Comparing the Predictability of Soft Computing and Statistical Techniques for the Prediction of Tensile Strength of Additively Manufactured Carbon Fiber Polylactic Acid Parts

The objective of this study is to investigate the influence of input factors, namely layer height (LH), print speed (PS), and infill line direction (ID), on the tensile strength (TS) of polymer components fabricated using fused deposition modelling. The primary objective of this study is to construc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials engineering and performance Jg. 33; H. 22; S. 12729 - 12741
Hauptverfasser: Raj, Abhishek, Tyagi, Bobby, Goyal, Ashish, Sahai, Ankit, Sharma, Rahul Swarup
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.11.2024
Springer Nature B.V
Schlagworte:
ISSN:1059-9495, 1544-1024
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The objective of this study is to investigate the influence of input factors, namely layer height (LH), print speed (PS), and infill line direction (ID), on the tensile strength (TS) of polymer components fabricated using fused deposition modelling. The primary objective of this study is to construct a robust prediction model for TS utilising soft computing methodologies, namely a two-layered feed-forward backpropagation algorithm and a hybrid neural network-integrated fuzzy interface system (FIS). The specimens utilised for analysis were fabricated using carbon fibre fibre-reinforced polylactic acid (CF-PLA) composites per the ASTM D638 standard. A dataset is generated using a C27 orthogonal array to capture variations in LH, PS, and ID techniques. In this study, two soft computing methodologies, namely an artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS), are employed to effectively describe the fused deposition process and accurately predict the TS of the printed objects. The performance of these strategies is evaluated in comparison to the response surface methodology (RSM). The findings imply an inverse correlation between the TS and the LH, indicating that decreasing the LH can improve the structural integrity of the printed components. Furthermore, The ID region’s effect depends on the tensile force’s orientation. Infill lines aligned at 0° had the highest TS, while those at 90° had the lowest. The results of this study show how input variables affect the strength of additively produced (AM) polymer components. Soft computing methods enable AM parameter optimisation and accurate TS forecasts. The ANFIS method predicted tensile strength better than ANN and RSM. The negative relationship between LH and TS emphasises the importance of choosing the right LH for mechanical qualities.
AbstractList The objective of this study is to investigate the influence of input factors, namely layer height (LH), print speed (PS), and infill line direction (ID), on the tensile strength (TS) of polymer components fabricated using fused deposition modelling. The primary objective of this study is to construct a robust prediction model for TS utilising soft computing methodologies, namely a two-layered feed-forward backpropagation algorithm and a hybrid neural network-integrated fuzzy interface system (FIS). The specimens utilised for analysis were fabricated using carbon fibre fibre-reinforced polylactic acid (CF-PLA) composites per the ASTM D638 standard. A dataset is generated using a C27 orthogonal array to capture variations in LH, PS, and ID techniques. In this study, two soft computing methodologies, namely an artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS), are employed to effectively describe the fused deposition process and accurately predict the TS of the printed objects. The performance of these strategies is evaluated in comparison to the response surface methodology (RSM). The findings imply an inverse correlation between the TS and the LH, indicating that decreasing the LH can improve the structural integrity of the printed components. Furthermore, The ID region’s effect depends on the tensile force’s orientation. Infill lines aligned at 0° had the highest TS, while those at 90° had the lowest. The results of this study show how input variables affect the strength of additively produced (AM) polymer components. Soft computing methods enable AM parameter optimisation and accurate TS forecasts. The ANFIS method predicted tensile strength better than ANN and RSM. The negative relationship between LH and TS emphasises the importance of choosing the right LH for mechanical qualities.
Author Goyal, Ashish
Sharma, Rahul Swarup
Raj, Abhishek
Tyagi, Bobby
Sahai, Ankit
Author_xml – sequence: 1
  givenname: Abhishek
  surname: Raj
  fullname: Raj, Abhishek
  organization: Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute
– sequence: 2
  givenname: Bobby
  surname: Tyagi
  fullname: Tyagi, Bobby
  organization: Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute
– sequence: 3
  givenname: Ashish
  surname: Goyal
  fullname: Goyal, Ashish
  organization: Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute
– sequence: 4
  givenname: Ankit
  surname: Sahai
  fullname: Sahai, Ankit
  email: sahaiankit@dei.ac.in
  organization: Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute
– sequence: 5
  givenname: Rahul Swarup
  surname: Sharma
  fullname: Sharma, Rahul Swarup
  organization: Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute
BookMark eNp9kc9u1DAQhy1UJNrCC3CyxDlgO_YmPq5WFJCKWKnL2XKccXeq1F5sBykv1WfEYZFAHHryyPP7xn--K3IRYgBC3nL2njPWfcicbzaqYaJtWN9L2SwvyCVXteBMyItaM6UbLbV6Ra5yfmAVEkJekqddfDzZhOGeliPQfYIRXbEDTlgWGj29i77QNTSXNWTDSO-KLZgLOjvRA7hjwB8zZOpj-ncGxrDyBwgZJ6hQgnBfjuvedhyx4E-YFvrVhtlbV-YK0Z1NQ6VucIBE93FaptpBR7cOR7q3qeTX5KW3U4Y3f9Zr8v3m42H3ubn99unLbnvbuJbr0nDRSe_kBvqu40qMgwCwQrNB9Bs7DLpzHe_a3mrRSjXqQTvR1w73AqzXSrXX5N157inF9XHFPMQ5hXqkaYVSnAvdypoS55RLMecE3pwSPtq0GM7M6sWcvZjqxfz2YpYK9f9BDtcPjaEki9PzaHtG82k1BunvrZ6hfgG3VahE
CitedBy_id crossref_primary_10_1007_s40032_024_01066_8
crossref_primary_10_1007_s40964_025_01113_5
crossref_primary_10_1080_15440478_2024_2354399
crossref_primary_10_1177_08927057251371595
crossref_primary_10_1007_s43538_024_00363_1
crossref_primary_10_1007_s40964_024_00767_x
crossref_primary_10_1007_s10965_024_03880_1
crossref_primary_10_1007_s12008_024_02020_9
crossref_primary_10_1007_s00289_025_05719_1
crossref_primary_10_1007_s12008_023_01718_6
crossref_primary_10_1007_s12008_025_02302_w
crossref_primary_10_1007_s12008_024_01974_0
crossref_primary_10_1002_app_55319
Cites_doi 10.1108/RPJ-08-2012-0072
10.1177/08927057221133089
10.2495/wp160191
10.1007/s11740-021-01020-y
10.1016/C2013-0-16281-2
10.1007/s40430-020-02699-3
10.1109/21.256541
10.33736/jaspe.161.2015
10.1016/j.jmrt.2021.07.004
10.1177/08927057231170790
10.1177/08927057231155858
10.1016/j.eng.2019.04.012
10.1007/978-3-642-25859-6
10.1007/s40033-023-00498-3
10.1002/app.53722
10.1016/C2018-0-00910-X
10.1016/C2019-0-04429-9
10.1016/j.matdes.2019.107758
10.35940/ijrte.C3952.098319
10.1016/B978-0-12-821205-9.00008-3
10.1520/D0638-10
10.1007/978-3-030-68024-4
10.1016/B978-0-85709-481-0.00006-9
10.1016/j.compstruct.2018.09.072
10.1038/s41598-019-54902-8
10.21272/jnep.13(2).02004
10.1177/0021998316646169
10.1155/2021/6455592
10.1177/08927057211013070
10.1007/s40430-021-03331-8
10.1097/MEG.0b013e3282f198a0
10.1016/S1003-6326(08)60221-6
10.1016/j.ijmst.2018.04.014
10.1007/s11709-016-0363-9
10.1007/978-3-319-23838-8
10.1109/ICAETR.2014.7012785
10.1016/j.measurement.2021.109320
10.1080/15583724.2019.1597883
10.1155/2022/5416722
ContentType Journal Article
Copyright ASM International 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ASM International 2023.
Copyright_xml – notice: ASM International 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: ASM International 2023.
DBID AAYXX
CITATION
3V.
7XB
88I
8AF
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s11665-023-08844-y
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1544-1024
EndPage 12741
ExternalDocumentID 10_1007_s11665_023_08844_y
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
88I
8AF
8FE
8FG
8TC
8UJ
8WZ
95-
95.
95~
96X
9M8
A6W
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSVP
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D-I
D1I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KB.
KC.
KDC
KOV
L6V
LLZTM
M2P
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PDBOC
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
ULE
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W48
W4F
WK8
XSW
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-1274fc46e877152db2eea290b286abb97c71738a92345d9b9c2886a1f2eaf9553
IEDL.DBID KB.
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001090253200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1059-9495
IngestDate Sun Nov 02 05:06:34 EST 2025
Tue Nov 18 21:08:56 EST 2025
Sat Nov 29 05:07:59 EST 2025
Fri Feb 21 02:37:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords ANN
additive manufacturing
ANFIS
fused deposition modelling
RSM
carbon fibre PLA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-1274fc46e877152db2eea290b286abb97c71738a92345d9b9c2886a1f2eaf9553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255112934
PQPubID 14822
PageCount 13
ParticipantIDs proquest_journals_3255112934
crossref_primary_10_1007_s11665_023_08844_y
crossref_citationtrail_10_1007_s11665_023_08844_y
springer_journals_10_1007_s11665_023_08844_y
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials engineering and performance
PublicationTitleAbbrev J. of Materi Eng and Perform
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 8844_CR29
JP Davim (8844_CR41) 2012
E Grossi (8844_CR32) 2007; 19
A Garg (8844_CR9) 2014; 20
F Ning (8844_CR10) 2017; 51
S Nasiri (8844_CR34) 2021; 14
A Jain (8844_CR11) 2023
RLL Pambi (8844_CR37) 2016; 1
8844_CR26
8844_CR27
JPD Juan Pou (8844_CR3) 2021
AK Lakshminarayanan (8844_CR28) 2009; 19
SK Behera (8844_CR36) 2018; 28
KA Mohamad Said (8844_CR38) 2016; 2
HK Dave (8844_CR2) 2021
N Singh (8844_CR7) 2019; 207
A Jain (8844_CR6) 2023; 4
A Jain (8844_CR15) 2023
8844_CR42
8844_CR22
A Jain (8844_CR12) 2022; 36
T Sai (8844_CR16) 2020; 42
S Sandeep (8844_CR21) 2021; 13
TNAT Rahim (8844_CR14) 2019; 59
P Oehlmann (8844_CR19) 2021; 15
S Paul (8844_CR5) 2021; 178
R Agarwal (8844_CR20) 2022
JP Davim (8844_CR40) 2016
I Farina (8844_CR13) 2019; 172
G Özden (8844_CR24) 2021
F Khademi (8844_CR18) 2017; 11
J-SR Jang (8844_CR23) 1993; 23
A Jain (8844_CR8) 2023; 9
S Chopra (8844_CR25) 2021; 2021
M Manjaiah (8844_CR4) 2021
8844_CR33
A Jain (8844_CR1) 2023; 140
M Madhiarasan (8844_CR31) 2022; 2022
J Paulo Davim (8844_CR39) 2017
M Kumari (8844_CR35) 2019; 9
N Sandhya (8844_CR17) 2019; 8
8844_CR30
References_xml – volume: 20
  start-page: 164
  issue: 2
  year: 2014
  ident: 8844_CR9
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-08-2012-0072
– volume: 36
  start-page: 3618
  year: 2022
  ident: 8844_CR12
  publication-title: J. Thermoplast. Compos. Mater.
  doi: 10.1177/08927057221133089
– volume: 1
  start-page: 209
  year: 2016
  ident: 8844_CR37
  publication-title: Water Pollut. XIII
  doi: 10.2495/wp160191
– volume: 15
  start-page: 467
  issue: 3–4
  year: 2021
  ident: 8844_CR19
  publication-title: Prod. Eng.
  doi: 10.1007/s11740-021-01020-y
– volume-title: Computational methods and production engineering
  year: 2017
  ident: 8844_CR39
  doi: 10.1016/C2013-0-16281-2
– volume: 42
  start-page: 1
  issue: 12
  year: 2020
  ident: 8844_CR16
  publication-title: J. Brazilian Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-020-02699-3
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 8844_CR23
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.256541
– ident: 8844_CR29
– volume: 2
  start-page: 8
  issue: 1
  year: 2016
  ident: 8844_CR38
  publication-title: J. Appl. Sci. Process Eng.
  doi: 10.33736/jaspe.161.2015
– volume: 14
  start-page: 1137
  year: 2021
  ident: 8844_CR34
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.07.004
– year: 2023
  ident: 8844_CR15
  publication-title: J. Thermoplast. Compos. Mater.
  doi: 10.1177/08927057231170790
– year: 2023
  ident: 8844_CR11
  publication-title: J. Thermoplast. Compos. Mater.
  doi: 10.1177/08927057231155858
– ident: 8844_CR33
  doi: 10.1016/j.eng.2019.04.012
– volume-title: Statistical and computational techniques in manufacturing
  year: 2012
  ident: 8844_CR41
  doi: 10.1007/978-3-642-25859-6
– volume: 4
  start-page: 1
  year: 2023
  ident: 8844_CR6
  publication-title: J. Inst. Eng. Ser. D.
  doi: 10.1007/s40033-023-00498-3
– volume: 140
  start-page: 1
  issue: 15
  year: 2023
  ident: 8844_CR1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.53722
– volume-title: Additive manufacturing
  year: 2021
  ident: 8844_CR3
  doi: 10.1016/C2018-0-00910-X
– volume-title: Additive manufacturing, a tool for industrial revolution 4.0
  year: 2021
  ident: 8844_CR4
  doi: 10.1016/C2019-0-04429-9
– volume: 172
  start-page: 107758
  year: 2019
  ident: 8844_CR13
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107758
– volume: 8
  start-page: 235
  issue: 3
  year: 2019
  ident: 8844_CR17
  publication-title: Int. J. Recent Technol. Eng.
  doi: 10.35940/ijrte.C3952.098319
– ident: 8844_CR27
  doi: 10.1016/B978-0-12-821205-9.00008-3
– ident: 8844_CR42
  doi: 10.1520/D0638-10
– volume-title: Fused deposition modeling based 3D printing
  year: 2021
  ident: 8844_CR2
  doi: 10.1007/978-3-030-68024-4
– ident: 8844_CR26
  doi: 10.1016/B978-0-85709-481-0.00006-9
– volume: 207
  start-page: 129
  year: 2019
  ident: 8844_CR7
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.09.072
– volume: 9
  start-page: 18339
  issue: 1
  year: 2019
  ident: 8844_CR35
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54902-8
– volume: 9
  start-page: 470
  issue: S1
  year: 2023
  ident: 8844_CR8
  publication-title: Nano World J.
– volume: 13
  start-page: 02004-1
  issue: 2
  year: 2021
  ident: 8844_CR21
  publication-title: J. Nano- Electron. Phys.
  doi: 10.21272/jnep.13(2).02004
– volume: 51
  start-page: 451
  issue: 4
  year: 2017
  ident: 8844_CR10
  publication-title: J. Compos. Mater.
  doi: 10.1177/0021998316646169
– volume: 2021
  start-page: 1
  year: 2021
  ident: 8844_CR25
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/6455592
– year: 2021
  ident: 8844_CR24
  publication-title: J. Thermoplast. Compos. Mater.
  doi: 10.1177/08927057211013070
– year: 2022
  ident: 8844_CR20
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-021-03331-8
– volume: 19
  start-page: 1046
  issue: 12
  year: 2007
  ident: 8844_CR32
  publication-title: Eur. J. Gastroenterol. Hepatol.
  doi: 10.1097/MEG.0b013e3282f198a0
– volume: 19
  start-page: 9
  issue: 1
  year: 2009
  ident: 8844_CR28
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(08)60221-6
– ident: 8844_CR22
– volume: 28
  start-page: 621
  issue: 4
  year: 2018
  ident: 8844_CR36
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2018.04.014
– volume: 11
  start-page: 90
  issue: 1
  year: 2017
  ident: 8844_CR18
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-016-0363-9
– volume-title: Design of experiments in production engineering
  year: 2016
  ident: 8844_CR40
  doi: 10.1007/978-3-319-23838-8
– ident: 8844_CR30
  doi: 10.1109/ICAETR.2014.7012785
– volume: 178
  start-page: 109320
  year: 2021
  ident: 8844_CR5
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109320
– volume: 59
  start-page: 589
  issue: 4
  year: 2019
  ident: 8844_CR14
  publication-title: Polym. Rev.
  doi: 10.1080/15583724.2019.1597883
– volume: 2022
  start-page: 1
  year: 2022
  ident: 8844_CR31
  publication-title: J. Electr. Comput. Eng.
  doi: 10.1155/2022/5416722
SSID ssj0007224
Score 2.457565
Snippet The objective of this study is to investigate the influence of input factors, namely layer height (LH), print speed (PS), and infill line direction (ID), on...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12729
SubjectTerms Accuracy
Adaptive systems
Artificial intelligence
Artificial neural networks
Back propagation networks
Carbon fibers
Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion and Coatings
Engineering Design
Fused deposition modeling
Fuzzy logic
Genetic algorithms
Machine learning
Materials Science
Mechanical properties
Neural networks
Original Research Article
Orthogonal arrays
Polylactic acid
Polymers
Prediction models
Quality Control
Reliability
Response surface methodology
Safety and Risk
Soft computing
Statistical methods
Structural integrity
Tensile strength
Tribology
Variables
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDb7FaZQ_edKFJNo89lmLxoCXYWnoLu5uNCiGVJBXyp_yNzubRVlFBLzkkO0NgZne_YeabQejSsAzuOFIQCuCeUOlSwhU8aKQYE7YnRUmkndy5w6E3nTK_JoVlTbV7k5IsT-ol2c1wHM0mtgjsDEpJsY424LpzdSHfw2iyOH9dsxplC8CBMMD_NVXmex2fr6MlxvySFi1vm8Hu__5zD-3U6BL3KnfYR2sqOUDbKz0HD9F7v5o8mDxhwH7YT3WmJq-6dRd4FuERHMy4GvagF_EkxBqRlg2dQfe4afqaYcC7qzrAwlp-rEviY4V1vjt5yp_1u14YljVKcYHveTLXbIo5COE-TwVIDXTZCvZncRGXnC3cky8h9sGrsyP0OLgZ929JPbSBSNjNOTEgzI0kdZTnuoANQmEqxU3WFabncCGYK3Xe3-MALKkdMsGk6cEXIzIVj5htW8eolcwSdYKwsqQtTZBwIGiLuoqJKOzattQhpScs1UZGY7tA1h3N9WCNOFj2Yta2CMAWQWmLoGijq4XMa9XP49fVncYlgnpvZ4EFUZhGqRZto-vGBZaff9Z2-rflZ2jLBARVER87qJWnc3WONuUbWDy9KH3-A-RP_rQ
  priority: 102
  providerName: Springer Nature
Title Comparing the Predictability of Soft Computing and Statistical Techniques for the Prediction of Tensile Strength of Additively Manufactured Carbon Fiber Polylactic Acid Parts
URI https://link.springer.com/article/10.1007/s11665-023-08844-y
https://www.proquest.com/docview/3255112934
Volume 33
WOSCitedRecordID wos001090253200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1544-1024
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007224
  issn: 1059-9495
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1544-1024
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007224
  issn: 1059-9495
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1544-1024
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007224
  issn: 1059-9495
  databaseCode: KB.
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1544-1024
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007224
  issn: 1059-9495
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1544-1024
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007224
  issn: 1059-9495
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5R6KEcKH0gllLkQ2-t243jPHxCy4oVB1hF7BZxi2zHoZWiLOwDKX-K38hMHiytVC69zCH2WJFmbH_jeQF88XxPh6E1XCK459JGkmuHROZOKRPE1tSJtFfn0XgcX1-rpH1wW7Rhld2ZWB_U2czSG_kPH7EvYQNfHt_eceoaRd7VtoXGK9jyBGJ9csqefH86iSPRNLVFCMEVWgJt0kyTOueFIeUm-xz3mZS8-vNiWqPNvxyk9b0zevu_f7wLOy3iZINGRd7Bhivfw_azOoQf4GHYdCMsbxjiQZbMyXuzbCp4V2yWswke1qxpAEGTdJkxQql1kWdce9oVgl0wxMDP10CpE_-UwuQLx8gHXt4sf9G3QZbVcUtFxS50uaIMixUysaGeG-QaUSgLS2ZFVdR5XGxgf2csQU1ffISfo9Pp8Iy3jRy4xR2-5B6avrmVoYujCPFCZoRzWqi-EXGojVGRpViAWCPYlEGmjLIixhEvF07nKgj8PdgsZ6XbB-Z8G1iBHCEacnnfKZNn_SCwZGbGxnc98Doppratck7NNop0XZ-ZJJ-i5NNa8mnVg69PPLdNjY8XZx924k7b_b5I17LuwbdOYdbD_17t4OXVPsEbgSiqSX48hM3lfOU-w2t7jxKeH8HWyek4uTyqtR7phUiIRhOkl5OrR0HHDDo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk48EYsFPABTmDYOM7DB4SWhVWrblcrsaDegu04pVKUbfcByp_qb2QmTroFid564JJDkvEh_jz-JuNvBuBlEAY6jq3hEsk9lzaRXDu8yMIpZaLUmkZI-22cTCbp4aGabsFZp4WhY5WdT2wcdT639I_8XYjcl7hBKD-cnHLqGkXZ1a6FhofFvqt_Yci2fL_3Cef3lRCjz7PhLm-7CnCLcFvxAOOwwsrYpUmCm1duhHNaqL4RaayNUYmlxHSqkfnIKFdGWZHik6AQThcqoi4R6PKvyRDtKQn88e2550-Eb6KLlIUrjDxakY6X6gVxTFrokOO6lpLXf26EG3b7V0K22edGd_63L3QXbreMmg38ErgHW666D7cu1Fl8AGdD322xOmLId9l0Qdmpla9QXrN5wb7gZsR8gwt6SVc5IxbeFLHGsWddodslQ45_cQxENdnPSAZQOkY5_upo9YPuDfK8OZdV1uxAV2tSkKzRiA31wqDViI7qsOm8rMtGp8YG9jhnU1zJy4fw9Uo-2CPYruaVewzMhTayAi1iDFSLvlOmyPtRZCmMTk3oehB0qMlsW8WdmomU2ab-NCEtQ6RlDdKyugevz21OfA2TS9_e6eCVtf5smW2w1YM3HUA3j_892pPLR3sBN3ZnB-NsvDfZfwo3BTJGL_Tcge3VYu2ewXX7E2d78bxZaQy-XzVwfwO_zWNj
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9aLdI-qK2WXrV1H3yzi5dk87GPx-nRUj0CXsW3sLvZqBBycpcr5J_q39iZfHhXUUH6kodkZwjMzO5v2PnNABw6nqOCwGguENxzYULBlcWHyKyU2o-Mrom0l2fheBxdXcl4hcVfV7t3V5INp4G6NBXl8V2aHS-Jb04QELPY4xglQvDqNawLKpejfP3i8n4vDt1mrC2CCC4xF2hpM4_r-PdoWuLNB1ek9ckz2vr_f96GzRZ1skHjJu_hlS0-wLuVXoQ78GfYTCQsrhliQhbP6AanbLp4V2yasQvcsFkzBIIWqSJlhFTrRs-oe9I1g50zxMGrOtDyJD-hUvncMroHL67LG3o3SNO6dimv2LkqFsSyWKAQG6qZRqkRlbOweJpXec3lYgNzm7IYvX2-C79Gp5Phd94Oc-AGo7zkDqa_mRGBjcIQMUOqXWuVK_vajQKltQwN1QNECgGn8FOppXEj_OJkrlWZ9H3vI6wV08J-AmY94xsXJQJM5rK-lTpL-75vKNWMtGd74HR2TEzb6ZwGbuTJskcz2SJBWyS1LZKqB0f3MndNn49nV-937pG0MT9PPMzOCL16ogffOndYfn5a2-eXLT-AjfhklJz9GP_cg7cugqyGG7kPa-VsYb_AG_MbjT_7WofCX0PZCoI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+the+Predictability+of+Soft+Computing+and+Statistical+Techniques+for+the+Prediction+of+Tensile+Strength+of+Additively+Manufactured+Carbon+Fiber+Polylactic+Acid+Parts&rft.jtitle=Journal+of+materials+engineering+and+performance&rft.au=Raj%2C+Abhishek&rft.au=Tyagi%2C+Bobby&rft.au=Goyal%2C+Ashish&rft.au=Sahai%2C+Ankit&rft.date=2024-11-01&rft.issn=1059-9495&rft.eissn=1544-1024&rft.volume=33&rft.issue=22&rft.spage=12729&rft.epage=12741&rft_id=info:doi/10.1007%2Fs11665-023-08844-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11665_023_08844_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-9495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-9495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-9495&client=summon