IoT-enabled ECG-based heart disease prediction using three-layer deep learning and meta-heuristic approach
IoT-enabled electrocardiogram (ECG) devices are used to identify abnormal heart activity in the ECG signals and predict heart disease. Patients wear these devices, which send the ECG data to a healthcare provider for analysis. To investigate the information and forecast the likelihood of heart ailme...
Uložené v:
| Vydané v: | Signal, image and video processing Ročník 18; číslo 1; s. 361 - 367 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer London
01.02.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1863-1703, 1863-1711 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | IoT-enabled electrocardiogram (ECG) devices are used to identify abnormal heart activity in the ECG signals and predict heart disease. Patients wear these devices, which send the ECG data to a healthcare provider for analysis. To investigate the information and forecast the likelihood of heart ailment, deep learning (DL) algorithms are used. DL-based approach for heart disease calculation using ECG signals would involve the following steps: Initially, IoT-based ECG signals from both healthy individuals and individuals with heart disease would be collected. Then, in preprocessing, the ECG signals are preprocessed via finite impulse response. Next, for feature extraction, the features such as
P
-wave, ST-segment,
R
-peak locations, heart rate variability, ST-segment, PQ-segment,
T
-wave, and QRS complex duration, and continuous wavelet transform and improved mutual information are extracted from the preprocessed signals. Then, for feature selection, the optimal structures are selected from the extracted features using the new hybrid optimization model—alpha spider customized dwarf mongoose optimizer, which is the combination of the standard tunicate swarm algorithm and slime mould algorithm. Finally, the heart disease is detected using the new three-layer framework, which encloses the “convolutional neural networks, bidirectional long-short term memory, and recurrent neural networks”. The overall performance of the proposed methodology is assessed by means of the performance metrics such as “accuracy, sensitivity, specificity, precision, recall, FPR, and FNR”. The suggested methodology is implemented in the platform of MATLAB. |
|---|---|
| AbstractList | IoT-enabled electrocardiogram (ECG) devices are used to identify abnormal heart activity in the ECG signals and predict heart disease. Patients wear these devices, which send the ECG data to a healthcare provider for analysis. To investigate the information and forecast the likelihood of heart ailment, deep learning (DL) algorithms are used. DL-based approach for heart disease calculation using ECG signals would involve the following steps: Initially, IoT-based ECG signals from both healthy individuals and individuals with heart disease would be collected. Then, in preprocessing, the ECG signals are preprocessed via finite impulse response. Next, for feature extraction, the features such as
P
-wave, ST-segment,
R
-peak locations, heart rate variability, ST-segment, PQ-segment,
T
-wave, and QRS complex duration, and continuous wavelet transform and improved mutual information are extracted from the preprocessed signals. Then, for feature selection, the optimal structures are selected from the extracted features using the new hybrid optimization model—alpha spider customized dwarf mongoose optimizer, which is the combination of the standard tunicate swarm algorithm and slime mould algorithm. Finally, the heart disease is detected using the new three-layer framework, which encloses the “convolutional neural networks, bidirectional long-short term memory, and recurrent neural networks”. The overall performance of the proposed methodology is assessed by means of the performance metrics such as “accuracy, sensitivity, specificity, precision, recall, FPR, and FNR”. The suggested methodology is implemented in the platform of MATLAB. IoT-enabled electrocardiogram (ECG) devices are used to identify abnormal heart activity in the ECG signals and predict heart disease. Patients wear these devices, which send the ECG data to a healthcare provider for analysis. To investigate the information and forecast the likelihood of heart ailment, deep learning (DL) algorithms are used. DL-based approach for heart disease calculation using ECG signals would involve the following steps: Initially, IoT-based ECG signals from both healthy individuals and individuals with heart disease would be collected. Then, in preprocessing, the ECG signals are preprocessed via finite impulse response. Next, for feature extraction, the features such as P-wave, ST-segment, R-peak locations, heart rate variability, ST-segment, PQ-segment, T-wave, and QRS complex duration, and continuous wavelet transform and improved mutual information are extracted from the preprocessed signals. Then, for feature selection, the optimal structures are selected from the extracted features using the new hybrid optimization model—alpha spider customized dwarf mongoose optimizer, which is the combination of the standard tunicate swarm algorithm and slime mould algorithm. Finally, the heart disease is detected using the new three-layer framework, which encloses the “convolutional neural networks, bidirectional long-short term memory, and recurrent neural networks”. The overall performance of the proposed methodology is assessed by means of the performance metrics such as “accuracy, sensitivity, specificity, precision, recall, FPR, and FNR”. The suggested methodology is implemented in the platform of MATLAB. |
| Author | Tiwari, Mahendra Mishra, Jyoti |
| Author_xml | – sequence: 1 givenname: Jyoti surname: Mishra fullname: Mishra, Jyoti email: jyotimishraa012@gmail.com organization: Department of Electronics and Communication, University of Allahabad – sequence: 2 givenname: Mahendra surname: Tiwari fullname: Tiwari, Mahendra organization: Department of Electronics and Communication, University of Allahabad |
| BookMark | eNp9kEtLAzEUhYMoWB9_wFXAdTSP6WRmKcVHQXCj63Cb3LEp08yYpIv-ezNWFFwYuORe7vlywjkjx2EISMiV4DeCc32bhNA1Z1yqUrpSrDoiM9HUigktxPFPz9UpuUxpw8tRUjd1MyOb5fDKMMCqR0fvF49sBal0a4SYqfMJy0jHiM7b7IdAd8mHd5rXEZH1sMdIHeJI-6IP0waCo1vMwNa4iz5lbymMYxzAri_ISQd9wsvv-5y8Pdy_Lp7Y88vjcnH3zKwSbWZCOGm1s5rP1VxLC6DmoDjKdoWull2lEDuu7UqiVq6FljdlU0u0LXS6qtQ5uT68W2w_dpiy2Qy7GIqlUXJet7UU9aSSB5WNQ0oROzNGv4W4N4KbKVZziNWUWM1XrGaCmj-Q9RmmYHIE3_-PqgOaik94x_j7q3-oT_jwjug |
| CitedBy_id | crossref_primary_10_1080_15368378_2025_2503334 crossref_primary_10_1038_s41598_025_09594_8 crossref_primary_10_1049_wss2_12085 crossref_primary_10_53759_7669_jmc202505098 crossref_primary_10_1038_s41598_025_99990_x crossref_primary_10_1142_S1469026824500354 crossref_primary_10_1016_j_compbiomed_2025_110171 crossref_primary_10_1016_j_heliyon_2024_e40537 crossref_primary_10_1016_j_bspc_2025_108467 crossref_primary_10_1007_s42979_024_02962_7 crossref_primary_10_1016_j_compbiolchem_2025_108574 crossref_primary_10_1155_dsn_6965319 crossref_primary_10_36548_jiip_2025_3_016 crossref_primary_10_1007_s11831_025_10228_5 crossref_primary_10_1007_s11760_024_03503_8 crossref_primary_10_1080_10255842_2025_2526789 crossref_primary_10_5772_acrt_20250009 crossref_primary_10_1007_s11760_024_03119_y crossref_primary_10_1007_s40745_025_00635_7 crossref_primary_10_1007_s44174_025_00455_6 crossref_primary_10_1016_j_inffus_2024_102647 crossref_primary_10_1016_j_knosys_2025_114261 |
| Cites_doi | 10.1109/TCSI.2017.2694968 10.1109/ACCESS.2021.3097751 10.1016/j.future.2019.10.043 10.1109/TSMC.2014.2336842 10.1016/j.bspc.2019.04.005 10.1109/JIOT.2020.3027971 10.1007/s11227-019-02873-y 10.1109/JTEHM.2018.2869141 10.1016/j.comnet.2019.01.034 10.1016/j.comnet.2016.01.009 10.1016/j.future.2017.11.037 10.1007/978-981-33-6977-1_1 10.1007/978-3-030-66218-9_1 10.1109/ICCCN.2019.8847069 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s11760-023-02743-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1863-1711 |
| EndPage | 367 |
| ExternalDocumentID | 10_1007_s11760_023_02743_4 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-11d2c7dc7053572caa35a30e29bed62f43eef07cb2e73d9a9089be62ec9af7443 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001065264900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1863-1703 |
| IngestDate | Tue Oct 07 06:10:07 EDT 2025 Tue Nov 18 21:24:51 EST 2025 Sat Nov 29 05:31:01 EST 2025 Fri Feb 21 02:41:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Three-layer framework Alpha spider customized dwarf mongoose optimizer (AS-DMO) Heart disease Improved MI |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-11d2c7dc7053572caa35a30e29bed62f43eef07cb2e73d9a9089be62ec9af7443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256962164 |
| PQPubID | 2044169 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_3256962164 crossref_primary_10_1007_s11760_023_02743_4 crossref_citationtrail_10_1007_s11760_023_02743_4 springer_journals_10_1007_s11760_023_02743_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20240200 2024-02-00 20240201 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 2 year: 2024 text: 20240200 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Signal, image and video processing |
| PublicationTitleAbbrev | SIViP |
| PublicationYear | 2024 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Tuli, Basumatary, Gill, Kahani, Arya, Wander, Buyya (CR11) 2020; 104 Krishnan, Lokesh, Devi (CR12) 2019; 151 Peris-Lopez, González-Manzano, Camara, de Fuentes (CR5) 2018; 81 Hasan, Bhattacharjee (CR15) 2019; 52 CR8 Cheikhrouhou, Mahmud, Zouari, Ibrahim, Zaguia, Gia (CR7) 2021; 9 CR9 CR16 Firouzi, Farahani, Barzegari, Daneshmand (CR14) 2020; 9 CR13 Yao, Tridandapani, Auffermann, Wick, Bhatti (CR2) 2018; 6 Devi, Kalaivani (CR10) 2020; 76 Yasin, Tekeste, Saleh, Mohammad, Sinanoglu, Ismail (CR3) 2017; 64 Hossain, Muhammad (CR4) 2016; 101 Sidek, Khalil, Jelinek (CR1) 2014; 44 Jain, Singh, Singh (CR6) 2022; 24 2743_CR8 2743_CR9 NI Hasan (2743_CR15) 2019; 52 KA Sidek (2743_CR1) 2014; 44 F Firouzi (2743_CR14) 2020; 9 2743_CR16 S Krishnan (2743_CR12) 2019; 151 2743_CR13 MS Hossain (2743_CR4) 2016; 101 M Yasin (2743_CR3) 2017; 64 P Peris-Lopez (2743_CR5) 2018; 81 A Jain (2743_CR6) 2022; 24 RL Devi (2743_CR10) 2020; 76 J Yao (2743_CR2) 2018; 6 O Cheikhrouhou (2743_CR7) 2021; 9 S Tuli (2743_CR11) 2020; 104 |
| References_xml | – volume: 64 start-page: 2624 issue: 9 year: 2017 end-page: 2637 ident: CR3 article-title: Ultra-low power, secure IoT platform for predicting cardiovascular diseases publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2017.2694968 – volume: 9 start-page: 103513 year: 2021 end-page: 103523 ident: CR7 article-title: One-dimensional CNN approach for ECG arrhythmia analysis in fog-cloud environments publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3097751 – volume: 104 start-page: 187 year: 2020 end-page: 200 ident: CR11 article-title: HealthFog: an ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and fog computing environments publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.10.043 – volume: 44 start-page: 1498 issue: 11 year: 2014 end-page: 1509 ident: CR1 article-title: ECG biometric with abnormal cardiac conditions in remote monitoring system publication-title: IEEE Trans. Syst. Man Cybernet.: Syst. doi: 10.1109/TSMC.2014.2336842 – volume: 52 start-page: 128 year: 2019 end-page: 140 ident: CR15 article-title: Deep learning approach to cardiovascular disease classification employing modified ECG signal from empirical mode decomposition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.04.005 – ident: CR16 – ident: CR13 – volume: 9 start-page: 5581 issue: 8 year: 2020 end-page: 5599 ident: CR14 article-title: AI-driven data monetization: the other face of data in IoT-based smart and connected health publication-title: IEEE Internet of Things J. doi: 10.1109/JIOT.2020.3027971 – ident: CR9 – volume: 24 start-page: 100523 year: 2022 ident: CR6 article-title: Real time system on chip based wearable cardiac activity monitoring sensor publication-title: Measurement: Sens. – volume: 76 start-page: 6533 issue: 9 year: 2020 end-page: 6544 ident: CR10 article-title: Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG publication-title: J. Supercomput. doi: 10.1007/s11227-019-02873-y – volume: 6 start-page: 1 year: 2018 end-page: 11 ident: CR2 article-title: An adaptive seismocardiography (SCG)-ECG multimodal framework for cardiac gating using artificial neural networks publication-title: IEEE J. Transl. Eng. Health Med. doi: 10.1109/JTEHM.2018.2869141 – volume: 151 start-page: 201 year: 2019 end-page: 210 ident: CR12 article-title: An efficient Elman neural network classifier with cloud supported internet of things structure for health monitoring system publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.01.034 – ident: CR8 – volume: 101 start-page: 192 year: 2016 end-page: 202 ident: CR4 article-title: Cloud-assisted industrial internet of things (iIoT)–enabled framework for health monitoring publication-title: Comput. Netw. doi: 10.1016/j.comnet.2016.01.009 – volume: 81 start-page: 67 year: 2018 end-page: 77 ident: CR5 article-title: Effect of attacker characterization in ECG-based continuous authentication mechanisms for Internet of Things publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2017.11.037 – ident: 2743_CR8 doi: 10.1007/978-981-33-6977-1_1 – ident: 2743_CR9 doi: 10.1007/978-3-030-66218-9_1 – volume: 52 start-page: 128 year: 2019 ident: 2743_CR15 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.04.005 – volume: 9 start-page: 5581 issue: 8 year: 2020 ident: 2743_CR14 publication-title: IEEE Internet of Things J. doi: 10.1109/JIOT.2020.3027971 – volume: 76 start-page: 6533 issue: 9 year: 2020 ident: 2743_CR10 publication-title: J. Supercomput. doi: 10.1007/s11227-019-02873-y – ident: 2743_CR13 doi: 10.1109/ICCCN.2019.8847069 – volume: 64 start-page: 2624 issue: 9 year: 2017 ident: 2743_CR3 publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2017.2694968 – volume: 151 start-page: 201 year: 2019 ident: 2743_CR12 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.01.034 – volume: 24 start-page: 100523 year: 2022 ident: 2743_CR6 publication-title: Measurement: Sens. – volume: 104 start-page: 187 year: 2020 ident: 2743_CR11 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.10.043 – volume: 101 start-page: 192 year: 2016 ident: 2743_CR4 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2016.01.009 – ident: 2743_CR16 – volume: 6 start-page: 1 year: 2018 ident: 2743_CR2 publication-title: IEEE J. Transl. Eng. Health Med. doi: 10.1109/JTEHM.2018.2869141 – volume: 9 start-page: 103513 year: 2021 ident: 2743_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3097751 – volume: 81 start-page: 67 year: 2018 ident: 2743_CR5 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2017.11.037 – volume: 44 start-page: 1498 issue: 11 year: 2014 ident: 2743_CR1 publication-title: IEEE Trans. Syst. Man Cybernet.: Syst. doi: 10.1109/TSMC.2014.2336842 |
| SSID | ssj0000327868 |
| Score | 2.4096792 |
| Snippet | IoT-enabled electrocardiogram (ECG) devices are used to identify abnormal heart activity in the ECG signals and predict heart disease. Patients wear these... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 361 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Cardiac arrhythmia Cardiovascular disease Computer Imaging Computer Science Continuous wavelet transform Deep learning Electrocardiography Feature extraction Health care industry Heart Heart diseases Heart rate Heuristic methods Image Processing and Computer Vision Impulse response Internet of Things Machine learning Multimedia Information Systems Optimization models Original Paper P waves Pattern Recognition and Graphics Performance measurement Recurrent neural networks Segments Signal,Image and Speech Processing Software services Vision Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TuwwELW4QAEFb8Tykgs6sEhsx5NUCCFeDaIACdFEjj0Brri7y27g-8kkDgtI0Nw6iWXpjD2TeZzD2B4CpJkGJ6xJEqE9KmET-ktBGwM4X0JiG7EJuLpK7-6y65BwG4e2yu5ObC5qP3CUIz9UtW_OjKyj-6PhiyDVKKquBgmNP2yGWBJIuuE6uf_IsURKQtpOw6WGmDgjFeZm2um5GEwkaqdFhUythP7qmyYB57caaeN6zhb_d9NLbCEEnfy4tZJlNoX9FTb_iYpwlf29HNwIbAapPD89ORfk3jwnveuKhyoOH46orENQcuqXf-BVbQkonm0dt3OPOORBhOKB277n_7Cy4hFfWzJo3tGXr7Hbs9ObkwsRdBiEqw9oJeLYSwfeAXHBgHTWqsSqCGVWoDey1AqxjMAVEkH5zFIpsUAj0WW2BK3VOpvuD_q4wbgh5UWHZQpe60RlRaKcRgOR94UyRdFjcYdA7gJJOWllPOcTemVCLa9RyxvUct1j-x_fDFuKjl_f3u6gysNxHecTnHrsoAN78vjn1TZ_X22Lzck6CGq7vLfZdDV6xR02696qp_FotzHWdwwD7sE priority: 102 providerName: ProQuest |
| Title | IoT-enabled ECG-based heart disease prediction using three-layer deep learning and meta-heuristic approach |
| URI | https://link.springer.com/article/10.1007/s11760-023-02743-4 https://www.proquest.com/docview/3256962164 |
| Volume | 18 |
| WOSCitedRecordID | wos001065264900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1863-1711 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1863-1711 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: K7- dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1863-1711 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1863-1711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: RSV dateStart: 20070401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0V6KEcoKWtWAorH7hRS4nteJIjoKVFlVYroBXqJXLsCbSiy2o38PuxE4ctVVupveQSx4rmIzPOzLwHsE-IeaHQcqOzjCtHkpssnFLIpIjW1ZiZlmwCx-P88rKYxKGwRd_t3pck2y_1ctgtRZ1wH2NC3VFJrlZgzYe7PBA2nJ1_efyzkkiBeTcDl-uAv5nIOC3z-22eRqRlmvlLZbQNOCeb__eqL2EjJpjssLOIV_CMpluw2ZM3sOjLW7D-ExLha_h-envBqZ2jcmx0_IGH6OZYoLtuWCzisNk8VHWCJllol79ijTcE4jfGp-3MEc1Y5KC4Ymbq2A9qDL-muw4LmvXo5W_g88no4vgjjzQM3Hr_bHiaOmHRWQxQMCisMTIzMiFRVOS0qJUkqhO0lSCUrjChkliRFmQLU6NS8i2sTm-ntA1MB-JFS3WOTqlMFlUmrSKNiXOV1FU1gLRXRWkjRnmgyrgpl-jKQbSlF23ZirZUAzh4fGbWIXT8dfVur-EyeuuilD7vK7TwJ8cBvO81urz95912_m35O3ghfE7UNX3vwmozv6M9eG7vm2-L-RDWjkbjydkQVj4h99dJ9nXYWvYDSOnuTA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ98EYsFPABTmA1sZ1MckAIlZautqw4LFJvwbEnBVR2t7spiD_V31hPHl1AorceOCex5PjzPDye7wN4TohZbtBJmyaJNJ60tAlnKWRjROcrTGwjNoHjcXZwkH9cg9O-F4avVfY2sTHUfub4jHxLB9-cpypE92_mx5JVo7i62ktotLAY0a-fIWVbvh6-C-v7Qqndncn2nuxUBaQLcKtlHHvl0DtkZhNUzlqdWB2RykvyqaqMJqoidKUi1D63XBgrKVXkcluhMTqMewWuGp0h76sRyvMznUgrzNruuyxl5s9Id306bbdejGkkg5PkwqnR0vzpC1cB7l812cbV7d76337SbbjZBdXibbsL7sAaTe_Cxm9Ui_fg23A2kdQ0inmxs_1esvv2gvW8a9FVqcR8wWUrhqrgfoBDUQekkzyyIS8RnmguOpGNQ2GnXnyn2sovdNKSXYuenv0-fLqUyT6A9elsSg9BpKws6ajK0BuT6LxMtDOUYuR9qdOyHEDcr3jhOhJ21gI5Klb00YySIqCkaFBSmAG8PP9m3lKQXPj2Zg-NojNHy2KFiwG86sG1evzv0R5dPNozuL43-bBf7A_Ho8dwQ4WAr73Rvgnr9eKEnsA196P-ulw8bTaKgM-XDbozgdJMww |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDSH2wKAwUTbAD7yB1cR2fMnjNFaYNlWV6FDfIse-FFCXVV22v584H-02bUgTz3Gs6D50d7m73w_gEyHGiULLjY4irhxJbiJfpZAJEa3LMTI12QSORvF0moxvbPHX0-5dS7LZafAoTUU5WLh8sF58C1EHvIo3vgepJFdPYEv5QXpfr__4ufrLEkiBcbMPF2uPxRnIdnPm_mtuR6d1ynmnS1oHn-HO_3_2S3jRJp7soLGUV7BBRQ92OlIH1vp4D7ZvIBS-hj_HFxNO9X6VY0eH37iPeo55GuyStc0dtlj6bo_XMPNj9DNWVgZCfG6qdJ45ogVruSlmzBSOnVNp-C-6ajCiWYdq_gbOhkeTw--8pWfgtvLbkoehExadRQ8Rg8IaIyMjAxJJRk6LXEmiPECbCULpEuM7jBlpQTYxOSold2GzuCjoLTDtCRkt5TE6pSKZZJG0ijQGzmVSZ1kfwk4tqW2xyz2Fxjxdoy570aaVaNNatKnqw-fVO4sGueOfp_c7baetF1-mssoHEy2qirIPXzrtrh8_fNu7xx3_CM_GX4fp6fHoZA-eiyptaubC92GzXF7Re3hqr8vfl8sPtXH_Bb0z9qo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IoT-enabled+ECG-based+heart+disease+prediction+using+three-layer+deep+learning+and+meta-heuristic+approach&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Mishra%2C+Jyoti&rft.au=Tiwari%2C+Mahendra&rft.date=2024-02-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=18&rft.issue=1&rft.spage=361&rft.epage=367&rft_id=info:doi/10.1007%2Fs11760-023-02743-4&rft.externalDocID=10_1007_s11760_023_02743_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |