IoT-enabled ECG-based heart disease prediction using three-layer deep learning and meta-heuristic approach

IoT-enabled electrocardiogram (ECG) devices are used to identify abnormal heart activity in the ECG signals and predict heart disease. Patients wear these devices, which send the ECG data to a healthcare provider for analysis. To investigate the information and forecast the likelihood of heart ailme...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Signal, image and video processing Ročník 18; číslo 1; s. 361 - 367
Hlavní autori: Mishra, Jyoti, Tiwari, Mahendra
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.02.2024
Springer Nature B.V
Predmet:
ISSN:1863-1703, 1863-1711
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract IoT-enabled electrocardiogram (ECG) devices are used to identify abnormal heart activity in the ECG signals and predict heart disease. Patients wear these devices, which send the ECG data to a healthcare provider for analysis. To investigate the information and forecast the likelihood of heart ailment, deep learning (DL) algorithms are used. DL-based approach for heart disease calculation using ECG signals would involve the following steps: Initially, IoT-based ECG signals from both healthy individuals and individuals with heart disease would be collected. Then, in preprocessing, the ECG signals are preprocessed via finite impulse response. Next, for feature extraction, the features such as P -wave, ST-segment, R -peak locations, heart rate variability, ST-segment, PQ-segment, T -wave, and QRS complex duration, and continuous wavelet transform and improved mutual information are extracted from the preprocessed signals. Then, for feature selection, the optimal structures are selected from the extracted features using the new hybrid optimization model—alpha spider customized dwarf mongoose optimizer, which is the combination of the standard tunicate swarm algorithm and slime mould algorithm. Finally, the heart disease is detected using the new three-layer framework, which encloses the “convolutional neural networks, bidirectional long-short term memory, and recurrent neural networks”. The overall performance of the proposed methodology is assessed by means of the performance metrics such as “accuracy, sensitivity, specificity, precision, recall, FPR, and FNR”. The suggested methodology is implemented in the platform of MATLAB.
AbstractList IoT-enabled electrocardiogram (ECG) devices are used to identify abnormal heart activity in the ECG signals and predict heart disease. Patients wear these devices, which send the ECG data to a healthcare provider for analysis. To investigate the information and forecast the likelihood of heart ailment, deep learning (DL) algorithms are used. DL-based approach for heart disease calculation using ECG signals would involve the following steps: Initially, IoT-based ECG signals from both healthy individuals and individuals with heart disease would be collected. Then, in preprocessing, the ECG signals are preprocessed via finite impulse response. Next, for feature extraction, the features such as P -wave, ST-segment, R -peak locations, heart rate variability, ST-segment, PQ-segment, T -wave, and QRS complex duration, and continuous wavelet transform and improved mutual information are extracted from the preprocessed signals. Then, for feature selection, the optimal structures are selected from the extracted features using the new hybrid optimization model—alpha spider customized dwarf mongoose optimizer, which is the combination of the standard tunicate swarm algorithm and slime mould algorithm. Finally, the heart disease is detected using the new three-layer framework, which encloses the “convolutional neural networks, bidirectional long-short term memory, and recurrent neural networks”. The overall performance of the proposed methodology is assessed by means of the performance metrics such as “accuracy, sensitivity, specificity, precision, recall, FPR, and FNR”. The suggested methodology is implemented in the platform of MATLAB.
IoT-enabled electrocardiogram (ECG) devices are used to identify abnormal heart activity in the ECG signals and predict heart disease. Patients wear these devices, which send the ECG data to a healthcare provider for analysis. To investigate the information and forecast the likelihood of heart ailment, deep learning (DL) algorithms are used. DL-based approach for heart disease calculation using ECG signals would involve the following steps: Initially, IoT-based ECG signals from both healthy individuals and individuals with heart disease would be collected. Then, in preprocessing, the ECG signals are preprocessed via finite impulse response. Next, for feature extraction, the features such as P-wave, ST-segment, R-peak locations, heart rate variability, ST-segment, PQ-segment, T-wave, and QRS complex duration, and continuous wavelet transform and improved mutual information are extracted from the preprocessed signals. Then, for feature selection, the optimal structures are selected from the extracted features using the new hybrid optimization model—alpha spider customized dwarf mongoose optimizer, which is the combination of the standard tunicate swarm algorithm and slime mould algorithm. Finally, the heart disease is detected using the new three-layer framework, which encloses the “convolutional neural networks, bidirectional long-short term memory, and recurrent neural networks”. The overall performance of the proposed methodology is assessed by means of the performance metrics such as “accuracy, sensitivity, specificity, precision, recall, FPR, and FNR”. The suggested methodology is implemented in the platform of MATLAB.
Author Tiwari, Mahendra
Mishra, Jyoti
Author_xml – sequence: 1
  givenname: Jyoti
  surname: Mishra
  fullname: Mishra, Jyoti
  email: jyotimishraa012@gmail.com
  organization: Department of Electronics and Communication, University of Allahabad
– sequence: 2
  givenname: Mahendra
  surname: Tiwari
  fullname: Tiwari, Mahendra
  organization: Department of Electronics and Communication, University of Allahabad
BookMark eNp9kEtLAzEUhYMoWB9_wFXAdTSP6WRmKcVHQXCj63Cb3LEp08yYpIv-ezNWFFwYuORe7vlywjkjx2EISMiV4DeCc32bhNA1Z1yqUrpSrDoiM9HUigktxPFPz9UpuUxpw8tRUjd1MyOb5fDKMMCqR0fvF49sBal0a4SYqfMJy0jHiM7b7IdAd8mHd5rXEZH1sMdIHeJI-6IP0waCo1vMwNa4iz5lbymMYxzAri_ISQd9wsvv-5y8Pdy_Lp7Y88vjcnH3zKwSbWZCOGm1s5rP1VxLC6DmoDjKdoWull2lEDuu7UqiVq6FljdlU0u0LXS6qtQ5uT68W2w_dpiy2Qy7GIqlUXJet7UU9aSSB5WNQ0oROzNGv4W4N4KbKVZziNWUWM1XrGaCmj-Q9RmmYHIE3_-PqgOaik94x_j7q3-oT_jwjug
CitedBy_id crossref_primary_10_1080_15368378_2025_2503334
crossref_primary_10_1038_s41598_025_09594_8
crossref_primary_10_1049_wss2_12085
crossref_primary_10_53759_7669_jmc202505098
crossref_primary_10_1038_s41598_025_99990_x
crossref_primary_10_1142_S1469026824500354
crossref_primary_10_1016_j_compbiomed_2025_110171
crossref_primary_10_1016_j_heliyon_2024_e40537
crossref_primary_10_1016_j_bspc_2025_108467
crossref_primary_10_1007_s42979_024_02962_7
crossref_primary_10_1016_j_compbiolchem_2025_108574
crossref_primary_10_1155_dsn_6965319
crossref_primary_10_36548_jiip_2025_3_016
crossref_primary_10_1007_s11831_025_10228_5
crossref_primary_10_1007_s11760_024_03503_8
crossref_primary_10_1080_10255842_2025_2526789
crossref_primary_10_5772_acrt_20250009
crossref_primary_10_1007_s11760_024_03119_y
crossref_primary_10_1007_s40745_025_00635_7
crossref_primary_10_1007_s44174_025_00455_6
crossref_primary_10_1016_j_inffus_2024_102647
crossref_primary_10_1016_j_knosys_2025_114261
Cites_doi 10.1109/TCSI.2017.2694968
10.1109/ACCESS.2021.3097751
10.1016/j.future.2019.10.043
10.1109/TSMC.2014.2336842
10.1016/j.bspc.2019.04.005
10.1109/JIOT.2020.3027971
10.1007/s11227-019-02873-y
10.1109/JTEHM.2018.2869141
10.1016/j.comnet.2019.01.034
10.1016/j.comnet.2016.01.009
10.1016/j.future.2017.11.037
10.1007/978-981-33-6977-1_1
10.1007/978-3-030-66218-9_1
10.1109/ICCCN.2019.8847069
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s11760-023-02743-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 367
ExternalDocumentID 10_1007_s11760_023_02743_4
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-11d2c7dc7053572caa35a30e29bed62f43eef07cb2e73d9a9089be62ec9af7443
IEDL.DBID RSV
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001065264900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-1703
IngestDate Tue Oct 07 06:10:07 EDT 2025
Tue Nov 18 21:24:51 EST 2025
Sat Nov 29 05:31:01 EST 2025
Fri Feb 21 02:41:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Three-layer framework
Alpha spider customized dwarf mongoose optimizer (AS-DMO)
Heart disease
Improved MI
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-11d2c7dc7053572caa35a30e29bed62f43eef07cb2e73d9a9089be62ec9af7443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256962164
PQPubID 2044169
PageCount 7
ParticipantIDs proquest_journals_3256962164
crossref_primary_10_1007_s11760_023_02743_4
crossref_citationtrail_10_1007_s11760_023_02743_4
springer_journals_10_1007_s11760_023_02743_4
PublicationCentury 2000
PublicationDate 20240200
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 2
  year: 2024
  text: 20240200
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Tuli, Basumatary, Gill, Kahani, Arya, Wander, Buyya (CR11) 2020; 104
Krishnan, Lokesh, Devi (CR12) 2019; 151
Peris-Lopez, González-Manzano, Camara, de Fuentes (CR5) 2018; 81
Hasan, Bhattacharjee (CR15) 2019; 52
CR8
Cheikhrouhou, Mahmud, Zouari, Ibrahim, Zaguia, Gia (CR7) 2021; 9
CR9
CR16
Firouzi, Farahani, Barzegari, Daneshmand (CR14) 2020; 9
CR13
Yao, Tridandapani, Auffermann, Wick, Bhatti (CR2) 2018; 6
Devi, Kalaivani (CR10) 2020; 76
Yasin, Tekeste, Saleh, Mohammad, Sinanoglu, Ismail (CR3) 2017; 64
Hossain, Muhammad (CR4) 2016; 101
Sidek, Khalil, Jelinek (CR1) 2014; 44
Jain, Singh, Singh (CR6) 2022; 24
2743_CR8
2743_CR9
NI Hasan (2743_CR15) 2019; 52
KA Sidek (2743_CR1) 2014; 44
F Firouzi (2743_CR14) 2020; 9
2743_CR16
S Krishnan (2743_CR12) 2019; 151
2743_CR13
MS Hossain (2743_CR4) 2016; 101
M Yasin (2743_CR3) 2017; 64
P Peris-Lopez (2743_CR5) 2018; 81
A Jain (2743_CR6) 2022; 24
RL Devi (2743_CR10) 2020; 76
J Yao (2743_CR2) 2018; 6
O Cheikhrouhou (2743_CR7) 2021; 9
S Tuli (2743_CR11) 2020; 104
References_xml – volume: 64
  start-page: 2624
  issue: 9
  year: 2017
  end-page: 2637
  ident: CR3
  article-title: Ultra-low power, secure IoT platform for predicting cardiovascular diseases
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2017.2694968
– volume: 9
  start-page: 103513
  year: 2021
  end-page: 103523
  ident: CR7
  article-title: One-dimensional CNN approach for ECG arrhythmia analysis in fog-cloud environments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3097751
– volume: 104
  start-page: 187
  year: 2020
  end-page: 200
  ident: CR11
  article-title: HealthFog: an ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and fog computing environments
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.10.043
– volume: 44
  start-page: 1498
  issue: 11
  year: 2014
  end-page: 1509
  ident: CR1
  article-title: ECG biometric with abnormal cardiac conditions in remote monitoring system
  publication-title: IEEE Trans. Syst. Man Cybernet.: Syst.
  doi: 10.1109/TSMC.2014.2336842
– volume: 52
  start-page: 128
  year: 2019
  end-page: 140
  ident: CR15
  article-title: Deep learning approach to cardiovascular disease classification employing modified ECG signal from empirical mode decomposition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.04.005
– ident: CR16
– ident: CR13
– volume: 9
  start-page: 5581
  issue: 8
  year: 2020
  end-page: 5599
  ident: CR14
  article-title: AI-driven data monetization: the other face of data in IoT-based smart and connected health
  publication-title: IEEE Internet of Things J.
  doi: 10.1109/JIOT.2020.3027971
– ident: CR9
– volume: 24
  start-page: 100523
  year: 2022
  ident: CR6
  article-title: Real time system on chip based wearable cardiac activity monitoring sensor
  publication-title: Measurement: Sens.
– volume: 76
  start-page: 6533
  issue: 9
  year: 2020
  end-page: 6544
  ident: CR10
  article-title: Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-019-02873-y
– volume: 6
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR2
  article-title: An adaptive seismocardiography (SCG)-ECG multimodal framework for cardiac gating using artificial neural networks
  publication-title: IEEE J. Transl. Eng. Health Med.
  doi: 10.1109/JTEHM.2018.2869141
– volume: 151
  start-page: 201
  year: 2019
  end-page: 210
  ident: CR12
  article-title: An efficient Elman neural network classifier with cloud supported internet of things structure for health monitoring system
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.01.034
– ident: CR8
– volume: 101
  start-page: 192
  year: 2016
  end-page: 202
  ident: CR4
  article-title: Cloud-assisted industrial internet of things (iIoT)–enabled framework for health monitoring
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2016.01.009
– volume: 81
  start-page: 67
  year: 2018
  end-page: 77
  ident: CR5
  article-title: Effect of attacker characterization in ECG-based continuous authentication mechanisms for Internet of Things
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.11.037
– ident: 2743_CR8
  doi: 10.1007/978-981-33-6977-1_1
– ident: 2743_CR9
  doi: 10.1007/978-3-030-66218-9_1
– volume: 52
  start-page: 128
  year: 2019
  ident: 2743_CR15
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.04.005
– volume: 9
  start-page: 5581
  issue: 8
  year: 2020
  ident: 2743_CR14
  publication-title: IEEE Internet of Things J.
  doi: 10.1109/JIOT.2020.3027971
– volume: 76
  start-page: 6533
  issue: 9
  year: 2020
  ident: 2743_CR10
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-019-02873-y
– ident: 2743_CR13
  doi: 10.1109/ICCCN.2019.8847069
– volume: 64
  start-page: 2624
  issue: 9
  year: 2017
  ident: 2743_CR3
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2017.2694968
– volume: 151
  start-page: 201
  year: 2019
  ident: 2743_CR12
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.01.034
– volume: 24
  start-page: 100523
  year: 2022
  ident: 2743_CR6
  publication-title: Measurement: Sens.
– volume: 104
  start-page: 187
  year: 2020
  ident: 2743_CR11
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.10.043
– volume: 101
  start-page: 192
  year: 2016
  ident: 2743_CR4
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2016.01.009
– ident: 2743_CR16
– volume: 6
  start-page: 1
  year: 2018
  ident: 2743_CR2
  publication-title: IEEE J. Transl. Eng. Health Med.
  doi: 10.1109/JTEHM.2018.2869141
– volume: 9
  start-page: 103513
  year: 2021
  ident: 2743_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3097751
– volume: 81
  start-page: 67
  year: 2018
  ident: 2743_CR5
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.11.037
– volume: 44
  start-page: 1498
  issue: 11
  year: 2014
  ident: 2743_CR1
  publication-title: IEEE Trans. Syst. Man Cybernet.: Syst.
  doi: 10.1109/TSMC.2014.2336842
SSID ssj0000327868
Score 2.4096792
Snippet IoT-enabled electrocardiogram (ECG) devices are used to identify abnormal heart activity in the ECG signals and predict heart disease. Patients wear these...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 361
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Cardiac arrhythmia
Cardiovascular disease
Computer Imaging
Computer Science
Continuous wavelet transform
Deep learning
Electrocardiography
Feature extraction
Health care industry
Heart
Heart diseases
Heart rate
Heuristic methods
Image Processing and Computer Vision
Impulse response
Internet of Things
Machine learning
Multimedia Information Systems
Optimization models
Original Paper
P waves
Pattern Recognition and Graphics
Performance measurement
Recurrent neural networks
Segments
Signal,Image and Speech Processing
Software services
Vision
Wavelet transforms
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TuwwELW4QAEFb8Tykgs6sEhsx5NUCCFeDaIACdFEjj0Brri7y27g-8kkDgtI0Nw6iWXpjD2TeZzD2B4CpJkGJ6xJEqE9KmET-ktBGwM4X0JiG7EJuLpK7-6y65BwG4e2yu5ObC5qP3CUIz9UtW_OjKyj-6PhiyDVKKquBgmNP2yGWBJIuuE6uf_IsURKQtpOw6WGmDgjFeZm2um5GEwkaqdFhUythP7qmyYB57caaeN6zhb_d9NLbCEEnfy4tZJlNoX9FTb_iYpwlf29HNwIbAapPD89ORfk3jwnveuKhyoOH46orENQcuqXf-BVbQkonm0dt3OPOORBhOKB277n_7Cy4hFfWzJo3tGXr7Hbs9ObkwsRdBiEqw9oJeLYSwfeAXHBgHTWqsSqCGVWoDey1AqxjMAVEkH5zFIpsUAj0WW2BK3VOpvuD_q4wbgh5UWHZQpe60RlRaKcRgOR94UyRdFjcYdA7gJJOWllPOcTemVCLa9RyxvUct1j-x_fDFuKjl_f3u6gysNxHecTnHrsoAN78vjn1TZ_X22Lzck6CGq7vLfZdDV6xR02696qp_FotzHWdwwD7sE
  priority: 102
  providerName: ProQuest
Title IoT-enabled ECG-based heart disease prediction using three-layer deep learning and meta-heuristic approach
URI https://link.springer.com/article/10.1007/s11760-023-02743-4
https://www.proquest.com/docview/3256962164
Volume 18
WOSCitedRecordID wos001065264900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0V6KEcoKWtWAorH7hRS4nteJIjoKVFlVYroBXqJXLsCbSiy2o38PuxE4ctVVupveQSx4rmIzPOzLwHsE-IeaHQcqOzjCtHkpssnFLIpIjW1ZiZlmwCx-P88rKYxKGwRd_t3pck2y_1ctgtRZ1wH2NC3VFJrlZgzYe7PBA2nJ1_efyzkkiBeTcDl-uAv5nIOC3z-22eRqRlmvlLZbQNOCeb__eqL2EjJpjssLOIV_CMpluw2ZM3sOjLW7D-ExLha_h-envBqZ2jcmx0_IGH6OZYoLtuWCzisNk8VHWCJllol79ijTcE4jfGp-3MEc1Y5KC4Ymbq2A9qDL-muw4LmvXo5W_g88no4vgjjzQM3Hr_bHiaOmHRWQxQMCisMTIzMiFRVOS0qJUkqhO0lSCUrjChkliRFmQLU6NS8i2sTm-ntA1MB-JFS3WOTqlMFlUmrSKNiXOV1FU1gLRXRWkjRnmgyrgpl-jKQbSlF23ZirZUAzh4fGbWIXT8dfVur-EyeuuilD7vK7TwJ8cBvO81urz95912_m35O3ghfE7UNX3vwmozv6M9eG7vm2-L-RDWjkbjydkQVj4h99dJ9nXYWvYDSOnuTA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ98EYsFPABTmA1sZ1MckAIlZautqw4LFJvwbEnBVR2t7spiD_V31hPHl1AorceOCex5PjzPDye7wN4TohZbtBJmyaJNJ60tAlnKWRjROcrTGwjNoHjcXZwkH9cg9O-F4avVfY2sTHUfub4jHxLB9-cpypE92_mx5JVo7i62ktotLAY0a-fIWVbvh6-C-v7Qqndncn2nuxUBaQLcKtlHHvl0DtkZhNUzlqdWB2RykvyqaqMJqoidKUi1D63XBgrKVXkcluhMTqMewWuGp0h76sRyvMznUgrzNruuyxl5s9Id306bbdejGkkg5PkwqnR0vzpC1cB7l812cbV7d76337SbbjZBdXibbsL7sAaTe_Cxm9Ui_fg23A2kdQ0inmxs_1esvv2gvW8a9FVqcR8wWUrhqrgfoBDUQekkzyyIS8RnmguOpGNQ2GnXnyn2sovdNKSXYuenv0-fLqUyT6A9elsSg9BpKws6ajK0BuT6LxMtDOUYuR9qdOyHEDcr3jhOhJ21gI5Klb00YySIqCkaFBSmAG8PP9m3lKQXPj2Zg-NojNHy2KFiwG86sG1evzv0R5dPNozuL43-bBf7A_Ho8dwQ4WAr73Rvgnr9eKEnsA196P-ulw8bTaKgM-XDbozgdJMww
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDSH2wKAwUTbAD7yB1cR2fMnjNFaYNlWV6FDfIse-FFCXVV22v584H-02bUgTz3Gs6D50d7m73w_gEyHGiULLjY4irhxJbiJfpZAJEa3LMTI12QSORvF0moxvbPHX0-5dS7LZafAoTUU5WLh8sF58C1EHvIo3vgepJFdPYEv5QXpfr__4ufrLEkiBcbMPF2uPxRnIdnPm_mtuR6d1ynmnS1oHn-HO_3_2S3jRJp7soLGUV7BBRQ92OlIH1vp4D7ZvIBS-hj_HFxNO9X6VY0eH37iPeo55GuyStc0dtlj6bo_XMPNj9DNWVgZCfG6qdJ45ogVruSlmzBSOnVNp-C-6ajCiWYdq_gbOhkeTw--8pWfgtvLbkoehExadRQ8Rg8IaIyMjAxJJRk6LXEmiPECbCULpEuM7jBlpQTYxOSold2GzuCjoLTDtCRkt5TE6pSKZZJG0ijQGzmVSZ1kfwk4tqW2xyz2Fxjxdoy570aaVaNNatKnqw-fVO4sGueOfp_c7baetF1-mssoHEy2qirIPXzrtrh8_fNu7xx3_CM_GX4fp6fHoZA-eiyptaubC92GzXF7Re3hqr8vfl8sPtXH_Bb0z9qo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IoT-enabled+ECG-based+heart+disease+prediction+using+three-layer+deep+learning+and+meta-heuristic+approach&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Mishra%2C+Jyoti&rft.au=Tiwari%2C+Mahendra&rft.date=2024-02-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=18&rft.issue=1&rft.spage=361&rft.epage=367&rft_id=info:doi/10.1007%2Fs11760-023-02743-4&rft.externalDocID=10_1007_s11760_023_02743_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon