Comparing the Predictability of Soft Computing and Statistical Techniques for the Prediction of Tensile Strength of Additively Manufactured Carbon Fiber Polylactic Acid Parts
The objective of this study is to investigate the influence of input factors, namely layer height (LH), print speed (PS), and infill line direction (ID), on the tensile strength (TS) of polymer components fabricated using fused deposition modelling. The primary objective of this study is to construc...
Gespeichert in:
| Veröffentlicht in: | Journal of materials engineering and performance Jg. 33; H. 22; S. 12729 - 12741 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.11.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1059-9495, 1544-1024 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The objective of this study is to investigate the influence of input factors, namely layer height (LH), print speed (PS), and infill line direction (ID), on the tensile strength (TS) of polymer components fabricated using fused deposition modelling. The primary objective of this study is to construct a robust prediction model for TS utilising soft computing methodologies, namely a two-layered feed-forward backpropagation algorithm and a hybrid neural network-integrated fuzzy interface system (FIS). The specimens utilised for analysis were fabricated using carbon fibre fibre-reinforced polylactic acid (CF-PLA) composites per the ASTM D638 standard. A dataset is generated using a C27 orthogonal array to capture variations in LH, PS, and ID techniques. In this study, two soft computing methodologies, namely an artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS), are employed to effectively describe the fused deposition process and accurately predict the TS of the printed objects. The performance of these strategies is evaluated in comparison to the response surface methodology (RSM). The findings imply an inverse correlation between the TS and the LH, indicating that decreasing the LH can improve the structural integrity of the printed components. Furthermore, The ID region’s effect depends on the tensile force’s orientation. Infill lines aligned at 0° had the highest TS, while those at 90° had the lowest. The results of this study show how input variables affect the strength of additively produced (AM) polymer components. Soft computing methods enable AM parameter optimisation and accurate TS forecasts. The ANFIS method predicted tensile strength better than ANN and RSM. The negative relationship between LH and TS emphasises the importance of choosing the right LH for mechanical qualities. |
|---|---|
| AbstractList | The objective of this study is to investigate the influence of input factors, namely layer height (LH), print speed (PS), and infill line direction (ID), on the tensile strength (TS) of polymer components fabricated using fused deposition modelling. The primary objective of this study is to construct a robust prediction model for TS utilising soft computing methodologies, namely a two-layered feed-forward backpropagation algorithm and a hybrid neural network-integrated fuzzy interface system (FIS). The specimens utilised for analysis were fabricated using carbon fibre fibre-reinforced polylactic acid (CF-PLA) composites per the ASTM D638 standard. A dataset is generated using a C27 orthogonal array to capture variations in LH, PS, and ID techniques. In this study, two soft computing methodologies, namely an artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS), are employed to effectively describe the fused deposition process and accurately predict the TS of the printed objects. The performance of these strategies is evaluated in comparison to the response surface methodology (RSM). The findings imply an inverse correlation between the TS and the LH, indicating that decreasing the LH can improve the structural integrity of the printed components. Furthermore, The ID region’s effect depends on the tensile force’s orientation. Infill lines aligned at 0° had the highest TS, while those at 90° had the lowest. The results of this study show how input variables affect the strength of additively produced (AM) polymer components. Soft computing methods enable AM parameter optimisation and accurate TS forecasts. The ANFIS method predicted tensile strength better than ANN and RSM. The negative relationship between LH and TS emphasises the importance of choosing the right LH for mechanical qualities. |
| Author | Goyal, Ashish Sharma, Rahul Swarup Raj, Abhishek Tyagi, Bobby Sahai, Ankit |
| Author_xml | – sequence: 1 givenname: Abhishek surname: Raj fullname: Raj, Abhishek organization: Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute – sequence: 2 givenname: Bobby surname: Tyagi fullname: Tyagi, Bobby organization: Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute – sequence: 3 givenname: Ashish surname: Goyal fullname: Goyal, Ashish organization: Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute – sequence: 4 givenname: Ankit surname: Sahai fullname: Sahai, Ankit email: sahaiankit@dei.ac.in organization: Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute – sequence: 5 givenname: Rahul Swarup surname: Sharma fullname: Sharma, Rahul Swarup organization: Department of Mechanical Engineering, Faculty of Engineering, Dayalbagh Educational Institute |
| BookMark | eNp9kc9u1DAQhy1UJNrCC3CyxDlgO_YmPq5WFJCKWKnL2XKccXeq1F5sBykv1WfEYZFAHHryyPP7xn--K3IRYgBC3nL2njPWfcicbzaqYaJtWN9L2SwvyCVXteBMyItaM6UbLbV6Ra5yfmAVEkJekqddfDzZhOGeliPQfYIRXbEDTlgWGj29i77QNTSXNWTDSO-KLZgLOjvRA7hjwB8zZOpj-ncGxrDyBwgZJ6hQgnBfjuvedhyx4E-YFvrVhtlbV-YK0Z1NQ6VucIBE93FaptpBR7cOR7q3qeTX5KW3U4Y3f9Zr8v3m42H3ubn99unLbnvbuJbr0nDRSe_kBvqu40qMgwCwQrNB9Bs7DLpzHe_a3mrRSjXqQTvR1w73AqzXSrXX5N157inF9XHFPMQ5hXqkaYVSnAvdypoS55RLMecE3pwSPtq0GM7M6sWcvZjqxfz2YpYK9f9BDtcPjaEki9PzaHtG82k1BunvrZ6hfgG3VahE |
| CitedBy_id | crossref_primary_10_1007_s40032_024_01066_8 crossref_primary_10_1007_s40964_025_01113_5 crossref_primary_10_1080_15440478_2024_2354399 crossref_primary_10_1177_08927057251371595 crossref_primary_10_1007_s43538_024_00363_1 crossref_primary_10_1007_s40964_024_00767_x crossref_primary_10_1007_s10965_024_03880_1 crossref_primary_10_1007_s12008_024_02020_9 crossref_primary_10_1007_s00289_025_05719_1 crossref_primary_10_1007_s12008_023_01718_6 crossref_primary_10_1007_s12008_025_02302_w crossref_primary_10_1007_s12008_024_01974_0 crossref_primary_10_1002_app_55319 |
| Cites_doi | 10.1108/RPJ-08-2012-0072 10.1177/08927057221133089 10.2495/wp160191 10.1007/s11740-021-01020-y 10.1016/C2013-0-16281-2 10.1007/s40430-020-02699-3 10.1109/21.256541 10.33736/jaspe.161.2015 10.1016/j.jmrt.2021.07.004 10.1177/08927057231170790 10.1177/08927057231155858 10.1016/j.eng.2019.04.012 10.1007/978-3-642-25859-6 10.1007/s40033-023-00498-3 10.1002/app.53722 10.1016/C2018-0-00910-X 10.1016/C2019-0-04429-9 10.1016/j.matdes.2019.107758 10.35940/ijrte.C3952.098319 10.1016/B978-0-12-821205-9.00008-3 10.1520/D0638-10 10.1007/978-3-030-68024-4 10.1016/B978-0-85709-481-0.00006-9 10.1016/j.compstruct.2018.09.072 10.1038/s41598-019-54902-8 10.21272/jnep.13(2).02004 10.1177/0021998316646169 10.1155/2021/6455592 10.1177/08927057211013070 10.1007/s40430-021-03331-8 10.1097/MEG.0b013e3282f198a0 10.1016/S1003-6326(08)60221-6 10.1016/j.ijmst.2018.04.014 10.1007/s11709-016-0363-9 10.1007/978-3-319-23838-8 10.1109/ICAETR.2014.7012785 10.1016/j.measurement.2021.109320 10.1080/15583724.2019.1597883 10.1155/2022/5416722 |
| ContentType | Journal Article |
| Copyright | ASM International 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. ASM International 2023. |
| Copyright_xml | – notice: ASM International 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: ASM International 2023. |
| DBID | AAYXX CITATION 3V. 7XB 88I 8AF 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s11665-023-08844-y |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology collection ProQuest One ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1544-1024 |
| EndPage | 12741 |
| ExternalDocumentID | 10_1007_s11665_023_08844_y |
| GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 88I 8AF 8FE 8FG 8TC 8UJ 8WZ 95- 95. 95~ 96X 9M8 A6W AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSVP ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP CZ9 D-I D1I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KC. KDC KOV L6V LLZTM M2P M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PDBOC PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 ULE UOJIU UTJUX UZXMN VC2 VFIZW VXZ W48 W4F WK8 XSW YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8Q Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-1274fc46e877152db2eea290b286abb97c71738a92345d9b9c2886a1f2eaf9553 |
| IEDL.DBID | KB. |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001090253200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1059-9495 |
| IngestDate | Sun Nov 02 05:06:34 EST 2025 Tue Nov 18 21:08:56 EST 2025 Sat Nov 29 05:07:59 EST 2025 Fri Feb 21 02:37:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | ANN additive manufacturing ANFIS fused deposition modelling RSM carbon fibre PLA |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-1274fc46e877152db2eea290b286abb97c71738a92345d9b9c2886a1f2eaf9553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3255112934 |
| PQPubID | 14822 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3255112934 crossref_primary_10_1007_s11665_023_08844_y crossref_citationtrail_10_1007_s11665_023_08844_y springer_journals_10_1007_s11665_023_08844_y |
| PublicationCentury | 2000 |
| PublicationDate | 20241100 2024-11-00 20241101 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 20241100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of materials engineering and performance |
| PublicationTitleAbbrev | J. of Materi Eng and Perform |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | 8844_CR29 JP Davim (8844_CR41) 2012 E Grossi (8844_CR32) 2007; 19 A Garg (8844_CR9) 2014; 20 F Ning (8844_CR10) 2017; 51 S Nasiri (8844_CR34) 2021; 14 A Jain (8844_CR11) 2023 RLL Pambi (8844_CR37) 2016; 1 8844_CR26 8844_CR27 JPD Juan Pou (8844_CR3) 2021 AK Lakshminarayanan (8844_CR28) 2009; 19 SK Behera (8844_CR36) 2018; 28 KA Mohamad Said (8844_CR38) 2016; 2 HK Dave (8844_CR2) 2021 N Singh (8844_CR7) 2019; 207 A Jain (8844_CR6) 2023; 4 A Jain (8844_CR15) 2023 8844_CR42 8844_CR22 A Jain (8844_CR12) 2022; 36 T Sai (8844_CR16) 2020; 42 S Sandeep (8844_CR21) 2021; 13 TNAT Rahim (8844_CR14) 2019; 59 P Oehlmann (8844_CR19) 2021; 15 S Paul (8844_CR5) 2021; 178 R Agarwal (8844_CR20) 2022 JP Davim (8844_CR40) 2016 I Farina (8844_CR13) 2019; 172 G Özden (8844_CR24) 2021 F Khademi (8844_CR18) 2017; 11 J-SR Jang (8844_CR23) 1993; 23 A Jain (8844_CR8) 2023; 9 S Chopra (8844_CR25) 2021; 2021 M Manjaiah (8844_CR4) 2021 8844_CR33 A Jain (8844_CR1) 2023; 140 M Madhiarasan (8844_CR31) 2022; 2022 J Paulo Davim (8844_CR39) 2017 M Kumari (8844_CR35) 2019; 9 N Sandhya (8844_CR17) 2019; 8 8844_CR30 |
| References_xml | – volume: 20 start-page: 164 issue: 2 year: 2014 ident: 8844_CR9 publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-08-2012-0072 – volume: 36 start-page: 3618 year: 2022 ident: 8844_CR12 publication-title: J. Thermoplast. Compos. Mater. doi: 10.1177/08927057221133089 – volume: 1 start-page: 209 year: 2016 ident: 8844_CR37 publication-title: Water Pollut. XIII doi: 10.2495/wp160191 – volume: 15 start-page: 467 issue: 3–4 year: 2021 ident: 8844_CR19 publication-title: Prod. Eng. doi: 10.1007/s11740-021-01020-y – volume-title: Computational methods and production engineering year: 2017 ident: 8844_CR39 doi: 10.1016/C2013-0-16281-2 – volume: 42 start-page: 1 issue: 12 year: 2020 ident: 8844_CR16 publication-title: J. Brazilian Soc. Mech. Sci. Eng. doi: 10.1007/s40430-020-02699-3 – volume: 23 start-page: 665 issue: 3 year: 1993 ident: 8844_CR23 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.256541 – ident: 8844_CR29 – volume: 2 start-page: 8 issue: 1 year: 2016 ident: 8844_CR38 publication-title: J. Appl. Sci. Process Eng. doi: 10.33736/jaspe.161.2015 – volume: 14 start-page: 1137 year: 2021 ident: 8844_CR34 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.07.004 – year: 2023 ident: 8844_CR15 publication-title: J. Thermoplast. Compos. Mater. doi: 10.1177/08927057231170790 – year: 2023 ident: 8844_CR11 publication-title: J. Thermoplast. Compos. Mater. doi: 10.1177/08927057231155858 – ident: 8844_CR33 doi: 10.1016/j.eng.2019.04.012 – volume-title: Statistical and computational techniques in manufacturing year: 2012 ident: 8844_CR41 doi: 10.1007/978-3-642-25859-6 – volume: 4 start-page: 1 year: 2023 ident: 8844_CR6 publication-title: J. Inst. Eng. Ser. D. doi: 10.1007/s40033-023-00498-3 – volume: 140 start-page: 1 issue: 15 year: 2023 ident: 8844_CR1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.53722 – volume-title: Additive manufacturing year: 2021 ident: 8844_CR3 doi: 10.1016/C2018-0-00910-X – volume-title: Additive manufacturing, a tool for industrial revolution 4.0 year: 2021 ident: 8844_CR4 doi: 10.1016/C2019-0-04429-9 – volume: 172 start-page: 107758 year: 2019 ident: 8844_CR13 publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107758 – volume: 8 start-page: 235 issue: 3 year: 2019 ident: 8844_CR17 publication-title: Int. J. Recent Technol. Eng. doi: 10.35940/ijrte.C3952.098319 – ident: 8844_CR27 doi: 10.1016/B978-0-12-821205-9.00008-3 – ident: 8844_CR42 doi: 10.1520/D0638-10 – volume-title: Fused deposition modeling based 3D printing year: 2021 ident: 8844_CR2 doi: 10.1007/978-3-030-68024-4 – ident: 8844_CR26 doi: 10.1016/B978-0-85709-481-0.00006-9 – volume: 207 start-page: 129 year: 2019 ident: 8844_CR7 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.09.072 – volume: 9 start-page: 18339 issue: 1 year: 2019 ident: 8844_CR35 publication-title: Sci. Rep. doi: 10.1038/s41598-019-54902-8 – volume: 9 start-page: 470 issue: S1 year: 2023 ident: 8844_CR8 publication-title: Nano World J. – volume: 13 start-page: 02004-1 issue: 2 year: 2021 ident: 8844_CR21 publication-title: J. Nano- Electron. Phys. doi: 10.21272/jnep.13(2).02004 – volume: 51 start-page: 451 issue: 4 year: 2017 ident: 8844_CR10 publication-title: J. Compos. Mater. doi: 10.1177/0021998316646169 – volume: 2021 start-page: 1 year: 2021 ident: 8844_CR25 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/6455592 – year: 2021 ident: 8844_CR24 publication-title: J. Thermoplast. Compos. Mater. doi: 10.1177/08927057211013070 – year: 2022 ident: 8844_CR20 publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-021-03331-8 – volume: 19 start-page: 1046 issue: 12 year: 2007 ident: 8844_CR32 publication-title: Eur. J. Gastroenterol. Hepatol. doi: 10.1097/MEG.0b013e3282f198a0 – volume: 19 start-page: 9 issue: 1 year: 2009 ident: 8844_CR28 publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(08)60221-6 – ident: 8844_CR22 – volume: 28 start-page: 621 issue: 4 year: 2018 ident: 8844_CR36 publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2018.04.014 – volume: 11 start-page: 90 issue: 1 year: 2017 ident: 8844_CR18 publication-title: Front. Struct. Civ. Eng. doi: 10.1007/s11709-016-0363-9 – volume-title: Design of experiments in production engineering year: 2016 ident: 8844_CR40 doi: 10.1007/978-3-319-23838-8 – ident: 8844_CR30 doi: 10.1109/ICAETR.2014.7012785 – volume: 178 start-page: 109320 year: 2021 ident: 8844_CR5 publication-title: Measurement doi: 10.1016/j.measurement.2021.109320 – volume: 59 start-page: 589 issue: 4 year: 2019 ident: 8844_CR14 publication-title: Polym. Rev. doi: 10.1080/15583724.2019.1597883 – volume: 2022 start-page: 1 year: 2022 ident: 8844_CR31 publication-title: J. Electr. Comput. Eng. doi: 10.1155/2022/5416722 |
| SSID | ssj0007224 |
| Score | 2.457565 |
| Snippet | The objective of this study is to investigate the influence of input factors, namely layer height (LH), print speed (PS), and infill line direction (ID), on... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12729 |
| SubjectTerms | Accuracy Adaptive systems Artificial intelligence Artificial neural networks Back propagation networks Carbon fibers Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Engineering Design Fused deposition modeling Fuzzy logic Genetic algorithms Machine learning Materials Science Mechanical properties Neural networks Original Research Article Orthogonal arrays Polylactic acid Polymers Prediction models Quality Control Reliability Response surface methodology Safety and Risk Soft computing Statistical methods Structural integrity Tensile strength Tribology Variables |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDb7FaZQ_edKFJNo89lmLxoCXYWnoLu5uNCiGVJBXyp_yNzubRVlFBLzkkO0NgZne_YeabQejSsAzuOFIQCuCeUOlSwhU8aKQYE7YnRUmkndy5w6E3nTK_JoVlTbV7k5IsT-ol2c1wHM0mtgjsDEpJsY424LpzdSHfw2iyOH9dsxplC8CBMMD_NVXmex2fr6MlxvySFi1vm8Hu__5zD-3U6BL3KnfYR2sqOUDbKz0HD9F7v5o8mDxhwH7YT3WmJq-6dRd4FuERHMy4GvagF_EkxBqRlg2dQfe4afqaYcC7qzrAwlp-rEviY4V1vjt5yp_1u14YljVKcYHveTLXbIo5COE-TwVIDXTZCvZncRGXnC3cky8h9sGrsyP0OLgZ929JPbSBSNjNOTEgzI0kdZTnuoANQmEqxU3WFabncCGYK3Xe3-MALKkdMsGk6cEXIzIVj5htW8eolcwSdYKwsqQtTZBwIGiLuoqJKOzattQhpScs1UZGY7tA1h3N9WCNOFj2Yta2CMAWQWmLoGijq4XMa9XP49fVncYlgnpvZ4EFUZhGqRZto-vGBZaff9Z2-rflZ2jLBARVER87qJWnc3WONuUbWDy9KH3-A-RP_rQ priority: 102 providerName: Springer Nature |
| Title | Comparing the Predictability of Soft Computing and Statistical Techniques for the Prediction of Tensile Strength of Additively Manufactured Carbon Fiber Polylactic Acid Parts |
| URI | https://link.springer.com/article/10.1007/s11665-023-08844-y https://www.proquest.com/docview/3255112934 |
| Volume | 33 |
| WOSCitedRecordID | wos001090253200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 1544-1024 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007224 issn: 1059-9495 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1544-1024 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007224 issn: 1059-9495 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1544-1024 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007224 issn: 1059-9495 databaseCode: KB. dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1544-1024 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0007224 issn: 1059-9495 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1544-1024 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007224 issn: 1059-9495 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5R6KEcKH0gllLkQ2-t243jPHxCy4oVB1hF7BZxi2zHoZWiLOwDKX-K38hMHiytVC69zCH2WJFmbH_jeQF88XxPh6E1XCK459JGkmuHROZOKRPE1tSJtFfn0XgcX1-rpH1wW7Rhld2ZWB_U2czSG_kPH7EvYQNfHt_eceoaRd7VtoXGK9jyBGJ9csqefH86iSPRNLVFCMEVWgJt0kyTOueFIeUm-xz3mZS8-vNiWqPNvxyk9b0zevu_f7wLOy3iZINGRd7Bhivfw_azOoQf4GHYdCMsbxjiQZbMyXuzbCp4V2yWswke1qxpAEGTdJkxQql1kWdce9oVgl0wxMDP10CpE_-UwuQLx8gHXt4sf9G3QZbVcUtFxS50uaIMixUysaGeG-QaUSgLS2ZFVdR5XGxgf2csQU1ffISfo9Pp8Iy3jRy4xR2-5B6avrmVoYujCPFCZoRzWqi-EXGojVGRpViAWCPYlEGmjLIixhEvF07nKgj8PdgsZ6XbB-Z8G1iBHCEacnnfKZNn_SCwZGbGxnc98Doppratck7NNop0XZ-ZJJ-i5NNa8mnVg69PPLdNjY8XZx924k7b_b5I17LuwbdOYdbD_17t4OXVPsEbgSiqSX48hM3lfOU-w2t7jxKeH8HWyek4uTyqtR7phUiIRhOkl5OrR0HHDDo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk48EYsFPABTmDYOM7DB4SWhVWrblcrsaDegu04pVKUbfcByp_qb2QmTroFid564JJDkvEh_jz-JuNvBuBlEAY6jq3hEsk9lzaRXDu8yMIpZaLUmkZI-22cTCbp4aGabsFZp4WhY5WdT2wcdT639I_8XYjcl7hBKD-cnHLqGkXZ1a6FhofFvqt_Yci2fL_3Cef3lRCjz7PhLm-7CnCLcFvxAOOwwsrYpUmCm1duhHNaqL4RaayNUYmlxHSqkfnIKFdGWZHik6AQThcqoi4R6PKvyRDtKQn88e2550-Eb6KLlIUrjDxakY6X6gVxTFrokOO6lpLXf26EG3b7V0K22edGd_63L3QXbreMmg38ErgHW666D7cu1Fl8AGdD322xOmLId9l0Qdmpla9QXrN5wb7gZsR8gwt6SVc5IxbeFLHGsWddodslQ45_cQxENdnPSAZQOkY5_upo9YPuDfK8OZdV1uxAV2tSkKzRiA31wqDViI7qsOm8rMtGp8YG9jhnU1zJy4fw9Uo-2CPYruaVewzMhTayAi1iDFSLvlOmyPtRZCmMTk3oehB0qMlsW8WdmomU2ab-NCEtQ6RlDdKyugevz21OfA2TS9_e6eCVtf5smW2w1YM3HUA3j_892pPLR3sBN3ZnB-NsvDfZfwo3BTJGL_Tcge3VYu2ewXX7E2d78bxZaQy-XzVwfwO_zWNj |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9aLdI-qK2WXrV1H3yzi5dk87GPx-nRUj0CXsW3sLvZqBBycpcr5J_q39iZfHhXUUH6kodkZwjMzO5v2PnNABw6nqOCwGguENxzYULBlcWHyKyU2o-Mrom0l2fheBxdXcl4hcVfV7t3V5INp4G6NBXl8V2aHS-Jb04QELPY4xglQvDqNawLKpejfP3i8n4vDt1mrC2CCC4xF2hpM4_r-PdoWuLNB1ek9ckz2vr_f96GzRZ1skHjJu_hlS0-wLuVXoQ78GfYTCQsrhliQhbP6AanbLp4V2yasQvcsFkzBIIWqSJlhFTrRs-oe9I1g50zxMGrOtDyJD-hUvncMroHL67LG3o3SNO6dimv2LkqFsSyWKAQG6qZRqkRlbOweJpXec3lYgNzm7IYvX2-C79Gp5Phd94Oc-AGo7zkDqa_mRGBjcIQMUOqXWuVK_vajQKltQwN1QNECgGn8FOppXEj_OJkrlWZ9H3vI6wV08J-AmY94xsXJQJM5rK-lTpL-75vKNWMtGd74HR2TEzb6ZwGbuTJskcz2SJBWyS1LZKqB0f3MndNn49nV-937pG0MT9PPMzOCL16ogffOndYfn5a2-eXLT-AjfhklJz9GP_cg7cugqyGG7kPa-VsYb_AG_MbjT_7WofCX0PZCoI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+the+Predictability+of+Soft+Computing+and+Statistical+Techniques+for+the+Prediction+of+Tensile+Strength+of+Additively+Manufactured+Carbon+Fiber+Polylactic+Acid+Parts&rft.jtitle=Journal+of+materials+engineering+and+performance&rft.au=Raj%2C+Abhishek&rft.au=Tyagi%2C+Bobby&rft.au=Goyal%2C+Ashish&rft.au=Sahai%2C+Ankit&rft.date=2024-11-01&rft.issn=1059-9495&rft.eissn=1544-1024&rft.volume=33&rft.issue=22&rft.spage=12729&rft.epage=12741&rft_id=info:doi/10.1007%2Fs11665-023-08844-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11665_023_08844_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-9495&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-9495&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-9495&client=summon |