgyFhLrkSnIweD5nURFJaUr91Ll2R2Us-D3TT60D5H_ZQAj1VjtkxW0NxJTdjQ7d3OfQeWyFi5NO88dm6KIlTm-zY-m6MFxvziFs2sTbv6v3FukPUCXVI33w6bZAlGW6RaMjfQQpG3Sd-lrRwYpu-vb-2Mc4e6Or34S5zHMlJ3eDeexOn9I0VYS7sQYsGz4RRoD1KsjBpA9R0u1aCVnsfJQ7JDbtoX_dalUfArGAoVLzVMC4RvK5OBcJyQMQQjdsRZgNNwIguAmRE0OMfjUiAOC5qSQ5M3BURo4AKBFXZJZTQewR6hYAMCDYeB71icKRlEvpSgGoyHSuAvZI2YpZg9VSQf1xwYQ2-eNjkTm4di8zKxebMaOZnXecpTb_xaul6unleoYeJZODGBmM7CAZyWq7X4_HNr-38rfkDWNA19fjVTJ5V0MoVDsqqe0ziZHGXb8wMBht9b
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4UTfQiPiOK2oM33YTddrfliCjBiMQAGm-b3TKrRATDLsZw8j_4D_0lTvcB0aiJnrfPaafzbaczHyGHwG2_BB4zPCWVwZ0SGNL2pYGW2ZfC6gbgx6wlDdFsytvb8lUaFBZmr90zl2R8Uk-D3TT60D5H_ZQAj1VjMk8WOFosnTG_1b6Z-g4sEbNyad557NwUaajM9218NkczjPnFLRpbm1r-f-NcJSspuqSVZDuskTkYrJN8xtxAU0XeIJ0KrSbAMHp_favFnDu0otOLv_SSWEZa6d8NR73o_pEirKUt6GLBk_4YaBsirIwaQPUdLtWglZ72wodwk1zXzjrVupHyKxgKFS8yTAuEZyuTgXCcLmMIRuyAMx-n4QQWADMDKHGOx6VAHOaXJYcyLwsI0MD5AitskdxgOIBtQsEGBBoOA8-xOFPSDzwpQZUY7yqBv5AFYmZidlWafFxzYPTdadrkWGwuis2NxeZOCuRoWucpSb3xa-litnpuqoaha-HEBGI6CwdwnK3W7PPPre38rfgBWap3Lhtu47x5sUuWNSV9ck1TJLloNIY9sqieo1442o-36geCr-I_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG58xXgRnxGfPXjTDey2uy1HBIlGQoig4bbZ7c4qEYHAaown_4P_0F_idB-gRk2M5z7STjudr53OfIQcArf9InjM8JRUBneKYEjblwZaZl8KKwjBj1lL6qLRkJ1Oqfkhij_-7Z65JJOYBp2lqR8VhkFYmAS-aSSi_Y_6WwEescbzLJnn-iO9vq-3rid-BEvEDF2agx4HYoo0bOb7Pj6bpine_OIijS1PLff_Ma-Q5RR10nKyTVbJDPTXSC5jdKCpgq-TdplWEsAYvb281mIuHlrWacefukmMIy33bgajbnR7TxHu0ksIsOJJ7wFoCyJsjJpB9dsu1WCWVrvju_EGuaqdtitnRsq7YChUyMgwLRCerUwGwnECxhCk2CFnPk7DCS0AZoZQ5ByPUYH4zC9JDiVeEhCi4fMFNtgkc_1BH7YIBRsQgDgMPMfiTEk_9KQEVWQ8UAKvlnliZiJ3VZqUXHNj9NxJOuVYbC6KzY3F5j7nydGkzTBJyfFr7d1sJd1UPceuhRMTiPUsHMBxtnLT4p972_5b9QOy2KzW3Pp542KHLGmm-uT1ZpfMRaMH2CML6jHqjkf78a59Bx3n6yM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Constant%E2%80%93Factor+Approximation+Algorithm+for+Red%E2%80%93Blue+Set+Cover+with+Unit+Disks&rft.jtitle=Algorithmica&rft.au=Madireddy%2C+Raghunath+Reddy&rft.au=Mudgal%2C+Apurva&rft.date=2023-01-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=85&rft.issue=1&rft.spage=100&rft.epage=132&rft_id=info:doi/10.1007%2Fs00453-022-01012-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_022_01012_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon