MADP-IIME: malware attack detection protocol in IoT-enabled industrial multimedia environment using machine learning approach

Internet of Things (IoT) is one of the fastest-growing technologies. With the deployment of massive and faster mobile networks, almost every daily-use item is connected to the Internet. IoT-enabled industrial multimedia environment is used for the collection and analysis of different types of multim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia systems Jg. 29; H. 3; S. 1785 - 1797
Hauptverfasser: Pundir, Sumit, Obaidat, Mohammad S., Wazid, Mohammad, Das, Ashok Kumar, Singh, Devesh Pratap, Rodrigues, Joel J. P. C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Schlagworte:
ISSN:0942-4962, 1432-1882
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Internet of Things (IoT) is one of the fastest-growing technologies. With the deployment of massive and faster mobile networks, almost every daily-use item is connected to the Internet. IoT-enabled industrial multimedia environment is used for the collection and analysis of different types of multimedia data (i.e., images, videos, audios, etc.). This multimedia data is generated by various types of smart devices like drones, robots, smart controller, smart surveillance system which are deployed for the industrial monitoring and control. The multimedia data is generated in the enormous amount which can be considered as the big data. This data is further utilized in various types of business needs for example, chances of fire accidents in the industrial plant, overall machine health, etc., which can be predicted through the application of big data analytics. Therefore, IoT-enabled industrial multimedia environment is very helpful to the concerned authorities as they come to know the important information in advance. However, all the smart devices are connected and controlled through the Internet. It further causes severe threats to the communication happens in an IoT-enabled industrial multimedia environment. It is vulnerable to various types of attacks such as replay, man-in-the-middle, impersonation, secret information leakage, sensitive information modification, and malware injection (i.e., mirai). Therefore, it is important to prevent the communication of such an environment against the different types of possible attacks. These days, the attacks performed by botnets (i.e., malware attacks such as mirai and reaper) have drawn attention to the researchers. Under the influence of such attacks, the communication of IoT-enabled industrial multimedia environment is disrupted. Moreover, the attackers may also control the smart devices remotely and can change their functionalities. Hence, we need some robust mechanism to detect the presence of the malware attacks in such an environment. In this paper, we propose a malware detection mechanism in IoT-enabled industrial multimedia environment with the help of machine-learning approach, which is named as MADP-IIME. MADP-IIME uses four different types of machine learning methods (i.e., naive bayes, logistic regression, artificial neural networks (ANN) and random forest) to detect the presence of malware attacks successfully. Furthermore, MADP-IIME performs better than other related existing schemes and achieves 99.5 % detection and 0.5 % false positive rate. In addition, the conducted security analysis proves the resilience of the proposed MADP-IIME against different types of malware attacks.
AbstractList Internet of Things (IoT) is one of the fastest-growing technologies. With the deployment of massive and faster mobile networks, almost every daily-use item is connected to the Internet. IoT-enabled industrial multimedia environment is used for the collection and analysis of different types of multimedia data (i.e., images, videos, audios, etc.). This multimedia data is generated by various types of smart devices like drones, robots, smart controller, smart surveillance system which are deployed for the industrial monitoring and control. The multimedia data is generated in the enormous amount which can be considered as the big data. This data is further utilized in various types of business needs for example, chances of fire accidents in the industrial plant, overall machine health, etc., which can be predicted through the application of big data analytics. Therefore, IoT-enabled industrial multimedia environment is very helpful to the concerned authorities as they come to know the important information in advance. However, all the smart devices are connected and controlled through the Internet. It further causes severe threats to the communication happens in an IoT-enabled industrial multimedia environment. It is vulnerable to various types of attacks such as replay, man-in-the-middle, impersonation, secret information leakage, sensitive information modification, and malware injection (i.e., mirai). Therefore, it is important to prevent the communication of such an environment against the different types of possible attacks. These days, the attacks performed by botnets (i.e., malware attacks such as mirai and reaper) have drawn attention to the researchers. Under the influence of such attacks, the communication of IoT-enabled industrial multimedia environment is disrupted. Moreover, the attackers may also control the smart devices remotely and can change their functionalities. Hence, we need some robust mechanism to detect the presence of the malware attacks in such an environment. In this paper, we propose a malware detection mechanism in IoT-enabled industrial multimedia environment with the help of machine-learning approach, which is named as MADP-IIME. MADP-IIME uses four different types of machine learning methods (i.e., naive bayes, logistic regression, artificial neural networks (ANN) and random forest) to detect the presence of malware attacks successfully. Furthermore, MADP-IIME performs better than other related existing schemes and achieves 99.5% detection and 0.5% false positive rate. In addition, the conducted security analysis proves the resilience of the proposed MADP-IIME against different types of malware attacks.
Internet of Things (IoT) is one of the fastest-growing technologies. With the deployment of massive and faster mobile networks, almost every daily-use item is connected to the Internet. IoT-enabled industrial multimedia environment is used for the collection and analysis of different types of multimedia data (i.e., images, videos, audios, etc.). This multimedia data is generated by various types of smart devices like drones, robots, smart controller, smart surveillance system which are deployed for the industrial monitoring and control. The multimedia data is generated in the enormous amount which can be considered as the big data. This data is further utilized in various types of business needs for example, chances of fire accidents in the industrial plant, overall machine health, etc., which can be predicted through the application of big data analytics. Therefore, IoT-enabled industrial multimedia environment is very helpful to the concerned authorities as they come to know the important information in advance. However, all the smart devices are connected and controlled through the Internet. It further causes severe threats to the communication happens in an IoT-enabled industrial multimedia environment. It is vulnerable to various types of attacks such as replay, man-in-the-middle, impersonation, secret information leakage, sensitive information modification, and malware injection (i.e., mirai). Therefore, it is important to prevent the communication of such an environment against the different types of possible attacks. These days, the attacks performed by botnets (i.e., malware attacks such as mirai and reaper) have drawn attention to the researchers. Under the influence of such attacks, the communication of IoT-enabled industrial multimedia environment is disrupted. Moreover, the attackers may also control the smart devices remotely and can change their functionalities. Hence, we need some robust mechanism to detect the presence of the malware attacks in such an environment. In this paper, we propose a malware detection mechanism in IoT-enabled industrial multimedia environment with the help of machine-learning approach, which is named as MADP-IIME. MADP-IIME uses four different types of machine learning methods (i.e., naive bayes, logistic regression, artificial neural networks (ANN) and random forest) to detect the presence of malware attacks successfully. Furthermore, MADP-IIME performs better than other related existing schemes and achieves 99.5 % detection and 0.5 % false positive rate. In addition, the conducted security analysis proves the resilience of the proposed MADP-IIME against different types of malware attacks.
Author Singh, Devesh Pratap
Pundir, Sumit
Obaidat, Mohammad S.
Das, Ashok Kumar
Wazid, Mohammad
Rodrigues, Joel J. P. C.
Author_xml – sequence: 1
  givenname: Sumit
  surname: Pundir
  fullname: Pundir, Sumit
  organization: Department of Computer Science and Engineering, Graphic Era Deemed to be University
– sequence: 2
  givenname: Mohammad S.
  surname: Obaidat
  fullname: Obaidat, Mohammad S.
  organization: College of Computing and Informatics, University of Sharjah, UAE, with King Abdullah II School of Information Technology, The University of Jordan, University of Science and Technology Beijing
– sequence: 3
  givenname: Mohammad
  surname: Wazid
  fullname: Wazid, Mohammad
  organization: Department of Computer Science and Engineering, Graphic Era Deemed to be University
– sequence: 4
  givenname: Ashok Kumar
  surname: Das
  fullname: Das, Ashok Kumar
  organization: Center for Security, Theory and Algorithmic Research, International Institute of Information Technology
– sequence: 5
  givenname: Devesh Pratap
  surname: Singh
  fullname: Singh, Devesh Pratap
  organization: Department of Computer Science and Engineering, Graphic Era Deemed to be University
– sequence: 6
  givenname: Joel J. P. C.
  orcidid: 0000-0001-8657-3800
  surname: Rodrigues
  fullname: Rodrigues, Joel J. P. C.
  email: joeljr@ieee.org
  organization: Federal University of Piauí (UFPI), Instituto de Telecomunicações
BookMark eNp9kEFv1DAQhS1UJLaFP8DJEmfD2M4mMbeqFFipFRz2bk2cSXFJ7MV2QD3w3_GySJU49DAazeh9b0bvnJ2FGIix1xLeSoDuXQbYahCgakHXaGGesY1stBKy79UZ24BplGhMq16w85zvAWTXatiw37eXH76K3e72-j1fcP6FiTiWgu47H6mQKz4GfkixRBdn7gPfxb2ggMNMYx3HNZfkcebLOhe_0OiRU_jpUwwLhcLX7MNdNXbffCA-E6ZwXOChWtblS_Z8wjnTq3_9gu0_Xu-vPoubL592V5c3wmlpipBybBUOrqHJTOMAk0EYh2HUWumulQbrIKcGey1h2nbU9JPr3bZD0MNAnb5gb0629eqPlXKx93FNoV60Wm3bxiip-qrqTyqXYs6JJut8wWMAJaGfrQR7zNqesrY1a_s3a2sqqv5DD8kvmB6ehvQJylUc7ig9fvUE9Qf5npXh
CitedBy_id crossref_primary_10_1007_s10844_022_00734_4
crossref_primary_10_1016_j_engappai_2024_109560
crossref_primary_10_1155_2022_1005813
crossref_primary_10_1038_s41598_024_79632_4
crossref_primary_10_1007_s00521_024_10129_x
crossref_primary_10_1002_spy2_483
crossref_primary_10_1016_j_eswa_2024_126363
crossref_primary_10_1007_s11227_025_07345_0
crossref_primary_10_1109_JSEN_2022_3216824
Cites_doi 10.1109/ACCESS.2018.2866962
10.3390/s19245539
10.1109/LGRS.2006.877949
10.1109/COMST.2019.2896380
10.1007/s11042-017-5154-3
10.1016/j.future.2019.02.064
10.1007/s11277-016-3433-3
10.1109/ACCESS.2017.2676119
10.1109/TKDE.2010.160
10.1109/ACCESS.2019.2917135
10.1109/TIT.1983.1056650
10.1109/ACCESS.2019.2928564
10.1109/ACCESS.2019.2924045
10.1109/ACCESS.2019.2960412
10.1109/MC.2017.201
10.1007/s11042-018-6288-7
10.1109/JSEN.2017.2787997
10.1109/TDSC.2017.2764083
10.1109/TPDS.2012.105
10.1109/TMC.2008.19
10.1109/ACCESS.2018.2800287
10.1109/JIOT.2019.2944632
10.1109/TKDE.2008.234
10.1016/j.eswa.2011.05.076
10.1016/j.comcom.2020.03.007
10.1002/sec.1652
10.1109/MCE.2019.2953740
10.1109/ACCESS.2019.2907965
10.1145/2990499
10.1109/TC.2002.1004593
10.1109/TEC.2005.847984
10.1109/72.728352
10.1007/s11277-016-3676-z
10.1109/COMST.2019.2926625
10.1109/TETC.2016.2633228
10.1145/3321705.3329847
10.1109/WF-IoT.2019.8767194
10.1002/9781119544678.ch12
10.1002/9781119544678.ch10
10.1007/978-981-13-8759-3_17
10.3390/s20082334
10.7551/mitpress/9969.001.0001
10.23919/SOFTCOM.2017.8115504
10.1002/dac.4024
10.1109/TELFOR.2017.8249458
10.21227/q70p-q449
10.1002/0471756482.ch4
10.1145/3321705.3329857
10.1109/ISSC.2018.8585344
10.1109/MILCOM.2017.8170867
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00530-020-00743-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: PROQUEST
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-1882
EndPage 1797
ExternalDocumentID 10_1007_s00530_020_00743_9
GrantInformation_xml – fundername: Ministry of Education of the People’s Republic of China (CN)
  grantid: MS2017BJKJ003
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: Grant No. 309335/2017-5
  funderid: http://dx.doi.org/10.13039/501100003593
– fundername: Fundação para a Ciência e a Tecnologia
  grantid: Project UIDB/50008/2020
  funderid: http://dx.doi.org/10.13039/501100001871
GroupedDBID --Z
-4Z
-59
-5G
-BR
-EM
-ET
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
85S
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YIN
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-11d62abc4ef9fdb0f9a0dbbd33237619adbb1f4a8310f57e48fc8c57a03bbe73
IEDL.DBID M7S
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000609125900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0942-4962
IngestDate Fri Oct 03 06:01:50 EDT 2025
Tue Nov 18 21:56:28 EST 2025
Sat Nov 29 03:45:57 EST 2025
Fri Feb 21 02:43:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Internet of Things (IoT)
Simulation
Security
Malware detection
Machine learning
Industrial multimedia environment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-11d62abc4ef9fdb0f9a0dbbd33237619adbb1f4a8310f57e48fc8c57a03bbe73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8657-3800
PQID 3256492128
PQPubID 2043725
PageCount 13
ParticipantIDs proquest_journals_3256492128
crossref_citationtrail_10_1007_s00530_020_00743_9
crossref_primary_10_1007_s00530_020_00743_9
springer_journals_10_1007_s00530_020_00743_9
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Multimedia systems
PublicationTitleAbbrev Multimedia Systems
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Jeon, Damiani, Anisetti (CR18) 2017; 76
Alladi, Chamola, Zeadally (CR5) 2020; 155
CR37
CR36
CR34
CR32
CR31
CR30
Wazid, Das (CR44) 2016; 90
Wazid, Das, Kumari, Khan (CR46) 2016; 9
Wang, Wang, Xie, Wang, Agrawal (CR43) 2008; 7
Ganiz, George, Pottenger (CR13) 2011; 23
Wlas, Krzeminski, Guzinski, Abu-Rub, Toliyat (CR51) 2005; 20
Alaparthy, Morgera (CR3) 2018; 6
Jiang, Zhang, Cai (CR19) 2009; 21
CR6
Li, Tug, Meng, Wang (CR27) 2019; 96
Wazid, Das, Shetty, Rodrigues, Park (CR49) 2019; 19
Sun, Xu, Liang, Zhou (CR38) 2018; 18
Pajouh, Javidan, Khayami, Dehghantanha, Choo (CR33) 2019; 7
Tickle, Andrews, Golea, Diederich (CR39) 1998; 9
Dolev, Yao (CR11) 1983; 29
Wazid, Das, Rodrigues, Shetty, Park (CR48) 2019; 7
Chen, Challita, Saad, Yin, Debbah (CR9) 2019; 21
Wazid, Das, Odelu, Kumar, Susilo (CR47) 2017
Han, Wang, Xu, Zhao, Liu (CR14) 2019; 87
Al-Turjman, Alturjman (CR2) 2020; 79
Hassija, Chamola, Saxena, Jain, Goyal, Sikdar (CR15) 2019; 7
Challa, Wazid, Das, Kumar, Reddy, Yoon, Yoo (CR8) 2017; 5
Cheng, Varshney, Arora (CR10) 2006; 3
CR16
Ahmed, Ali, Abbas, Hadi (CR1) 2016; 16
CR12
Kolias, Kambourakis, Stavrou, Voas (CR23) 2017; 50
Wazid, Das (CR45) 2017; 94
Zhao, Li, Zhang, Geng, Zhang, Sun (CR53) 2019; 7
Messerges, Dabbish, Sloan (CR28) 2002; 51
Sharma, You, Yim, Chen, Cho (CR35) 2019; 7
CR54
Wang, Yan, Wang, Liu (CR41) 2011; 38
Alladi, Chamola, Sikdar, Choo (CR4) 2020; 9
CR50
Verma, Singh, Kumar, Chamola (CR40) 2020; 7
CR29
Chaabouni, Mosbah, Zemmari, Sauvignac, Faruki (CR7) 2019; 21
CR26
CR25
CR24
CR22
CR21
CR20
Zhao, Dong (CR52) 2018; 6
Jan, Ahmed, Shakhov, Koo (CR17) 2019; 7
Wang, Fu, Agrawal (CR42) 2013; 24
S Challa (743_CR8) 2017; 5
GK Verma (743_CR40) 2020; 7
W Li (743_CR27) 2019; 96
743_CR20
M Wlas (743_CR51) 2005; 20
743_CR21
T Alladi (743_CR5) 2020; 155
743_CR29
743_CR26
V Sharma (743_CR35) 2019; 7
743_CR24
SU Jan (743_CR17) 2019; 7
743_CR25
M Wazid (743_CR48) 2019; 7
743_CR22
G Jeon (743_CR18) 2017; 76
L Jiang (743_CR19) 2009; 21
743_CR31
743_CR32
743_CR30
M Wazid (743_CR45) 2017; 94
D Dolev (743_CR11) 1983; 29
743_CR37
L Zhao (743_CR52) 2018; 6
743_CR36
743_CR34
T Alladi (743_CR4) 2020; 9
HH Pajouh (743_CR33) 2019; 7
M Chen (743_CR9) 2019; 21
F Al-Turjman (743_CR2) 2020; 79
SS Wang (743_CR41) 2011; 38
VT Alaparthy (743_CR3) 2018; 6
Y Wang (743_CR43) 2008; 7
V Hassija (743_CR15) 2019; 7
M Wazid (743_CR44) 2016; 90
AB Tickle (743_CR39) 1998; 9
Y Zhao (743_CR53) 2019; 7
MC Ganiz (743_CR13) 2011; 23
Z Sun (743_CR38) 2018; 18
Q Cheng (743_CR10) 2006; 3
C Kolias (743_CR23) 2017; 50
X Han (743_CR14) 2019; 87
TS Messerges (743_CR28) 2002; 51
M Wazid (743_CR46) 2016; 9
M Wazid (743_CR47) 2017
743_CR54
743_CR6
743_CR50
M Wazid (743_CR49) 2019; 19
S Ahmed (743_CR1) 2016; 16
Y Wang (743_CR42) 2013; 24
N Chaabouni (743_CR7) 2019; 21
743_CR16
743_CR12
References_xml – volume: 6
  start-page: 47364
  year: 2018
  end-page: 47373
  ident: CR3
  article-title: A multi-level intrusion detection system for wireless sensor networks based on immune theory
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2866962
– ident: CR22
– volume: 19
  start-page: 5539
  issue: 24
  year: 2019
  ident: CR49
  article-title: LDAKM-EIoT: lightweight device authentication and key management mechanism for edge-based IoT deployment
  publication-title: Sensors
  doi: 10.3390/s19245539
– volume: 3
  start-page: 491
  issue: 4
  year: 2006
  end-page: 494
  ident: CR10
  article-title: Logistic regression for feature selection and soft classification of remote sensing data
  publication-title: IEEE Geosci Rem Sens Lett
  doi: 10.1109/LGRS.2006.877949
– volume: 21
  start-page: 2671
  issue: 3
  year: 2019
  end-page: 2701
  ident: CR7
  article-title: Network intrusion detection for IoT security based on learning techniques
  publication-title: IEEE Commun Surv Tutorials
  doi: 10.1109/COMST.2019.2896380
– ident: CR16
– ident: CR12
– volume: 76
  start-page: 24589
  issue: 23
  year: 2017
  end-page: 24593
  ident: CR18
  article-title: Computational intelligence for multimedia and industrial applications
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5154-3
– volume: 96
  start-page: 481
  year: 2019
  end-page: 489
  ident: CR27
  article-title: Designing collaborative blockchained signature-based intrusion detection in IoT environments
  publication-title: Future Gen Comput Syst
  doi: 10.1016/j.future.2019.02.064
– ident: CR29
– volume: 90
  start-page: 1971
  issue: 4
  year: 2016
  end-page: 2000
  ident: CR44
  article-title: An efficient hybrid anomaly detection scheme using K-means clustering for wireless sensor networks
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-016-3433-3
– ident: CR54
– volume: 5
  start-page: 3028
  year: 2017
  end-page: 3043
  ident: CR8
  article-title: Secure signature-based authenticated key establishment scheme for future IoT applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2676119
– ident: CR25
– volume: 23
  start-page: 1022
  issue: 7
  year: 2011
  end-page: 1034
  ident: CR13
  article-title: Higher order Nave Bayes: a novel non-IID approach to text classification
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2010.160
– volume: 7
  start-page: 556
  year: 2019
  end-page: 580
  ident: CR35
  article-title: Briot: behavior rule specification-based misbehavior detection for IoT-embedded cyber-physical systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917135
– volume: 29
  start-page: 198
  issue: 2
  year: 1983
  end-page: 208
  ident: CR11
  article-title: On the security of public key protocols
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1983.1056650
– ident: CR21
– volume: 7
  start-page: 95397
  year: 2019
  end-page: 95417
  ident: CR53
  article-title: A survey of networking applications applying the software defined networking concept based on machine learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928564
– volume: 7
  start-page: 82721
  year: 2019
  end-page: 82743
  ident: CR15
  article-title: A survey on IoT security: application areas, security threats, and solution architectures
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924045
– volume: 7
  start-page: 459
  year: 2019
  end-page: 476
  ident: CR48
  article-title: IoMT malware detection approaches: analysis and research challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960412
– ident: CR50
– ident: CR32
– ident: CR36
– volume: 87
  start-page: 588
  issue: 101
  year: 2019
  ident: CR14
  article-title: Recognizing roles of online illegal gambling participants: an ensemble learning approach
  publication-title: Comput Secur
– ident: CR26
– volume: 50
  start-page: 80
  issue: 7
  year: 2017
  end-page: 84
  ident: CR23
  article-title: DDoS in the IoT: Mirai and Other Botnets
  publication-title: Computer
  doi: 10.1109/MC.2017.201
– volume: 79
  start-page: 8627
  issue: 13
  year: 2020
  end-page: 8648
  ident: CR2
  article-title: 5G/IoT-enabled UAVs for multimedia delivery in industry-oriented applications
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6288-7
– volume: 18
  start-page: 1971
  issue: 5
  year: 2018
  end-page: 1984
  ident: CR38
  article-title: An intrusion detection model for wireless sensor networks with an improved V-detector algorithm
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2017.2787997
– year: 2017
  ident: CR47
  article-title: Secure remote user authenticated key establishment protocol for smart home environment
  publication-title: IEEE Trans Depend Secure Comput
  doi: 10.1109/TDSC.2017.2764083
– ident: CR37
– volume: 24
  start-page: 342
  issue: 2
  year: 2013
  end-page: 355
  ident: CR42
  article-title: Gaussian versus uniform distribution for intrusion detection in wireless sensor networks
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2012.105
– volume: 7
  start-page: 698
  issue: 6
  year: 2008
  end-page: 711
  ident: CR43
  article-title: Intrusion detection in homogeneous and heterogeneous wireless sensor networks
  publication-title: IEEE Trans Mobile Comput
  doi: 10.1109/TMC.2008.19
– ident: CR30
– ident: CR6
– volume: 6
  start-page: 4608
  year: 2018
  end-page: 4617
  ident: CR52
  article-title: An industrial internet of things feature selection method based on potential entropy evaluation criteria
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2800287
– volume: 7
  start-page: 2563
  issue: 4
  year: 2020
  end-page: 2572
  ident: CR40
  article-title: CB-CAS: certificate-based efficient signature scheme with compact aggregation for industrial Internet of Things environment
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2944632
– volume: 21
  start-page: 1361
  issue: 10
  year: 2009
  end-page: 1371
  ident: CR19
  article-title: A Novel Bayes Model: hidden Naive Bayes
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2008.234
– volume: 38
  start-page: 15234
  issue: 12
  year: 2011
  end-page: 15243
  ident: CR41
  article-title: An integrated intrusion detection system for cluster-based wireless sensor networks
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.05.076
– volume: 155
  start-page: 1
  year: 2020
  end-page: 8
  ident: CR5
  article-title: Industrial control systems: cyberattack trends and countermeasures
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2020.03.007
– volume: 9
  start-page: 4596
  issue: 17
  year: 2016
  end-page: 4614
  ident: CR46
  article-title: Design of sinkhole node detection mechanism for hierarchical wireless sensor networks
  publication-title: Secur Commun Netw
  doi: 10.1002/sec.1652
– ident: CR31
– volume: 9
  start-page: 17
  issue: 2
  year: 2020
  end-page: 25
  ident: CR4
  article-title: Consumer IoT: security vulnerability case studies and solutions
  publication-title: IEEE Consumer Electron Mag
  doi: 10.1109/MCE.2019.2953740
– volume: 7
  start-page: 42450
  year: 2019
  end-page: 42471
  ident: CR17
  article-title: Toward a lightweight intrusion detection system for the Internet of Things
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907965
– volume: 16
  start-page: 1
  issue: 4
  year: 2016
  end-page: 25
  ident: CR1
  article-title: Intelligent intrusion detection in low-power IoTs
  publication-title: ACM Trans Internet Technol.
  doi: 10.1145/2990499
– ident: CR34
– volume: 51
  start-page: 541
  issue: 5
  year: 2002
  end-page: 552
  ident: CR28
  article-title: Examining smart-card security under the threat of power analysis attacks
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2002.1004593
– volume: 20
  start-page: 520
  issue: 3
  year: 2005
  end-page: 528
  ident: CR51
  article-title: Artificial-neural-network-based sensorless nonlinear control of induction motors
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2005.847984
– volume: 9
  start-page: 1057
  issue: 6
  year: 1998
  end-page: 1068
  ident: CR39
  article-title: The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.728352
– volume: 94
  start-page: 1165
  issue: 3
  year: 2017
  end-page: 1191
  ident: CR45
  article-title: A secure group-based blackhole node detection scheme for hierarchical wireless sensor networks
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-016-3676-z
– volume: 21
  start-page: 3039
  issue: 4
  year: 2019
  end-page: 3071
  ident: CR9
  article-title: Artificial neural networks-based machine learning for wireless networks: a tutorial
  publication-title: IEEE commun Surv Tutorials
  doi: 10.1109/COMST.2019.2926625
– ident: CR24
– volume: 7
  start-page: 314
  issue: 2
  year: 2019
  end-page: 323
  ident: CR33
  article-title: A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks
  publication-title: IEEE Trans Emerg Topics Comput
  doi: 10.1109/TETC.2016.2633228
– ident: CR20
– volume: 76
  start-page: 24589
  issue: 23
  year: 2017
  ident: 743_CR18
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5154-3
– volume: 51
  start-page: 541
  issue: 5
  year: 2002
  ident: 743_CR28
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2002.1004593
– volume: 9
  start-page: 1057
  issue: 6
  year: 1998
  ident: 743_CR39
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.728352
– ident: 743_CR6
  doi: 10.1145/3321705.3329847
– volume: 9
  start-page: 17
  issue: 2
  year: 2020
  ident: 743_CR4
  publication-title: IEEE Consumer Electron Mag
  doi: 10.1109/MCE.2019.2953740
– year: 2017
  ident: 743_CR47
  publication-title: IEEE Trans Depend Secure Comput
  doi: 10.1109/TDSC.2017.2764083
– ident: 743_CR16
– volume: 38
  start-page: 15234
  issue: 12
  year: 2011
  ident: 743_CR41
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.05.076
– ident: 743_CR12
– volume: 155
  start-page: 1
  year: 2020
  ident: 743_CR5
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2020.03.007
– ident: 743_CR25
  doi: 10.1109/WF-IoT.2019.8767194
– volume: 50
  start-page: 80
  issue: 7
  year: 2017
  ident: 743_CR23
  publication-title: Computer
  doi: 10.1109/MC.2017.201
– volume: 96
  start-page: 481
  year: 2019
  ident: 743_CR27
  publication-title: Future Gen Comput Syst
  doi: 10.1016/j.future.2019.02.064
– ident: 743_CR30
  doi: 10.1002/9781119544678.ch12
– volume: 6
  start-page: 4608
  year: 2018
  ident: 743_CR52
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2800287
– volume: 24
  start-page: 342
  issue: 2
  year: 2013
  ident: 743_CR42
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2012.105
– volume: 19
  start-page: 5539
  issue: 24
  year: 2019
  ident: 743_CR49
  publication-title: Sensors
  doi: 10.3390/s19245539
– volume: 87
  start-page: 588
  issue: 101
  year: 2019
  ident: 743_CR14
  publication-title: Comput Secur
– volume: 9
  start-page: 4596
  issue: 17
  year: 2016
  ident: 743_CR46
  publication-title: Secur Commun Netw
  doi: 10.1002/sec.1652
– volume: 21
  start-page: 1361
  issue: 10
  year: 2009
  ident: 743_CR19
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2008.234
– ident: 743_CR31
  doi: 10.1002/9781119544678.ch10
– ident: 743_CR37
  doi: 10.1007/978-981-13-8759-3_17
– volume: 79
  start-page: 8627
  issue: 13
  year: 2020
  ident: 743_CR2
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6288-7
– volume: 7
  start-page: 95397
  year: 2019
  ident: 743_CR53
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928564
– volume: 7
  start-page: 698
  issue: 6
  year: 2008
  ident: 743_CR43
  publication-title: IEEE Trans Mobile Comput
  doi: 10.1109/TMC.2008.19
– volume: 16
  start-page: 1
  issue: 4
  year: 2016
  ident: 743_CR1
  publication-title: ACM Trans Internet Technol.
  doi: 10.1145/2990499
– volume: 7
  start-page: 82721
  year: 2019
  ident: 743_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924045
– ident: 743_CR54
  doi: 10.3390/s20082334
– ident: 743_CR24
– volume: 29
  start-page: 198
  issue: 2
  year: 1983
  ident: 743_CR11
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1983.1056650
– ident: 743_CR32
  doi: 10.7551/mitpress/9969.001.0001
– volume: 23
  start-page: 1022
  issue: 7
  year: 2011
  ident: 743_CR13
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2010.160
– ident: 743_CR36
  doi: 10.23919/SOFTCOM.2017.8115504
– volume: 5
  start-page: 3028
  year: 2017
  ident: 743_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2676119
– volume: 20
  start-page: 520
  issue: 3
  year: 2005
  ident: 743_CR51
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2005.847984
– volume: 3
  start-page: 491
  issue: 4
  year: 2006
  ident: 743_CR10
  publication-title: IEEE Geosci Rem Sens Lett
  doi: 10.1109/LGRS.2006.877949
– ident: 743_CR50
  doi: 10.1002/dac.4024
– ident: 743_CR34
  doi: 10.1109/TELFOR.2017.8249458
– ident: 743_CR21
  doi: 10.21227/q70p-q449
– volume: 7
  start-page: 459
  year: 2019
  ident: 743_CR48
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960412
– volume: 6
  start-page: 47364
  year: 2018
  ident: 743_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2866962
– ident: 743_CR26
  doi: 10.1002/0471756482.ch4
– ident: 743_CR29
  doi: 10.1145/3321705.3329857
– volume: 7
  start-page: 556
  year: 2019
  ident: 743_CR35
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917135
– volume: 21
  start-page: 2671
  issue: 3
  year: 2019
  ident: 743_CR7
  publication-title: IEEE Commun Surv Tutorials
  doi: 10.1109/COMST.2019.2896380
– ident: 743_CR22
  doi: 10.1109/ISSC.2018.8585344
– volume: 7
  start-page: 314
  issue: 2
  year: 2019
  ident: 743_CR33
  publication-title: IEEE Trans Emerg Topics Comput
  doi: 10.1109/TETC.2016.2633228
– ident: 743_CR20
  doi: 10.1109/MILCOM.2017.8170867
– volume: 7
  start-page: 42450
  year: 2019
  ident: 743_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907965
– volume: 21
  start-page: 3039
  issue: 4
  year: 2019
  ident: 743_CR9
  publication-title: IEEE commun Surv Tutorials
  doi: 10.1109/COMST.2019.2926625
– volume: 94
  start-page: 1165
  issue: 3
  year: 2017
  ident: 743_CR45
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-016-3676-z
– volume: 7
  start-page: 2563
  issue: 4
  year: 2020
  ident: 743_CR40
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2944632
– volume: 18
  start-page: 1971
  issue: 5
  year: 2018
  ident: 743_CR38
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2017.2787997
– volume: 90
  start-page: 1971
  issue: 4
  year: 2016
  ident: 743_CR44
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-016-3433-3
SSID ssj0017630
Score 2.3995416
Snippet Internet of Things (IoT) is one of the fastest-growing technologies. With the deployment of massive and faster mobile networks, almost every daily-use item is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1785
SubjectTerms Artificial neural networks
Big Data
Communication
Computer Communication Networks
Computer Graphics
Computer Science
Cryptology
Cybersecurity
Data Storage Representation
Electronic devices
Industrial plants
Internet of Things
Machine learning
Malware
Multimedia
Multimedia Information Systems
Operating Systems
Role of Deep Learning Models & Analytics in Industrial Multimedia Environment
Smart devices
Smart houses
Special Issue Paper
Surveillance systems
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PXhxfuJ0Sg7eNLA2aZt4G7rhwI2hQ3YrSZqO4exkq3ryfzfJ0k5FBT2GfFDy3st7aX7v_QA45YyHga9vqiIIU0Swz5GOMiKU6AkBCU2YYFlLbqJejw6HrO-SwuYF2r14krQndZnsZvSlgcx1x_o9xFbBmnZ31BA23N7dl28H2mLsnxVGfERY6LtUme_X-OyOljHml2dR623a1f995xbYdNElbC7UYRusqGwHVAvmBugMeRe8dZtXfdTpdFsX8JFPXvlMQZ7nXD7AROUWnZVBU8JhqvUEjjPYmQ6QsmlWiW4WbB_QwhFt8gn8kDEHDZh-pBc2OE0FHTHFCBb1y_fAoN0aXF4jR8SApLbQHHleEvpcSKJSliaikTLeSIRIMDaYGo9x3fBSwg1pWRpEitBUUhlEvIGFUBHeB5VsmqkDACURWAZUytBPCOaUqVAS6mEv5YE-S1gNeIU4YumKlBuujElclle22xvr7Y3t9sZ6zlk552lRouPX0fVCyrEz13mMdeBHmPbitAbOC6kuu39e7fBvw4_AhqGrX0DN6qCSz57VMViXL_l4PjuxavwOShXsbA
  priority: 102
  providerName: Springer Nature
Title MADP-IIME: malware attack detection protocol in IoT-enabled industrial multimedia environment using machine learning approach
URI https://link.springer.com/article/10.1007/s00530-020-00743-9
https://www.proquest.com/docview/3256492128
Volume 29
WOSCitedRecordID wos000609125900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (Proquest)
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: PROQUEST
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGP9Q58GLb_E5cvCmwbVJH_EiPiYO3RjbEPFS0iQVUTvdqp78302ydFNBL14KoU0ofM8kv-_7AexyxsPA1zvVNAgzTInPsc4yIiz1hICGJk2wrCVXUasV39ywtjtwGzpYZekTraOWfWHOyA-Ijs2UaUcbHz2_YMMaZW5XHYXGNFRMlwTPQve641sEbTv2jIVRH1MW-q5oxpbOGe2rYbN5slEUs--BaZJt_rggtXHnfOG_f7wI8y7jRMcjFVmCKZUvw0LJ5oCcca_AR_P4rI0bjWb9ED3xx3c-UIgXBRcPSKrCIrZyZNo69LXuoPscNfo9rGzpldTDkgEEWYiiLUhBX6rokAHY3-mFDXZTIUdWcYfKnuar0Duv904vsCNnwEJbbYE9T4Y-TwVVGctkWssYr8k0lYQYnI3HuB54GeWGyCwLIkXjTMQiiHiNpKmKyBrM5P1crQMSNCUiiIUIfUkJj5kKBY094mU80P6FbYBXCiYRrnG54c94TMYtl60wEy3MxAoz0XP2xnOeR207_vx6u5Rg4kx4mEzEtwH7pQ5MXv--2ubfq23BnKGsH8HNtmGmGLyqHZgVb8X9cFCFykm91e5UYfoywlWrzvrZDm71s9O9_gTBV_sd
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTxQxFH9BNNGL-EVEAXvQkzbutJ2PkhBCBMJkP8JhD9yaTtshRJzF3VHiwT_J_9HX7nRXSeDGgWPT6Tt0fu-j7XvvB_BeS52lDE-qVZrVVHCmKUYZObW4IBWZDxMCa8kgH42K01N5sgJ_Yi2MT6uMNjEYajsx_o78M0ffLCQa2mLv8jv1rFH-dTVSaMxh0Xe_rvDINtstD_D_fmDs6HD85Zh2rALUINxamiQ2Y7oywtWytlWvlrpnq8py7hNEEqlxkNRCewauOs2dKGpTmDTXPV5VLuco9gE8FLzIvVr1c7p4tEBVDVc6UjAqZMa6Gp1QqefB3qP-rBacNpX_-8FlcHvtPTa4uaO1e7ZBz-BpF0-T_bkCPIcV17yAtchVQTrT9RJ-D_cPTmhZDg93yDd9caWnjui21eYrsa4N-WgN8U0rJqgZ5Lwh5WRMXSgssziM_CYkJGCGchvyT40g8eUDZyjYZ6Y60lFxnJHYsf0VjO9iD9ZhtZk07jUQIypu0sKYjFnBdSFdZkSR8KTWKVpPuQFJxIEyXVt2zw5yoRYNpQN2FGJHBewoXPNxseZy3pTk1q83I2BUZ6BmaomWDfgUIbecvlnam9ulvYPHx-PhQA3KUf8tPGEYEs4T6zZhtZ3-cFvwyPxsz2fT7aA7BNQdQ_EvHkRViQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA46inhxF3dz8KbBaZMu8Taog0UdBhzEW8gq4tgZxqon_7tJpq0LKojH0CSU5L2-l-b73gfAHqc8jkJ7UhVRbBDBIUc2y0iQsgMiErs0wauWXCSdTnpzQ7sfWPwe7V5dSY45Da5KU14cDpU5rIlvznaayB19fAxEdBJMEQekd-f1q-v6HsF6j__LQkmICI3Dkjbz_RyfQ9N7vvnlitRHnvb8_995AcyVWSdsjc1kEUzofAnMV4oOsHTwZfB62Trpoiy7PD2CD7z_wkca8qLg8h4qXXjUVg5daYeBtR94l8Ns0EPa06-UbVYqINDDFD0pBX5g0kEHsr-1Ezv8poalYMUtrOqar4Be-7R3fIZKgQYkrecWKAhUHHIhiTbUKNE0lDeVEApjh7UJKLeNwBDuxMxMlGiSGpnKKOFNLIRO8Cpo5INcrwEoicAySqWMQ0UwT6mOJUkDHBge2W8MXQdBtTVMlsXLnYZGn9Vll_3yMru8zC8vs2P26zHDcemOX3tvVTvOSjd-ZNgmhITa6J6ug4Nqh98f_zzbxt-674KZ7kmbXWSd800w6xTtx2i0LdAoRk96G0zL5-LucbTjrfsNSpD4NA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MADP-IIME%3A+malware+attack+detection+protocol+in+IoT-enabled+industrial+multimedia+environment+using+machine+learning+approach&rft.jtitle=Multimedia+systems&rft.au=Pundir%2C+Sumit&rft.au=Obaidat%2C+Mohammad+S&rft.au=Wazid%2C+Mohammad&rft.au=Das%2C+Ashok+Kumar&rft.date=2023-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0942-4962&rft.eissn=1432-1882&rft.volume=29&rft.issue=3&rft.spage=1785&rft.epage=1797&rft_id=info:doi/10.1007%2Fs00530-020-00743-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-4962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-4962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-4962&client=summon